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ABSTRACT 

The problem of modeling and visualization of scattered data where there are inherent constraints on value of the 

data exists in many scientific and business research areas. For example, the value of mass concentration always 

has the lower bound of 0 and upper bound of 1. The modeling functions having gradient continuity usually do 

not guarantee to preserve the bounds of data. In this paper we present the Constrained Shepard method for 

interpolation of scattered data satisfying the lower and upper bounds specified by the two constraint functions. 

The constrained interpolant is an extension of the Modified Quadratic Shepard method with comparable 

efficiency and accuracy. The proposed method is easy to implement and extend to higher dimensionality. The 

constrained interpolation function is C
1
 continuous. 
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1. INTRODUCTION 
Data visualization is an important tool used for study 

of phenomena in scientific and business research. 

Standard visualization tools require input of data at 

the specified grids. However, this is not always 

possible to collect data at the required grids due to 

various constraints (e.g. economical, physical, 

temporal, socio-political etc.). To visualize the 

scattered data, it is required first to construct a 

faithful model of the reality represented by the data 

samples. The model is then used to approximate the 

reality at the required grids. Interpolation and 

approximation methods are usually used for this 

purpose. Many methods are available for modeling 

the reality from the scattered data samples. The 

surveys [Fra91], [Lod99] and [Ami02] provide good 

reference to the scattered data modeling methods and 

their applications. These methods differ in 

capabilities and characteristics. In general, there is no 

single best method for all application areas. 

Requirements of an application determine the 

suitability of an existing interpolation method. 

Careful selection from the existing methods suiting 

the application is often required. An existing 

modeling method may not have all the characteristics 

required for the application. We some times need 

extension in the existing method to incorporate the 

underlying constraints of the data. A few examples of 

such constraints are positivity, monotonicity, 

convexity, gradient and bounds that are commonly 

encountered in various scientific and business 

applications. These are usually the known facts about 

the reality being modeled. The modeling function 

must not produce results that contradict such known 

facts about the data. Otherwise the reality discovered 

using the model may not be trustworthy. Work of 

many researchers has been reported in literature to 

preserve the above mentioned constraints of the data. 

We refer to the work [Sar00] and [But91] for 

preservation of monotonicity of data on regular grids 

and [Han97] for the scattered data. We refer to the 

work of Schmidt [Sch90] for preservation of 

convexity, monotonicity and positivity of the data on 

regular grids. 

Non-negative, fractional and percentage values are 

commonly encountered in many areas of science, 

engineering and business. It does not make sense if 

the stated values of mass, volume, number of persons 

and radiation dose are negative. The percentage mass 

concentration is meaningless if it is below zero or 

above 100. Many researchers have worked to solve 

the problem of positivity with various interpolation 

methods. For related literature and background we 

refer to the work reported in [Nad92], [Sar00a], 

[Bro93] and [Mas96]. 
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Shepard’s family of interpolation methods introduced 

by Shepard [She68] is commonly used for metric 

interpolation of large sets of multidimensional 

scattered data. The multidimensional datasets are 

commonly encountered in the fields of business, 

science and engineering research. A smooth function 

of the Shepard’s interpolation family, known as the 

Modified Quadratic Shepard (MQS) method, has 

excellent efficiency and accuracy characteristics. 

This method can be easily extended to any 

dimensionality. However, it does not satisfy the 

constraints imposed by various applications. Work 

has been reported in [Asi00], [Bro05] and [Asi04] for 

constrained interpolation of scattered data using the 

MQS method. These extensions to the MQS method 

are computationally expensive especially for large 

and multi-dimensional datasets. The suggested 

methods also reduce accuracy or continuity of the 

interpolant. In this paper we present a method and 

refer it as the Constrained Shepard method that 

preserves the upper and lower bounds of data 

specified by the two constraint functions. The 

constrained interpolation function is C
1
 continuous. 

This method is better than the previous extensions in 

accuracy, efficiency and extendibility. 

The rest of the paper is organized as follows: An 

overview of the Shepard family of interpolants and 

need for extension of the work is given in section 2. 

The Constrained Shepard method is presented in 

section 3. The advantages and limitations of the 

method are demonstrated and discussed in section 4. 

In section 5, we concluded and gave future directions 

of the research. 

2.  AN OVERVIEW OF THE 

MODIFIED SHEPARD METHODS 
Let a set of N non-negative data values fi at the 

associated scattered sampling locations Xi = (x1i, x2i, 

……, xmi,)’, where m is the number of independent 

variables and i =1, 2, ….., N, are given. The 

interpolation method due to Shepard [She68] is 

defined as follows: 
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position X to Xi. 

The interpolation function )(XF  has many 

interesting properties. The method is easy to 

implement and extend to higher dimensionality. 

There is no setup up time for the interpolant. The 

interpolation function is translation, rotation and 

scale invariant. This is a global method where each 

sample value represents. For example it is bounded 

between the maximum and minimum values in the 

dataset [Gor78]. Although this interpolant is bounded 

between maximum and minimum values in the 

dataset i.e. it satisfies the bounds, however this is 

sometimes an unnecessary and misleading 

characteristic for visualization applications. The 

gradient of the interpolant at each of the data points is 

zero, as shown in Figure 1, which too is misleading 

for many visualization applications. As this is a 

global method so it becomes inefficient for large 

datasets. 

A number of modifications have been suggested to 

overcome the drawbacks of the Shepard’s method. 

We will focus only on the few modifications of 

interest for visualization of multidimensional data. 

The modification by Franke and Neilson [Fra80] 

improved continuity of the interpolant that replaced 

constant basis function fi in Eq. (1) by the quadratic 

basis function Qi(X) defined as follows: 
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The matrix Ai in Eq. (2) is the Hessian matrix of the 

quadratic basis function Qi (X) and T

ig is the gradient 

vector. The quadratic basis function Qi(X) has 

following characteristics: 

(1). The Qi(Xi) = fi i.e. the Qi(X) interpolates the 

corresponding data value. 

(2). The Qi(X) is an inverse distance weighted least 

square approximation to the Nq nearest data 

points. 

The resulting quadratic Shepard interpolation 

function F(X) is defined as follows:  
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The modification given above not only improves 

continuity but also accuracy of the interpolant. 

Franke and Neilson [Fra80] have proved that the 

interpolation function F(X) in Eq. (3) is C
1
 

continuous.  

To overcome the inefficiency of the Shepard’s 

method, which is due to its global nature, Franke and 

Neilson [Fra80] defined the following weight 

functions: 

wi(X) = 
2
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and R= Rq is the radius within which the nodes take 

part in the construction of Qi(X) and R= Rw for 

evaluation of the F(X). Franke and Neilson suggested 

following formula to evaluate the values of Rq and Rw 

for a dataset of size N:  

Rq=

N

ND q

2
 , and  Rw=

N

ND w

2
 

Where D =
2,max jiji XX − and Nq is the 

number of data points used for construction of the 

least square quadratic Qi(X) and Nw is the number of 

data points used to evaluate the F(X). The constant D 

for a dataset is the maximum distance between two 

points in the dataset. The suggested values for evenly 

distributed 2D data are Nw= 9 and Nq=18. For sparse 

data or where datasets are small (i.e. N<25) 

considerable increase in the numbers Nq and Nw is 

suggested with constant ratio of Nq/Nw=2. Renka 

[Ren88] obtained improvement in accuracy using 

separate Riw and Riq values for each of the data points 

and used different criteria for their evaluation. The 

Riq and Riw in the method suggested by Renka are the 

smallest radii that enclose the nearest Nq and Nw data 

points respectively. The suggested values [Ren88] for 

2D data are Nw=19 and Nq=13. 

The MQS interpolation function defined above has 

excellent efficiency and accuracy characteristics. 

This is a C
1
 continuous function which is easy to 

implement and extend to higher dimensionality. 

These characteristics make the method a suitable 

choice for efficient modeling and visualization of 

large sets of multidimensional data. However, it is 

not suitable for applications where there are some 

inherent constraints on value of the data. Examples of 

such constraints are non negativity, upper and/or 

lower bounds and more general constraint defined by 

a function. Such constraints commonly arise in 

science and engineering applications. Positivity is a 

special case of the generalized bounds preserving 

problem. Examples of the datasets imposing this 

constraint are mass, volume and density that are 

always positive. The problem of preserving arbitrary 

lower bound also exists in science and engineering 

applications. For example temperature measured on 

Celsius scale must preserve the lower bound of 

absolute zero (-273.15 C
o
). Gauge pressure should 

not be less than the negative of atmospheric pressure 

which is function of the altitude position. This is an 

example of the lower bound defined by a function. 

Similarly the problem of preservation of both upper 

and lower bounds is also common in business, 

science and engineering. For example: mass and 

volume concentration must lie between 0 and 1. A 

value below zero or above 1 is meaningless in such 

cases. The problem of arbitrary upper and lower 

bounds preservation are common in business and 

engineering optimization. 

The MQS method does not guarantee to preserve 

such bounds of data. Samples of the oxygen mass 

concentration in flue gases from a boiler with respect 

to time [Asi00] are given in Table 1. A graph has 

been constructed in Figure 2 through the dataset 

using the MQS method. The interpolated negative 

mass concentration values in the graph do not make 

sense. So, we need an interpolation method that 

efficiently preserves the above given inherent 

constraints of the datasets encountered in various 

application areas. 

3. THE CONSTRAINED SHEPARD 

METHOD 
The basis functions of the MQS method, defined by 

Eq. (2) are inverse distance weighted least square 

quadratic approximations. It is due to these best fitted 

basis functions that the MQS method has good data 

modeling accuracy. The Shepard’s interpolant 

defined in Eq. (1) is bounded between the maximum 

and minimum values in the dataset [Gor78]. 
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Figure 2. Interpolated negative values of mass 

concentration using the MQS method. 
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Figure 1. Graph through the data in Table 1 

using the Shepard’s method 

Time (sec) 0 20 40 100 280 300 320 

Oxygen (%) 20.8 8.8 4.2 0.5 3.9 6.2 9.6 

Table 1. Oxygen levels in flue gases from a boiler. 



Similarly the MQS interpolation function is bounded 

between the maximum and minimum values of the 

contributing basis functions in their domains of 

participation. We used these facts to have an accurate 

constrained interpolation method. The constrained 

method is based on the maxima and minima principle 

of the Shepard’s family. We used constrained basis 

functions )(ˆ XRi
 which are piecewise continuous 

functions approximating the corresponding basis 

functions of the MQS method and satisfying the 

upper and lower constraints. 

Let CU(X) and CL(X) are the functions defining the 

upper and lower bounds respectively. To construct 

the constrained basis function, we define difference 

functions DU(X) and DL(X) as the difference between 

the basis function Qi(X), defined in (2), and the 

constraints CU(X) and CL(X), respectively i.e.:  

)]()([)( XCXQXD UiUi −=   and )]()([)( XCXQXD LiLi −=  

Let us rewrite the basis function Qi(X) as: 

Qi(X) = fi+Q0i(X) 

The scaled difference functions, )(ˆ XDUi
 and 

)(ˆ XDLi
, are constructed  using the fixed point 

scaling that maintains values of the difference 

functions at the data point Xi. The scaled difference 

functions are defined as follows: 

)]([)(ˆ
0 XQKdXD iUiUi +=                                   (4) 

and 

)]([)(ˆ
0 XQKdXD iLiLi +=            (5) 

where dUi=fi-CU(XmU) and dLi=fi-CL(XmL). The XmU 

represent the point of maximum of the DU(X) and XmL 

is the point of minimum of the DU(X) in the domain 

of participation of the Qi(X). For simplicity we will 

use Xm to represent both XmU and XmL. The coefficient 

K in (4) and (5) is a positive constant which has value 

between zero and 1. The constrained basis function 

)(ˆ XRi
 is defined as follows: 
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The functions µLi(X) and µUi(X) in Eq. (6) are defined 

as follows:  
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where )(ˆ XQi
 = fi + K.Q0i(X)           (8) 

and          n = 1
1

−
K

            (9) 

The Constrained Shepard interpolation function is 

defined as follows: 
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The weight functions wi(X) of the Constrained 

Shepard method in Eq. (10) are same as defined by 

Renka [Ren88]. The maximum value of K for which 

the )(ˆ XQi
 in Eq. (8) is constrained between the 

bounds is the best value of K factor for the basis 

function. However in this research we use a constant 

value of K for all the basis functions for efficiency 

reasons. The valid range for K value is 0 < K <1. We 

use K as an input parameter which gives us flexibility 

to use a value that is suitable for the application. We 

propose a value of K =1/3 that suits many 

applications. We used the same value of K for 

construction of all the examples and comparisons in 

this research. Similarly we suggest the use of 

approximate values for CU(Xm) and CL(Xm) to reduce 

computational cost of searching minimum/maximum 

of each of the difference functions. The minimum of 

upper constraint and maximum of the lower 

constraint functions in the whole domain of interest 

may be used for an efficient solution.  

A combination of the values of K and the constraint 

functions CL(X) and CU(X) defines the characteristics 

of the Constrained Shepard method. Following are a 

few special cases of the value constrained problems 

commonly encountered in science and engineering 

application areas. The corresponding combination of 

the input values of K, CL(X) and CU(X), to handle the 

cases, using the Constrained Shepard method, are 

also given. 

Case 1: For preserving lower bound 0 and upper 

bound 1, the CU(Xm)=1 and CL(Xm) = 0. The )(ˆ XRi
 

in this case reduces to:  
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Case 2: Where )(ˆ XRi
 is required to preserve lower 

bound only, the input value of K is selected between 

zero and 1. The upper bound function CU(Xm) is 

defined by a large constant value. This large value 

can be estimated by multiplying the maximum value 

in the data set by a large positive number. 

Case 3: Where the basis function )(ˆ XRi
 is required 

to preserve upper bound only, the input value of K is 

selected between zero and 1. The lower bound 

function is defined by a negative constant of large 

magnitude. 



The interpolation function )(ˆ XF  defined in Eq. (10) 

has the following properties:  

Theorem 3.1. For all sample positions i, the 

interpolant )(ˆ XF  in Eq. (10) satisfies the following 

for all independent variables xd where d = 1, 2, ..., m:  
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Proof: We refer to [Ren88] for proof of the theorem. 

Theorem 3.2. If the input value of K=1, the basis 

function of the Constrained Shepard method 

degenerates to )()(ˆ XQXR ii =  between the bounds. 

The basis function beyond the bounds are equal to 

the minimum/maximum of the corresponding 

constraint i.e. CL(Xm) and CU(Xm).  

Theorem 3.3. At all the positions X, for which 

ii fXQ =)(ˆ , the basis function in Eq. (6) satisfies:  
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Proof: Let )(ˆ XRUi
and )(ˆ XRLi

are the lower and 

upper part of )(ˆ XRi
defined by the Eq. (6) i.e.: 

)(ˆ)()()(ˆ XDXXCXR UiUimUUi µ+=                (11) 

and  
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Combining the equations (7) and (11) we get:    
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We can prove similarly for lower part of )(ˆ XRi
 that  
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Theorem 3.4. If 0<K<1, the first partial derivatives 

of )(ˆ XRi
 exist and continue at Xi. Moreover for all 

independent variables xd, where d=1, 2,    , m: 
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Proof: Let )(ˆ XRUi
 be the upper part of basis 

function )(ˆ XRi
defined in Eq. (12) i.e.: 

n

Ui

n

UimUUi dXDXCXR /)(ˆ)()(ˆ 1++=   

The first partial derivative of the above given 

equation with respect to xd results in: 
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From Eq. (9) 
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As the Q0i(Xi)=0,  using this value in Eq. (4) we get: 
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Combining the equations from (13) to (15) we get: 
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We can prove similarly for lower part of )(ˆ XRi
 that  
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Theorem 3.5. If 0<K<1, the first partial derivatives 

of )(ˆ XRi
 where the )()(ˆ mUi XCapproachesXR or 

the )()(ˆ mLi XCapproachesXR  exist and continues 

and for all variables xd  where d=1, 2,    , m,  i.e.: 

0
)(ˆ

0
)(ˆ

)()(ˆ

)()(ˆ

=
∂

∂

=
∂

∂

=

=

mLi

mUi

XCXRd

i

XCXRd

i

x

XR

x

XR

                (17) 

Proof: From Eq. (6) the basis function )(ˆ XRi
 

approaches )( mU XC  where the difference function 

)(ˆ XDUi
approaches 0. Using the Eq. (13) we can 

prove that where the )(ˆ XDUi
 approaches 0: 
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Theorem 3.6. The interpolation function defined by 

the Eq. (10) is C
1
 continuous. 

Proof: To prove that the interpolant is C
1
 continuous 

it is sufficient to prove that the first partial 

derivatives of the basis function )(ˆ XRi
 in Eq. (10) 

exists and continuous in the domain of its 

participation [Ren88]. The theorems 3.1 to 3.5 prove 

the theorem 3.6.  

4. RESULTS AND DISCUSSION  
Implementation of the Constrained Shepard method 

and its extension to higher dimensionality is as 

simple as that of the MQS method where constant 

bounds are involved. Only a few changes in the main 

module of the existing implementation of the MQS 

method are required. The additional user inputs 

required in this method are the value of K and the 

two arrays holding the coefficients of the constraint 



functions CU(X) and CL(X) defining the upper and 

lower bounds respectively.  

In Figures 3 and 4 we have demonstrated that how 

the convex and concave basis functions of the MQS 

interpolant are modified to preserve the lower bound 

of 0 and upper bound of 1. We can observe from the 

graphs that the constrained basis functions are 

smooth in the whole domain joining smoothly to the 

lower & upper bounds. Slope of the constrained basis 

functions become zero where their value approach 

zero (at the lower bound that is a constant) or 1 (the 

upper bound that too is a constant). The constrained 

basis functions do not depart much from the basis 

functions of the MQS method especially in the 

vicinity of their own data points. This characteristic 

minimizes the negative effect, which may occur due 

to the departure from the least square fitted basis 

function, on accuracy of the interpolant. Graphs 

through the dataset in Table 1 using the MQS and the 

constrained interpolants are shown in Figure 5. We 

can observe from the graphs that the constrained 

interpolation function preserves lower and upper 

bounds (i.e. 0 and 100 respectively) inherent to the 

given data. The graph is smooth and a close 

approximation of the graph due to the MQS method. 

To analyze the accuracy and efficiency of the 

Constrained Shepard method, the 2D datasets 

generated using the following test functions were 

used: 
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F(x, y) = exp(x) sin
2
(y)          (19) 

F(x, y) = sin
2
(x) sin

2
(y)          (20) 

The above given functions represent a few natural 

phenomena i.e. linear, exponential, constant and 

harmonic etc. The test functions (18) and (20) are 

bounded between 0 and 1. Data generated at 30 

random positions using the test functions has been 

used for visual comparison and estimation of the 

deviations and execution time. 

The MQS method is known to have excellent 

efficiency, accuracy and smoothness characteristics 

and it is easy to implement and extend to higher 

dimensionality. We will use these characteristics to 

assess the capabilities of the Constrained Shepard 

method.  

• The MQS interpolation function is C1
 continuous. 

The C
1
 continuity is required for most of the 

visualization and other applications for reasons like 

visually pleasing, visual perception and continuity of 

the phenomenon that the dataset is representing. The 

constrained interpolation function, we proved in the 

previous section, is C
1
 continuous. Gradients of the 

MQS and Constrained Shepard interpolants are equal 

at all the data points which lie within the bounds. 

The basis functions of the MQS method are inverse 
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Figure 3. The quadratic basis function (R1) has 

values greater than 1 and less than 0 while the 

constrained basis function (R2) remains 

between 0 and 1. 
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Figure 5. One-dimensional data (Table 1) using 

the MQS (R1) and the Constrained Shepard 

(R2) method. 
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Figure 4. The quadratic basis function (R1) has 

values less than 0 while the constrained basis 

function (R2) remains above 0. 



distance weighted least square quadratic functions. 

Any deviation of the quadratics from the least square 

fit may results in the increase of deviations of the 

graph from original. Use of the piecewise continuous 

constrained basis functions minimizes its deviation 

from the least square fitted quadratic basis functions 

of the MQS method. So its accuracy measures are 

very close to the MQS method as depicted from the 

measurements of jackknifing errors and the 

deviations from the test functions. The Root Mean 

Square (RMS) and Absolute Maximum (AM) 

deviations of three randomly generated datasets, 

using the test functions given by Eq. (18) to (20) are 

listed in the Table 2. The RMS & Absolute 

Maximum (AM) jackknifing error estimates for the 

same datasets are also given. The MQS and 

Constrained Shepard methods have similar accuracy 

measures as depicted from the Table 2. A dataset 

generated using the test function (18) is plotted on 

25x25 grids, using the MQS method, in the Figure 6. 

The graph does not preserve the lower and upper 

bounds i.e. 0 and 1.  A graph through the same 

dataset using the Constrained Shepard method is 

shown in the Figure 7. The graph is constrained 

between the bounds i.e. 0 and 1. This graph seems to 

be a closer approximation of the graph of the test 

function that is plotted in Figure 8. 

The Constrained Shepard method is slightly 

expensive computationally than the MQS method. 

The computational time for generation of 25x25 grids 

using the MQS and the Constrained Shepard method 

are given in Table 2. Machine used is PC, P-IV, 2.4 

GHz; 496 MB RAM with windows XP operating 

system. Larger the sample size: less will be the 

relative computational cost of the Constrained 

Shepard and MQS methods for constant grids. For a 
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Figure 6. A randomly generated dataset (N=30) 

using the test function (18) is plotted using the 

MQS method. The graph does not preserve [0, 1] 

bounds of data.  
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Figure 7. The graph due to the Constrained 

Shepard method is bounded between 0 and 1. 

Deviations from the test 

functions 

Jackknifing 

Errors 

Test functions 

of the data 

sets 

Performance parameters 

/ measures 

MQS method 

Constrained 

Shepard method

MQS method Constrained 

Shepard method 

RMS 0.1482 0.0995 0.1612 0.1646 Eq. (18) 

Absolute Maximum  1.287195 0.5059 0.7207 0.7822 

RMS 0.2452 0.2460 0.0129 0.0101 Eq. (19) 

Absolute Maximum 0.8856 0.9046 0.0499 0.0336 

RMS 0.0137 0.0153 0.0182 0.0148 Eq. (20) 

Absolute Maximum 0.0801 0.0923 0.0479 0.0497 

Execution time (seconds) 0.0175 0.01797 

Table 2. Efficiency and accuracy measures using the MQS and Constrained Shepard methods. Data used 

is generated at 30 random locations using the test functions. The time is for 25x25 grids execution. 
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Figure 8. Test function (18) plotted at 25x25 grids. 



constant size dataset, the relative cost will increase 

with increase of the number of grids. The application 

areas of the interpolant involve very large datasets. 

The Constrained Shepard method imposes very small 

efficiency penalty making it a suitable choice for 

constrained modeling of very large datasets. 

The formulation of the Constrained Shepard method, 

given in this research, is without reference to the 

number of dimensions of the data. It is easy to 

implement the Constrained Shepard method for 

higher dimensional data.   

5  CONCLUSIONS & FUTURE WORK 
We have presented an efficient method for modeling 

scattered data where there are inherent constraints on 

value of the data samples. The method handles the 

upper and lower constraints while maintaining 

efficiency, C
1
 continuity, accuracy and extendibility 

of the MQS method. Hopefully this will be a valuable 

method for constrained modeling and visualization of 

very large sets of multidimensional scattered data.  

Typical application areas of this research are 

visualization of environmental data, locating mobile 

target using wireless sensors networks and 

multidimensional optimization problems in business 

and engineering i.e. optimization of cellular 

communication networks. 

We are working to implement the method for higher 

dimensional data for applications in engineering 

optimization. 
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