
Managing dynamic entities in mobile, urban virtual
environments

Antti Nurminen
antti.nurminen@hut.fi

Helsinki University of Technology

ABSTRACT

Mobile networked virtual environments (mNVE’s) are a new, emerging type of virtual environments. Mobile 3D maps that sup-
port dynamic entities and communication between clients are a subcategory of mNVE’s, intended for navigation and location-
based information browsing. Models and entities portrayed in 3D maps represent real environments and entities, such as
buildings, vehicles and people. Our main contribution is in developing a lightweight and scalable scheme for real dynamic en-
tity management and visibility culling by exploiting geometry of urban environments, the honesty of locally positioned clients
and the lack of interference between clients. We bind moving entities to a topological network consisting of street segments,
crossings and larger areas, all associated to precalculated visibility cells. Our system reduces visibility determination to a sim-
ple cell occupation logic, performed at smart clients or proxies. In this scheme, servers act as fast message passing switches,
managing client subscription and query tables, simply forwarding state update messages. Computational scalability is ensured
by transferring computations to client side, and networking scalability by spatially localized servers, which allow roaming by
subscribing to each others’ neighboring visibility cells.

Keywords: 3D maps, mobile networked virtual environments, 3D user interfaces

1 INTRODUCTION AND RELATED
WORK

Mobile 3D graphics API’s, mobile 3D hardware and
cellular networks have reached the point where im-
plementations of advanced, networked and graphically
rich applications are possible on mobile devices. De-
spite these developments, mobile devices are still thin,
and cannot directly present large and detailed, dy-
namic worlds. We attack this challenging optimiza-
tion problem and develop a scalable mobile platform
for visualizing static and dynamic objects in urban en-
vironments with near real time tracked real world en-
tities, rendering the scene at interactive refresh rates,
and in a realistic manner.

Our work has connections to networked virtual envi-
ronments and computer graphics optimizations in gen-
eral. We discuss previous work, and exploit the fea-
tures of our environment to create a lightweight and
scalable solution, based on precalculated cell-to-object
and cell-to-cell visibilities, topological data structures
and client-side logic for positioning decisions and dis-
tributing position updates.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1.1 Mobile maps
Maps are representations of real environments. The
level of abstraction may vary, from symbolic 2D rep-
resentation to realistic 3D. Most commercial mobile
maps, such as TomTom [Tom06], have been designed
for navigational purposes, and may feature static
location-based information, such as restaurants, mu-
seums, and other points of interest. 2D map views are
based on static raster pictures, or real-time rendered
vector graphics. A currently popular view mode in car
navigation systems is the perspective 2D view, por-
traying 2D street networks from the street level with
a perspective transformation. Mobile map research
projects have yielded prototypes with various nav-
igational features and interaction methods, support-
ing multimedia and online searches [Che00, Pos02,
Bau01].

The key idea in 3D maps, in contrast to 2D maps,
is the direct recognizability of the environment - when
rendered in full 3D, including buildings and all other
features of the environment, the virtual scene should
match the real world, facilitating unambiguous navi-
gation.

The first attempts at creating mobile, interactive
3D maps faced severe technical limitations. Without
3D hardware, and without optimizations, for example
the 3D City Info project attempted to use a realistic
VRML city model, but had to perform the first field
experiments with pre-rendered images on web pages
[Rak01]. The TellMaris project applied simple spatial
culling, and was able to render low resolution textured
models at interactive rates [Prz05], but without routing



or online search capabilities. With visibility informa-
tion embedded in VRML models, and low resolution
textures, Burigat and Chittaro [Bur05] achieved 4-5fps
for a city square model, with information content re-
trievable from the model. These prototypes did not
support progressive model downloading, nor dynamic
entities.

When dynamic entities and message passing be-
tween clients are introduced to mobile 3D maps, they
can be viewed as a subset of mobile networked envi-
ronments (mNVE’s), where the 3D content represents
real environments, and the entities represent real peo-
ple and vehicles. In this sense, such mobile 3D maps
are real virtual environments. Figure 1 presents our
case, an urban environment with tracked, dynamic en-
tities.

1.2 Networked virtual environments
Networked virtual environments (NVE’s) are simu-
lated worlds, where multiple users can interact with
the shared environment, and each other. NVE’s in-
clude text-based games such as multi-user dungeons
(MUDs), teleoperation applications, massive mili-
tary combat simulators and immersive, shared envi-
ronments such as collaborative virtual environments
(CVE). First NVE’s were military simulators, such
as the SIMNET [Joh87], but academic use and en-
tertainment industry soon adapted similar technolo-
gies. The most popular NVE’s are currently network
games, such as the massive multiplayer online role-
playing game (MMORPG) World of Warcraft (WoW)
or the first-person shooter (FPS) Counter-Strike, with
millions of users.

Most NVE’s include a 3D front-end. Large, in-
creasingly more realistic environments easily exceed
the capabilities of any given 3D hardware. Smart al-
gorithms are required to reach interactive rendering
speeds. The two fundamental methods are visibility
culling and level of detail (LOD). Visibility determi-
nation methods remove those objects from the render-
ing pipeline that are not visible in the current view,
and LOD techniques use screen space metrics to de-
termine how accurately objects need to be rendered.
LOD methods include optimization of both geometry
and surface detail (shaders, textures).

Networking requirements of NVE’s depend on the
application. For example, a networked chess would
only involve two players, whereas a military simula-
tion or a MMORPG might need to scale up to hun-
dreds of thousands of units or players. In a client-
server model, even a chess server could be exhausted,
if it was required to serve a million concurrent clients.
As the games are independent, scalability can be ad-
dressed by simply increasing the number of servers. If
the world allows users to interact, as in military simu-

Figure 1: Real dynamic entities: GPS tracked public
transportation

lations or games, message passing must be facilitated,
and independent servers are not sufficient.

Interest management [RMa95] and communication
visibility [Cap97] techniques have been developed to
minimize network traffic between clients. Common
solutions utilize various area-of-interest (AOI) based
approaches and direct visibility, but the related com-
putation and decision making is performed at server
side, causing a potential computational bottleneck. In
the Player/Ghost model, transmissions are optimized
by honest Players, which send updates only when a
locally computed extrapolated state deviates from the
real one significantly [Bla92].

1.3 Network topologies
Network topology has a significant impact on the po-
tential scalability of NVE’s, both computationally and
network-wise. Client-server solutions often require
the server to maintain a simulation of the entire world,
and typically server-to-client network traffic rises lin-
early with the number of clients. For example, one
of the most popular networked first person shooter
games, Counter-Strike, was observed to follow this
rule very accurately [Far04]. Client-server solutions
are considered good for event- and behavior-rich envi-
ronments, where persistency and consistency are im-
portant, but the server and the network easily become
bottlenecks. Common client-server FPS games allow
only 32–64 simultaneous users per server.

Peer-to-peer (P2P) network based systems could
scale infinitely, if each client would perform only a
small part of the whole world simulation, and transmit
its data only to a limited number of other clients. In
the NPSNET-IV military simulator, clients distributed
their states to every participating client, and a maxi-
mum of 300 Players was reached on a 10Mbit/s ether-
net [RMa95].

In a P2P system, every participating unit must be
honest. In addition, resolving parallel actions, where
client states diverge, is difficult [Mar06]. P2P net-
works suit the situation where divergence of client
states is unlikely, and which require computational
scalability.



2 VISIBILITY OF STATIC SCENES
Complex models can be rendered at interactive rates
even in lightweight systems, given that the complex-
ity is reduced by rendering only the actually visible
parts of the model, using appropriate levels of de-
tails. Naturally, the run time computations required
to achieve such an output-sensitive situation should
be minimal. The classical scenario has been a walk-
through of a static, densely occluded scene, a situation
usually found indoors. [Coh03] provides a compre-
hensive survey of such methods. In these applications,
the world is typically divided into a hierarchical struc-
ture, and various culling techniques applied to select
the parts of the scene currently in view.

Most visibility algorithms aim for conservativeness,
where the method ensures that all visible geometry is
rendered, with the risk of including some occluded ge-
ometry. The possible degree of aggressivity in visibil-
ity determination depends on the application, and the
situation. In practice, even an approximate solution
may provide sufficient quality.

2.1 Spatial subdivision
Visibility algorithms are tied to the underlying spatial
subdivision algorithm. For static indoor scenes, the bi-
nary space partition algorithm (BSP) [Fuc80] has been
popular. A BSP tree structure can directly represent a
correctly created B-rep model, avoiding any external
data structures, and can also be used for fast collision
detection [Ar00].

Octree based spatial subdivision algorithms divide
the space into a hierarchy of volumes. 2D spatial data
can be divided to a hierarchy of quads using quadtrees.
Octrees and quadtrees usually serve as separate, as-
sisting data structures. They provide good localiza-
tion, and the hierarchical structure suits various culling
schemes, such as view frustum culling.

The hierarchical Z-buffer algorithm[Gre93] utilizes
both an object-space octree, and image-space Z buffer
hierarchy. The hierarchical occlusion map (HOM)
stores opacity and occluder distance information sep-
arately [Zha98], creating potential occluders in a pre-
process.

2.2 Potentially visible sets
The concept of potentially visible sets (PVS) was de-
veloped in the seminal work by Airey [Air90] and
Teller [Tel92]. In this scheme, the world is divided to
cells, connected to each other through portals, open-
ings between the cells such as doorways. Cell-to-
cell or cell-to-object (or cell-to-polygon) visibilities
are precomputed, and at run time, the objects deemed
visible from the current cell are rendered. [Tel92] also
defines detail objects, which are discarded as non-
occluding, small objects. Later research improves
upon this work. For example, [And00] defines the

hardly visible set, objects that contribute only little
to the scene and can be discarded. In city scenar-
ios, [Cap97] classifies visibility into graduated visi-
bility sets, for objects of varying visibilities. The vis-
ibility precomputation is also associated with the re-
quired level of detail of the models: the vLOD system
[Chh05] binds these aspects together.

Potentially visible sets are a very powerful tool for
visibility culling. Lookup functions have minimal
overhead in fetching precomputed visibilities, given
sufficiently simple visibility list compression algo-
rithms. With PVS systems, there is no need for expen-
sive computations or view dependent scene structure
rearrangements, such as BSP tree reconfigurations.

For our case, with free viepoint, we subdivide our
space to 3D voxels (view cells), and apply a cell-to-
object PVS algorithm, using façades and roofs as ob-
jects. A precomputation stage creates visibility lists
and compresses them into difference clusters. Our
static object culling scheme is described in [Nur06].

3 VISIBILITY OF DYNAMIC OB-
JECTS

Dynamic objects are not part of the static world,
and their visibilities cannot be simply preprocessed.
[Chr92] asserts three requirements for an algorithm
supporting dynamic 3D scenes, the abilities to
1. Change the camera view
2. Add objects to the scene
3. Delete objects from the scene
A dynamic entity is then managed by deleting it
from the old position, transforming it, and inserting
back to the scene. This introduces significant over-
head, a problem long recognized. In the context of
managing dynamic objects within BSP based urban
scenes, Fuchs suggested to divide static and dynamic
objects to separate BSP trees, where the static BST
trees would not intersect the paths of dynamic objects
[Fuc83].

In addition to the insertion overhead, visibility
would need to be determined each frame. Sudarsky
and Gotsman offer a possible relief: each moving
object is replaced by a temporary bounding volume
(TBV), which contains the object during a validity pe-
riod [Sud97]. During this time, run time visibility cal-
culations rely on the TBV. A TBV is created based on
a priori knowledge of the object’s behavior. For ob-
jects with well known trajectories, sweep surfaces can
be used.

The TBV eliminates the need to perform scene
management and visibility determination every frame.
TBV’s can be used in several run time occlusion
culling algorithms, as they simply replace the object
geometry. However, the method’s efficiency is depen-
dent on the underlying culling technique, and insertion



overhead. Unfortunately, current dynamic entity visi-
bility culling algorithms don’t offer lightweight pre-
computation based solutions for urban environments
with unrestricted viewpoints. In addition, the TBV va-
lidity period depends on viewpoint motion: it can be
determined accurately only for a static viewpoint.

4 MANAGEMENT OF DYNAMIC
REAL WORLD ENTITIES

A real city is populated by pedestrians, bicyclists, cars,
public transportation and possibly other types of vehi-
cles. We consider all these entities as detail objects,
which do not contribute to visibility. In the follow-
ing, we develop a view independent dynamic entity
management and culling scheme using predetermined
visibilities.

4.1 Topological entity management
We assume that all real entities in an urban environ-
ment are restricted to areas or paths, which can be
extracted from existing map databases. As a conse-
quence, we also assume that only physical positions
are updated, not virtual, freely flying cameras. Pedes-
trians use sidewalks and walk in parks or market-
places, while vehicles are restricted to essentially one-
dimensional streets and occasional parking lots. Taxis,
buses and bicycles can have their own dedicated lanes,
and trams and subways use rails. Furthermore, public
transportation is generally limited to predefined routes.

In the context of increasing GPS accuracy, [Cuy03]
proposes to constrain vehicle paths to streets. Fol-
lowing this idea, we create topological street networks
(possibly separate for each entity type, if suitable data
exists), connecting areas such as parks and market-
places to the network. We limit potential navigable ar-
eas to this network of street segments (figure 2) and ar-
eas (figure 4). Similar work has been done in [Whi07],
with the addition of indoor topologies, for navigation
purposes.

The resulting network consists of nodes (crossings
and areas), edges between nodes (street segments), and
can be viewed as an adjacency graph. We use inci-
dence lists as internal data structures. Such a list con-
tains pointers from nodes to adjacent edges and vice
versa. Street segment geometry is stored to edges, and
area geometry to nodes. The position of an entity can
now be given by an edge ID, and the one-dimensional
position along the street segment, or by a node ID, and
the two-dimensional position within the area. Nodes
that are associated to crossings do not hold area geom-
etry.

A dynamic entity is now managed by tracking its
position within this topological network. For initial
placement, a quadtree provides a good external struc-
ture to localize closest street segments and areas. We

Figure 2: Pedestrians projected onto a street network.

then test if the entity lies within one of the closest ar-
eas, and if not, project it to the nearest street segment.
When the entity moves, its position on the network is
constantly verified. Each entity holds its locally mea-
sured position (for example, a GPS position) and the
inferred position within the network.

4.2 Visibility cells
To build a system where dynamic entity visibility can
be predetermined, we create static virtual visibility
cells reflecting the geometry of street segments and
areas. For any visible cell, we assume that entities
occupying them are visible as well, in the cell-to-cell
visibility manner. In pursue of conservativeness, visi-
bility cells should cover all occupiable space. In prac-
tice, we use a constant value for cell width, estimating
the widest possible street. For the height, we use the
height of the tallest possible entity. We construct the
cells as sweep volumes along the street geometry. For
each area, a single large visibility cell is constructed
as an extruded volume, again using the height of the
tallest entity (figure 4).

We observe that generally crossings seem to be
more visible than the streets at urban canyons (the an-
tipenumbra of crossings tends to be larger than that
of the streets between buildings). Even if a piece of
a cell would be visible at a junction, the entire street
would be deemed visible. Therefore, we make a minor
modification to the shape of the virtual cells, and the
network, where the nodes would otherwise be located
only at the centers of crossings and areas. We split
each street segment near a crossing, and use the short
pieces to create a virtual cell reflecting the junction ge-
ometry. For example, in a T crossing, three short seg-
ments are connected to one node, constituting a single
T shaped visibility cell (figure 2). An entity on any of
these small segments would occupy only this particu-
lar visibility cell. We store pointers to the edges and
nodes in the associated visibility cells.



Figure 3: Cell occupations and validity periods for
trams.

Results from the visibility calculations are stored
into each view cell’s visibility list. These lists can
be downloaded in advance, or progressively streamed
at run time. Visibilities are updated as the viewpoint
moves from a view cell to another. For each visible
cell, the occupying entities are rendered.

4.3 Approximating entity motion: cell
occupation validity periods

In the sense of temporal bounding volumes, we could
approximate entity motion by discretized temporal
bounding vectors along the one-dimensional street
network. A moving vehicle would be described by a
larger set of points than a stationary vehicle. How-
ever, our visibility scheme utilizes preprocessed static
cells. Thereby, we are primarily interested in poten-
tial cell occupation instead of the potential motion vec-
tor. We abandon the temporal bounding vector calcu-
lation, and estimate cell occupation validity periods.
In another words, instead of estimating a new position
based on a given time interval, we estimate time of
travel, given a distance (shortest remaining street seg-
ment within a visibility cell). We compute separate
periods for entity’s front (entering a new cell) and aft
(leaving the current cell). After the shorter of these va-
lidity periods expires, occupation approximations are
recalculated, and visibilities reassigned.

In figure 3, the front validity period of the tram A
has expired, and new periods calculated. We possess
a priori knowledge of the tracks, and know that the
tram will continue straight across the junction. There-
fore, the front period becomes rather long, and we se-
lect the aft period. Until this period expires, the tram
will occupy two cells. Tram B has been GPS posi-
tioned before its period expired, caught before reach-
ing a node. For this tram, the front period is shorter,
and selected for validity period calculation. Until it
expires, the tram occupies the X shaped crossing cell.

Figure 4: A single large visibility cell representing a
walkable area, joined to a surrounding street topology.

4.4 Networking: subscriptions
In a peer-to-peer network, utilizing visibility effi-
ciently is difficult. In order to know which clients
are visible, a client should send position queries to ev-
ery client, and do this frequently. We choose a client-
server approach to allow centralized message passing
with interest management. A server maintains master
tables of client states, including cell occupation, valid-
ity periods and subscriptions.

During normal operation, clients subscribe to vis-
ible cells, and cancel subscriptions to invisible ones.
This can be performed as a single subscription differ-
ence message. We also support direct subscriptions.
If clients are interested in individual entities, such as
other users or certain vehicles, they can subscribe to
them. The server will then update these entities inde-
pendently of visibility or distance. Maximum limits
are set to avoid overuse. Clients are also allowed to
perform entity queries to find, for example, their bud-
dies, or plan their schedule based on the location of an
arriving bus. Again, temporal limits suppress overuse.

Should the visibility change rapidly due to view-
point movement (such as when the viewpoint first ele-
vates and then descends at rooftop level), a client may
receive data for already invisible entities due to net-
work latency. This data can be stored for validity pe-
riods, and used to simulate the entities immediately if
the related cells become visible again. When validity
periods expire, these entities are deleted.

4.5 Computational scalability
We proceed to utilize a key notion to optimize our
system to be computationally scalable. Client posi-
tioning is based on local devices, such as GPS’s, so
smart clients must be trusted to some extent. In ad-
dition, the real world resolves possible near paral-
lel actions, asserting consistency, and the real entities
take care of their long term situation, asserting per-
sistency. We now assume that our clients are honest,



and let them compute their position on the topologi-
cal network. They also publish their dead reckoning
scheme, so other clients can extrapolate their position.
This is utilized in the Player/Ghost manner, so that a
client sends its position and cell occupation updates
only when its locally computed extrapolated position
exceeds an error threshold. When a client senses un-
expected, emergent behavior, such as stopping, it can
immediately send a state update. Updates are also trig-
gered when new validity periods are calculated.

In our scheme, a server can avoid dead reckoning
and position projection computations altogether, sim-
ply updating its master tables, and forwarding state
changes when ever it receives such data from the smart
clients. For entities where our client software is not
installed, such as public transportation with external
tracking network interfaces, separate proxies can be
used to scale the system up.

4.6 Networking scalability
When the amount of concurrent users reach millions,
the local network at server side may become con-
gested, despite our optimization efforts. We overcome
this by limiting servers spatially, and increasing the
number of servers, which are distributed to different
subnetworks. Neighboring servers subscribe to each
others’ cells that lie at their shared border. If the
density of users is very high, local mobile networks
may become a bottleneck. In this case, motion ex-
trapolation can be extended to cover several visibility
cells, although crossings pose a problem, unless a pri-
ori knowledge on entity paths is available. For exam-
ple, public transportation usually follows static routes,
but pedestrians may choose any direction.

4.7 Privacy
Privacy issues are addressed by a buddy system; users
can choose whether they publish their identities or not,
and their target audience. However, unless they pub-
lish their identities, they will not be able to identify
other users.

5 DYNAMIC ENTITIES: A REAL
WORLD CASE

We have utilized our developments for a real case.
We gathered map data, public transportation schedule
data, and obtained access to an interface for a public
transportation tracking system. For practical purposes,
we expected to use GPS for positioning, with accuracy
of 5m or worse, and update rates of 1Hz or less.

The system was built upon our current mobile 3D
map system, the m-LOMA platform. m-LOMA uti-
lizes regular 3D view cell subdivision and precalcu-
lated cell-to-object visibilities and contribution culling
for static geometry, with building façades and roofs as
atomic objects. Our city model consists of about 200

individually textured and 100 flat colored buildings,
from the city center of Helsinki, Finland. The texture
detail varies between 10–20cm. The model runs at 30–
200fps in recent smart phones with 3D hardware sup-
port, such as the Nokia N93 and N95, simultaneously
rendering up to 50 textured buildings, and 50–100 flat
colored, distant buildings. The system relies on ex-
plicit memory management at run time, optimized for
LOD textures. The 3D models and textures can be pro-
gressively downloaded over mobile networks using a
pipelined binary XML protocol over TCP. The engine,
its network scheme and performance are described in
[Nur06, Nur07]. The presented dynamic entity man-
agement system replaces the early system described in
[Nur06].

5.1 Map data and public transportation
Our map data covers street geometry, building out-
lines, parks, etc. Area data is given as polylines. Only
the centerlines of streets is provided. No sidewalk data
is available. The data is not topological and contains
errors. After manual cleaning, a topological, slightly
simplified street network was created to cover the city
center. Visibility cells were instanced based on the re-
sulting network. On average, 5–6 cells were needed
for each city block. This increased the size of our vis-
ibility lists, but not prohibitively. For a geometrically
complex 3D city model, this increase would be even
less significant.

Public transportation data was provided in a collec-
tion of files in a proprietary format. We integrated
multiple road polylines, simplified route geometry,
and extracted bus stop positions. Unfortunately, the
route data was very inaccurate, randomly misaligned
to the street data, containing various loops, zig-zag
shapes etc. It is stored in the local public transporta-
tion organization’s internal database, and exported ev-
ery time a schedule change occurs, so manual editing,
without access to the database, would only prove a
temporary solution. The public transportation track-
ing system provides estimates of arrival for the bus and
tram stops with a granularity of one minute. It has a
SOAP interface, and suffers from a latency of several
seconds. Less than half of buses, but all trams, are
equipped with this tracking system.

5.2 Simulation: real entity behaviors
Entities were assigned behaviors and related param-
eters for dead reckoning and validity period calcula-
tions set. The basic behaviors reflect the method of
movement. Our current system supports pedestrians,
one-part vehicles such as buses and cars, and two-part
vehicles such as trams. The related parameters de-
fine their length (including 0 for pedestrians and bicy-
clists), maximum speed, lateral position offsets, col-
lision avoidance schemes, collision distance thresh-



old, and timeouts for solving dead locked situations,
including temporary acceptance of collisions and en-
tity deletion. We also specify spawn times based on
schedule data. The lateral position offset allows us to
randomize pedestrian locations, and vehicles can be
shifted to virtual lanes.

5.3 Simulator implementation
We implemented a simulator based on existing sched-
ule and route data to the m-LOMA system. Public
transportation vehicles were modeled, and behaviors
programmed. A fast bounding box test provides colli-
sion avoidance: vehicles wait at crossings and let the
first arrivers pass first. The speed of the vehicles is
approximated by the distance to the next stop, given
the estimated times of arrival, and limited by the max-
imum speed. The lateral offset for vehicles was set to
3 meters to emulate street lanes.

The proprietary schedule and route data were stored
to compact files, providing ETA’s for each stop at each
route. At run time, a Python script, installed at a proxy
server, queries the SOAP positioning interface a few
times a minute, discards the overhead (over 95% of the
data), and forwards only those ETAs for vehicles that
are actually traced. A set of timeouts are frequently
used to resolve collisions. Vehicle motion is not al-
ways parallel to actual streets due to the route data
inaccuracies. For visibility cell occupation determina-
tion, vehicles on these routes are projected to the street
segments, which were parsed from the more accurate
road database. These two data sets do not coincide
everywhere, so currently we run the simulation with
buses and trams placed on the route data set.

The first version of the system has been running in a
local science park on a desktop computer (see figure 1)
consecutively over a year. We have recently ported the
system to mobile devices. At most a few dozen public
transportation vehicles occupy our modeled city cen-
ter at a time, which is no burden to our system, es-
pecially due to the poor granularity of tracking. Our
system allows tracking and distribution of position up-
dates of the entire local public transportation fleet, but
visibility culling is meaningless outside the 3D mod-
eled area.

Rendering the scene at full speed in a smart phone
consumes batteries fast. We have implemented a con-
figurable tick rate to scale power consumption down.
In addition, a separate toggle button can be used to
pause the entire simulation.

6 CONCLUSIONS AND FUTURE
We have presented a lightweight and efficient visibil-
ity culling and message reduction mechanism for dy-
namic entities based on precalculated, static visibility
cells, exploiting geometrical properties of urban en-
vironments. Relying on the real world to solve con-

sistency issues, the scheme combines the best parts
of P2P networks and client-server architectures: po-
sitioning computations and decision making processes
are performed at client side, while a server manages
global visibility and subscription look-up tables and
acts as a fast state update passing switchboard. The
system is truly scalable, as the only potential bottle-
neck, server-side networking, can be extended by spa-
tially limited servers, which exchange borderline data.
However, situations where a very high number of dy-
namic entities occupy a small area pose a problem. If
a viewpoint is high above ground level, looking down,
visibility optimizations are of no use, and both mo-
bile networking and local rendering resources become
a bottleneck.

Precomputed visibilities exchange run time compu-
tations to larger memory consumption, but the increase
of visibility lists is acceptable. Even where small
buildings cannot occlude moving entities, the draw-
back in not significant: the number of virtual visibil-
ity cells is still much less than the number of building
façades we use for static visibility calculations.

We have implemented a mobile 3D map with pro-
gressive content download, applying an efficient XML
based binary protocol, static visibility preprocessing
and buddy tracking, running a near real time tracked
public transportation simulation. The current public
transportation tracking system does not push our sys-
tem to its limits. In addition, we have tracked only a
few pedestrians at a time. Our local public transporta-
tion organization is implementing a direct GPS track-
ing based system, which we will integrate as soon as
it becomes available. Until that happens, we will per-
form artificial benchmarks to acquire quantitative per-
formance statistics.

In near future, we will utilize the presented sys-
tem in managing a different type of dynamic entities,
namely a swarm of cleaning robots in an indoor envi-
ronment.

ACKNOWLEDGEMENTS
The author wishes to thank Nikolaj Tatti for his heroic
programming efforts, Ville Helin for implementing the
first system, Heikki Vuolteenaho for Symbian pro-
gramming, Ilpo Ruotsalainen for network program-
ming and Mikko Rasa for initial simulator program-
ming. This work was supported in part by EU Interreg
IIIA, EU FP6 ICT, and City of Helsinki.

REFERENCES
[Air90] Airey, J. M. Increasing Update Rates in

the Building Walkthrough System with Automatic
Model-Space Subdivision and Potentially Visible
Set Calculations. PhD thesis, UNC Chapel Hill,
1990.



[And00] Andújar, C., Navazo, I., and Brunet, P. Inte-
grating occlusion culling and levels of detail through
hardly-visible sets. Computer Graphics Forum,
Vol. 19, No. 3, pp. 499–506, 2000.

[Ar00] Ar, S., Chazelle, B., and Tal, A. Self-
customized BSP trees for collision detection. Com-
putational Geometry, Vol. 15, No. 1-3, pp. 91–102,
2000.

[Bau01] Baus, J., Kray, C., and Kruger, A. Visualiza-
tion of route descriptions in a resource-adaptive nav-
igation aid. Cognitive Processing, Vol. 2, No. 2-3,
pp. 323–345, 2001.

[Bla92] Blau, B., Hughes, C. E., Moshell, M. J., and
Lisle, C. Networked virtual environments. In SI3D
’92 conf.proc., pp. 157–160, ACM Press, 1992.

[Bur05] Burigat, S., and Chittaro, L. Location-aware
visualization of VRML models in GPS-based mo-
bile guides. In Web3D ’05 conf.proc., pp. 57–64,
ACM Press, 2005.

[Cap97] Capps, M. V., and Teller, S. J. Communica-
tion Visibility in Shared Virtual Worlds. In WET-
ICE ’97 conf.proc., pp. 187–192, IEEE Computer
Society, 1997.

[Che00] Cheverst, K., Davies, N., Mitchell, K., Fri-
day, A., and Efstratiou, C. Developing a context-
aware electronic tourist guide: some issues and ex-
periences. In CHI ’00 conf.proc., pp. 17–24, ACM
Press, 2000.

[Chh05] Chhugani, J., Purnomo, B., Krishnan, S., Co-
hen, J., Venkatasubramanian, S., Johnson, D. S., and
Kumar, S. vLOD: High-Fidelity Walkthrough of
Large Virtual Environments. IEEE Trans.on VCG,
Vol. 11, No. 1, pp. 35–47, 2005.

[Chr92] Chrysanthou, Y., and Slater, M. Computing
Dynamic Changes to BSP Trees. Computer Graph-
ics Forum, Vol. 11, pp. 321–332, 1992.

[Coh03] Cohen-Or, D., Chrysanthou, Y. L., Silva,
C. T., and Durand, D. A Survey of Visibility for
Walkthrough Applications. IEEE Trans.on VCG,
Vol. 09, No. 3, pp. 412–431, 2003.

[Cuy03] Cuyi, Y., and Ge, S. S. Autonomous vehi-
cle positioning with GPS in urban canyon environ-
ments. IEEE Trans. on RA, Vol. 19, No. 1, pp. 15–
25, February 2003.

[Far04] Färber, J. Traffic Modelling for Fast Action
Network Games. Multimedia Tools Appl., Vol. 23,
No. 1, pp. 31–46, 2004.

[Fuc80] Fuchs, H., Kedem, Z., and Naylor, B. On vis-
ible surface generation by a priori tree structures. In
SIGGRAPH ’80 conf.proc., Vol. 14, No. 3, pp. 124–
133, 1980.

[Fuc83] Fuchs, H., Abram, G. D., and Grant, E. D.
Near real-time shaded display of rigid objects. In
SIGGRAPH ’83 conf.proc., pp. 65–72, ACM Press,
New York, NY, USA, 1983.

[Gre93] Greene, N., Kass, M., and Miller, G. Hi-
erarchical Z-buffer visibility. In SIGGRAPH ’93
conf.proc., pp. 231–238, ACM Press, New York,
NY, USA, 1993.

[Joh87] Johnston, R. The SIMNET visual system. In
ITEC’87 conf.proc., pp. 264–273, ITEC, 1987.

[Mar06] Marsh, J., Glencross, M., Pettifer, S., and
Hubbold, R. A Network Architecture Supporting
Consistent Rich Behavior in Collaborative Interac-
tive Applications. IEEE Trans. on VCG, Vol. 12,
No. 3, pp. 405–416, 2006.

[Nur06] Nurminen, A. m-LOMA - a mobile 3D city
map. In Web3D ’06 conf.proc., pp. 7–18, ACM
Press, 2006.

[Nur07] Nurminen, A. Mobile, hardware-accelerated
urban 3D maps in 3G networks. In Web3D ’07
conf.proc., pp. 7–16, ACM Press, 2007.

[Pos02] Pospichil, G., Umlauft, M., and Michlmayr,
E. Designing LoL@, a Mobile Tourist Guide
for UMTS. In Proceedings of Mobile HCI 2002,
pp. 140–154, Mobile HCI, Springer-Verlag, 2002.

[Prz05] Przybilski, M., Campadello, S., and Saridakis,
T. Mobile, on Demand Access of Service-Annotated
3D Maps. In IASTED SE’05 conf.proc., pp. 448–
452, IASTED, 2005.

[Rak01] Rakkolainen, I., Timmerheid, J., and Vainio,
T. A 3D City Info for mobile users. Computers and
Graphics, Vol. 25, No. 4, pp. 619–625, 2001.

[RMa95] R.Macedonia, M. A Network Software Ar-
chitecture for Large Scale Virtual Environments.
PhD thesis, Naval Postgraduate School, Monterey,
California, June 1995.

[Sud97] Sudarsky, O., and Gotsman, C. Output-
sensitive rendering and communication in dynamic
virtual environments. In VRST ’97 conf.proc.,
pp. 217–223, ACM Press, 1997.

[Tel92] Teller, S. J. Visibility Computations in Densely
Occluded Polyhedral Environments. PhD thesis,
Univ. of California at Berkeley, 1992.

[Tom06] TomTom. TomTom, MOBILE navigation.
http://www.tomtom.com, 2006.

[Whi07] Whiting, E., Battat, J., and Teller, S. Topol-
ogy of Urban Environments. In CAAD Futures’07
conf.proc., 2007.

[Zha98] Zhang, H. Effective occlusion culling for the
interactive display of arbitrary models. PhD thesis,
Univ. of North Carolina at Chapel Hill, Chapel Hill,
NC, USA, 1998.


