
Surface Reconstruction from High-Density Points Using
Deformed Grids

Keisuke Fujimoto
Department of Computer Science,

The University of
Electro-Communications, Chofu,

Tokyo 182-8585, Japan.
fujimo-k@igo.cs.uec.ac.jp

Toshio Moriya
Advanced Research

Laboratory, Hitachi Ltd.,
Kawasaki, Kanagawa

215-0013, Japan.
toshio.moriya.tm@hitachi.com

Yasuichi Nakayama
Department of Computer Science,

The University of
Electro-Communications, Chofu,

Tokyo 182-8585, Japan.
yasu@cs.uec.ac.jp

ABSTRACT

We present a method of surface reconstruction from high-density scatter pointsP = {p1, p2, ..., pN} without a normal vector
in R3. This method first sets a uniform grid and deforms each cell of the grid by fitting the vertex of each cell to the nearest of
the input points. It then constructs triangles according to the pattern of the vertices’s state in each cell. Our method can work
fast with little memory. We show that our method generated several polygon meshes from real-world range data.

Keywords: Surface reconstruction, Scatter point, Range data.

1 INTRODUCTION

Many surface reconstruction algorithms are used to
model real-world objects by computer. Range scan-
ning devices are often used to digitize real-world ob-
jects. Because most current scanning devices create
scatter points, a surface reconstruction technique that
uses scatter points is required.

One of the problems with reconstructing a surface is
handling the scatter points on the surface. If there are
many such points, reconstructing it fast is difficult.

In this paper, we present a method of surface recon-
struction from unorganized high-density points without
a normal vector. The method needs a set of points,
P = {p1, p2, ..., pN}, sampled on a surface inR3. It di-
vides the space into uniform grids, and vertices of each
cell are moved to the nearest input points, i.e., each cell
is deformed.

Each cell has eight vertices, and because these ver-
tices have two states whether they are moved or not,
each cell has 28 = 256 patterns. After rotation is con-
sidered, the number of patterns becomes 14. Finally,
meshes are constructed according to the pattern of each
cell.

Our method is based on the marching cubes
algorithm[Lor87]. This algorithm involves using a sur-
face reconstruction method from an implicit function.
It find intersections of the uniform grid and the surface
and connect these points mutually. Our method targets

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG’2008, February 4 – 7, 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

unorganized points, not an implicit function. The
method moves the vertices of each cell to the scatter
points, then connects the moved vertices.

Some methods can be used for a surface reconstruc-
tion algorithm from the points. One of them connects
the points by Voronoi/Delaunay techniques. However
the computational complexity increases significantly as
the number of points increases. Another method uses
the implicit function to approximate the surface. It re-
quires large memory and the computational complex-
ity increases as the number of points increases. Our
method is easier to implement and can work faster with
little memory than the other method.

2 RELATED WORKS
Since the early 1990s, a substantial amount of work
has been done on surface reconstruction from unorga-
nized points. In this section, we present earlier work
on this problem. The techniques for reconstructing a
surface can be classified roughly by the internal rep-
resentations. The first technique connects points by
the Voronoi or Delaunay algorithm. The second uses
the implicit function to approximate the surface, and
the mesh is constructed by using the marching cubes
method.

2.1 Delaunay triangulations
Delaunay triangulations is a method that connects the
points. It maximizes the minimum angle of all the an-
gles of the triangles, and it tends to avoid “sliver” tri-
angles. Amenta approached the reconstruction problem
from a computational geometry point of view, focusing
on topology reconstruction [Ame98],[Ame01]. Bois-
sonnat proposed a robust method combining the Delau-
nay approach and implicit function approach[Boi00].
Mederost[Med05] later proposed an algorithm for han-
dling noisy input.

2.2 Implicit function

One of the approaches uses the implicit function to
approximate the surface. This approach can handle
damaged points and can allow for a complex shape.
Hoppe[Hop92] locally estimated the signed distance
function as the distance to the tangent plane of the clos-
est point. Then, the method reconstructs the surface
as the zero-levelset of the implicit function by using
the marching cubes algorithm. Savchenko[Sav95] and
Turk[Tur02] used a globally supported RBF(Radial Ba-
sis Function) to express by an implicit function. The
complexity can be reduced by using a fast multiple
method[Car01]. Morse[Mor01] used compactly sup-
ported RBF to reconstruct a large data. Ohtake[Oht03]
defined the surface locally via quadratic functions that
are blended together globally by weights summed to
one. Spatial subdivision is used to adapt the resolution
to data; sharp features are detected by normal clustering
and represented using multiple sets of coefficients.

2.3 Other techniques

Boissonnat[Boi84] made meshes by starting from
an initial one and using the greedy approach.
Szeliski[Sze93] proposed an approach that uses a
dynamic, self-organizing oriented particle system
and an efficient triangulation scheme that connects
the particles. Jenke[Jen06] proposed a Bayesian
statistics-based technique.

3 OUR METHOD

In this section, we present the details of our technique.
It makes meshes from pointsP⊆ R3 distributed on the
surface without a normal vector. The method has two
steps.

1. Set and deforme cells
Set a uniform grid in the space. Each cell is de-
formed by fitting a vertex of the cell to the nearest
input point.

2. Reconstruct meshes
Each cell has eight vertices, and because these ver-
tices have two states whether they were moved or
not, each cell has 28 = 256 patterns. After rotation
is considered, the number of patterns becomes 14.
Then, meshes are constructed according to the pat-
tern of each cell.

We shall now describe each step in detail.

3.1 Setting and deforming grids

In the first step, we set up a uniform grid. Then, each
cell of the grid is deformed according to input points.
We defineh as the cell size, and we give index(i, j,k)

(i,j,k) (i+1,j,k)

(i+1,j+1,k)

(i,j+1,k)

(i,j,k+1) (i+1,j,k+1)

(i+1,j+1,k+1)(i,j+1,k+1)

h

Figure 1: The cell in the grid

Cell
Search Range

Moved PointInput Points

Figure 2: Deformed cell in 2D

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14.

Figure 3: Mesh pattern

to each cell. The cellCi, j,k(h) and the vertices of the cell
are at the position shown in Fig.1 It is given by Eq.(1).

Ci, j,k(h) = [ih, ih+h]× [jh, jh+h]× [kh,kh+h] (1)

Then, we definevi, j,k ∈ R3 as the vertex of each cell in
Eq.(2).

vi, j,k = (ih, jh,kh) (2)

The vertices are scattered at where grid intersects in the
beginning. In the next step, we deform the grid by mov-
ing the vertices. We defineΩi, j,k as the search range of
the vertexvi, j,k (Fig.2). We defineqn ∈ Qi, j,k as points
included within the area ofΩi, j,k. Then, we select the
nearest point ofQi, j,k. The vertexvi, j,k of the cell is
moved on the selected point.

min
n

(||qn−vi, j,k||)) (qn ∈ Qi, j,k) (3)

Because each cell shares their vertices with the next
cell, these two cells sharing the vertex are deformed by
moving the vertex,v. When we implement them, we
should input the index of verticesv or their address in
each cell, not the coordinate values in each cell.

There are possibility of meshes intersecting when it
is created by the scatter points. Meshes may intersect
when they are created by the scatter points. In our
method, we set the rangeΩi, j,k to the vertex, so the in-
tersection of the meshes does not occur. The left half of
Fig. 2 shows the state before deforming the cell in 2D.
The vertex is sheared by nearby cells, and it is moved to
the nearest input point. Then, these cells are deformed
as they are on the right half of Fig. 2.

3.2 Generating meshes
In the second step, we construct polygon meshes.
Meshes are made by a pattern of the vertices’ state of
each cell. Each cell is constructed from eight vertices.
If an input point around the vertex of each cell, the
vertex will move towards the input point. Each cell
has eight vertices, and because these vertices have two
states whether there are moved or not, each cell has
28 = 256 patterns. After rotation is considered, the
number of patterns becomes 14, as shown in Fig. 3.
Finally, the meshes are constructed according to the
pattern of each cell. In Fig. 3, the black point is moved.
If vi , j,k, vi + 1, j,k, and vi + 1, j + 1,k are moved,
pattern 1 is applied, and these points are connected.

4 EFFICIENCY IMPROVEMENT OF
MEMORY

If all cells and the position of points are stored in
the memory, the amount of required memory become
enormous (it requiresO(n3)). In our method, because
each grid can be independently calculated, the required
memory size can be reduced by copying the results of
the previous steps onto the results of the next steps. It
requiresO(n2) memory size. In practice, becausen is
from 50 to 500, the necessary memory size can be ob-
tained.

The next step, only needs a copy of memory, so the
overhead of the calculation is small. Pseudocode in Al-
gorithm 1. describes the whole process of surface fit-
ting.

5 EXPERIMENT
In this section, we describe how we applied our method
to several data sets. Because the number of points was
very high, We divided the space into 103 and allocated
the kd-tree in each area so that the search time was
shortened,

The experiments were executed on a 1.70-GHz
Mobile Pentium with 1.2 GB RAM. The results are
shown in Fig.4-6. We compeared our method with the
Multilevel Partition of Unity(MPU)[Oht03]. Table 1
shows the computational time and RAM memory for
our method and the MPU, We excluded the time for
the reading and writing of the file. As a result of the
experiment, our method yielded a good result on the

functionconstruct_mesh()
for j = 0 toY +1 do

for i = 0 toX +1 do
Set initial position(vi, j,0)
Move position(pi, j,0)

for k = 1 toZ do
Set initial position(v0,0,k)
Move position(p0,0,k)
for j = 1 toY +1 do

for i = 1 toX +1 do
Set initial position(vi, j,k)
Move position(vi, j,k)
Generate mesh(vi−1, j−1,k−1 to vi, j,k)

Copy fromk+1 tok

Algorithm 1: Pseudocode

computational time and the required memory. The
mesh is constructed according to the pattern of each
cell of grid in both methods. The MPU have to convert
the point set to the implicit function as preprocessing,
it becomes overhead. Because Our method generate
the mesh directly, it can work fast. And the required
memory of our method is less than of MPU. Because it
only has to use one step of grid in our method (if the
number of grid is 1003, it use only 1002 cells.), the size
of the memory that our method use is little as described
in section 4, while the MPU must have the octree
structure of whole region, it requires large memory.

However there is a problem that a loss of meshes can
occure when the vertex of grid cannot find any near in-
put point, if the input points are partially space(Fig.7).
Therefore, we have to set the grid size according to the
distance of the point to the neighbor point or we prepare
it correct a hole-filling algorithm [Tek04].

Table 1: Results

Model Our method MPU
point, grid RAM time(s) RAM time(s)

Bunny
35K, 503 4.7 MB 0.3 16 MB 2
Dragon

437K, 1303 19.6 MB 2.8 41 MB 23
Gargoyle

863K, 3003 38 MB 26.0 98 MB 48

6 CONCLUSION

We presented a method for reconstructing a surface
from high-density unorganized points. Our method
uses deformed grids, enabling it to work fast with lit-
tle memory. In addition, it is simple and easy to imple-
ment. However, a loss of meshes can occur if the input

Figure 4: Bunny model

Figure 5: Dragon model

points are partially sparse. In future work, our method
will handle sparse points by applying an octree struc-
ture to deal with a multi-level grid.

ACKNOWLEDGEMENT
We would like to thank Stanford University for pro-
viding the models of Bunny and Dragon, and the
AIM@SHAPE project for providing the models of
Gargoyle.

REFERENCES
[Ame98] N.Amenta, M.Bern, and M.Kamvysselis, “A new Voronoi-

based surface reconstruction algorithm,” In Proceedings of
ACM SIGGRAPH, pp.415-421, 1998.

[Ame01] N.Amenta, S.Choi, and R.Kolluri, “The Power Crust,” In
Proceedings of the 6th ACM Symposium on Solid Modeling,
pp.249-260, 2001.

[Boi84] J.D.Boissonnat, “Geometric structures for three-
dimensional shape reconstruction,” ACM Transactions on
Graphics, Vol.3, No.4, pp.266-289, 1984.

[Boi00] J.D.Boissonnat, and F.Cazals, “Smooth Surface Reconstruc-
tion via Natural Neighbour,” In Proceedings of the 16th An-
nual ACM Symposium on Computational Geometry, pp.223-
232, 2000.

[Car01] J.C.Carr, R.K.Beatson, J.B.Cherrie, T.J.Mitchell,
W.R.Fright, B.C.McCallum, and T.R.Evans, “Reconstruc-
tion and Representation of 3D Objects with Radial Basis
Functions,” In Proceedings of ACM SIGGRAPH, pp.67-76,
2001.

[Hop92] H.Hoppe, T.Derose, T.Duchamp, J.McDonald, and
W.Stuetzle, “Surface reconstruction from unorganized point,”
In Proceedings of ACM SIGGRAPH, pp.71-78, 1992.

[Jen06] P.Jenke, M.Wand, M.Bokeloh, A.Schilling, and W. Strasser,
“Bayesian point cloud reconstruction,” In Proceedings of EU-
ROGRAPHICS, Vol.25, No.3, 2006.

Figure 6: Gargoyle model

Figure 7: Error result

[Lor87] W.E.Lorensen, and H.E.Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer
Graphics Vol.21, No.4, pp163-170, 1987.

[Med05] B. Mederos, N. Amenta, L. Velho, and L.H. Figueiredo,
“Spectral urface reconstruction from noisy point clouds,” In
Proceedings of EUROGRAPHICS, pp.53-62, 2005.

[Mor01] B.S.Morse, T.S.Yoo, P.Rheingans, D.T.Chen, and
K.Subramanian, “Interpolating implicit surfaces from scattered
surface data using compactly supported radial basis functions,”
In Shape Modeling International, pp.89-98, 2001.

[Oht03] Y.Ohtake, A.G.Belyaev, M.Alexa, G.Turk, and H.P.Seidel,
“Multilevel Partition of Unity Implicits,” In Proceedings of
ACM SIGGRAPH, pp.463-470, 2003.

[Sav95] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Ku-
nii, “Function representation of solids reconstructed from scat-
tered surface points and contours,” Computer Graphics Forum,
Vol.14, No.4, pp.181-188, 1995.

[Sze93] R.Szeliski, D.Tonnesen, and D.Terzopoulos, “Modeling sur-
faces of arbitrary topology with dynamic particles,” IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pp.140-152, 1993.

[Tek04] LS. Tekumalla and E. Cohen, “A Hole-Filling Algorithm for
Triangular Meshes,” Technical Report UUCS-04-019, School
of Computing, University of Utah, 2004.

[Tur02] G.Turk, and J.Obrien, “Modelling with implicit surfaces
that interpolate,” ACM Transactions on Graphics, Vol.21, No.4,
pp.855-873, 2002.

