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ABSTRACT

The detection of stable feature points is an important preprocessing step for many applications in computer graphics. Espe-
cially, registration and matching often require feature points and depend heavily on their quality. In the 2D image case, scale
space based feature detection is well established and shows unquestionably good results. We introduce a novel scale space
generalization to 3D embedded surfaces for extracting surface features. In contrast to a straightforward generalization to 3D
images our approach extracts intrinsic features. We argue that such features are superior, in particular in the context of partial
matching. Our features are robust to noise and provide a good description of the object’s salient regions.
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1 INTRODUCTION

The identification of salient geometric features is cru-
cial for many 3D applications in computer graphics. In
morphing applications a feasible mapping between two
objects is computed, where salient regions should be
mapped on corresponding regions, for example eyes on
eyes (regarding mappings between animals). Other ap-
plications such as feature based registration or match-
ing rely on the computation of suitable features, too.
Thereby, two major requirements on the features should
be satisfied in order to support practical results. First,
the features have to be robust to marginal changes or
noise, because otherwise two similar objects could have
two very different feature sets resulting in wrong corre-
spondences. Second, the extracted features have to be
distinctive, they should correspond to regions that are
characteristic for the particular object or its class of ob-
jects. If the features describe non-characteristic regions
it would often be impossible to distinguish very differ-
ent objects.

Having robust and distinctive features at hand, a fea-
ture driven and therefore plausible matching between
similar objects or parts of objects is possible. Unfor-
tunately, the scaling of similar objects is often differ-
ent. For example matching an adult and a little child
based on features with a fixed scale would mostly fail.
While this case can be solved by a simple scaling based
on the object size, it becomes more complicated if the
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matching is partial (e.g. parts of one object are miss-
ing). In this case, the scale can only be computed
from local properties. Therefore we use a scale space
based approach, which, related to well known 2D image
based methods, extracts feature points with an associ-
ated scale parameter. This scale parameter indicates the
extent of the inherent local shape, which enables scale
invariant matching. Additionally, a partial matching of
objects in the same scale can as well be improved by
simply rejecting correspondences between features of
different extends.

2 RELATED WORK

Several approaches introduced techniques to find fea-
tures on 3D surfaces, often used in the context of shape
matching or shape retrieval applications. The great
amount of literature in this area makes it practically im-
possible to give a full review on these methods. There-
fore we focus on previous work most closely related
to our method and refer the reader to state of the art re-
ports for broad overviews in related areas as for instance
[TV04], [BKS+05] and [IJL+05].

The first two methods we want to mention here fol-
low the idea of subdividing the surface into small re-
gions and then selecting the most distinctive ones as a
representative feature set in order to match or retrieve
3D objects. Shilane and Funkhouser [SF07] first sam-
ple a 3D surface by a set of random points. For each
point, a spherical descriptor is evaluated in four dif-
ferent radii and the descriptor difference of all pairs
is computed to produce a ranked list with respect to a
set of equally processed and already classified objects.
These lists are then analyzed to produce measures of
distinctiveness for a specific class of objects and their
descriptors. Finally, a small set of most distinctive fea-
tures is extracted to represent the object.



A partial surface matching method based on local
descriptors was introduced in [GCO06]. The surface
is divided into small regions, whose local shapes can
be well approximated by quadrics. These regions are
used as descriptors and the most salient ones are cho-
sen for the partial matching process. Unfortunately, this
method seems to be sensible to noise, because of the de-
pendency of the extracted surface regions on local cur-
vature. Moreover, no scale parameter is extracted, so
partial matching of different scaled objects is not possi-
ble.

Other approaches aim at extracting the topological
structure of an object in order to perform matching or
retrieval. In this context Tam and Lau [TL07] intro-
duced a novel method for the retrieval of deformable
3D models. They extract topological points and rings,
which are identified by solving a flow and transporta-
tion (EMD) problem, which is based on the construc-
tion of reeb graphs. While this method shows great
results for retrieving articulated shapes as a whole, it
is unclear how to generalize it to the partial matching
context.

Several so called multi-scale methods extract features
of different sizes to gain more geometric information.
For example in Clarenz et al. [CRT04] feature points
and lines are extracted by performing a local momen-
tum analysis of the surface. To detect features of dif-
ferent scales they adopt variable neighborhood sizes re-
sulting in increased robustness to noise. Unfortunately,
it is not suitable to extract the unique scale of a feature,
because the neighborhood size parameter is specified
manually.

The last category of geometric feature point extrac-
tion methods we want to mention here are scale space
based approaches. These methods extract salient fea-
tures with an incorporated scale parameter, which indi-
cates the size of the inherent structure. Li and Guskov
[LG05] introduced a novel registration method for point
sampled surfaces. They detect feature points on the
basis of the scale space theory of Lindeberg [Lin98].
Thereby the surface is smoothed with increasing neigh-
borhood sizes (euclidian balls) using a least squares
formulation. This method works well with simple ob-
jects, however considering more complex objects this
approach will lead to unwanted behavior. This is be-
cause euclidian neighborhoods of large sizes are used
and therefore often parts of the object are contained,
that are far away from the feature in the geodesic sense
and should actually not have influence on the feature
point. Furthermore the used formulation does not cor-
respond to the scale space theory, so the meaning of the
extracted scale parameter is unclear.

In [WNK06] and [NDK05] a partial matching be-
tween 3D objects is performed using volumetric scale
invariant feature points. To extract these points a 3D
scale space of the binary (either inside or outside the

object volume) 3D voxel image is built and blob fea-
tures are detected in the object volume. For each fea-
ture a descriptor is computed and a sub part matching is
performed. While this approach extracts scale invariant
features, these features are not intrinsic and therefore
much less distinctive. For example considering a very
elongated part of an object (e.g. a finger of a hand),
the volumetric blob will only describe the thickness of
the tip, which does not change if the elongation has
changed. However an appropriate intrinsic feature point
with associated scale will describe a combination of the
length and the thickness, which delivers a superior de-
scription of this object part and its size. Furthermore, at
tapered tips this method would miss this feature com-
pletely, because no blob would have been found.

3 GENERAL SETUP AND NOTATION
Our objective in this paper is to extract scale invariant
feature points on a 3D model. These features are in-
trinsic, because they depend only on the surface. In
the following we assume that the object is represented
as a closed two manifold surface. In addition to that,
we consider only objects with genus zero. The sur-
face is a triangulated mesh M with M = {V,E}, where
V = {vi|vi ∈ R3, i = 1, ..., |V |} is a set of vertices and
E = {ei j} the set of edges which connect the vertices.
A face is given, if a cycle of three edges ei j,e jk and eki
exists. For each vertex vi, a normal ni can be computed.

4 BLOB FEATURES IN 2D
The detection of feature points is well established in
2D image applications. Many feature based matching
methods, as surveyed in [ZF03], have shown great prac-
tical utility. Especially scale space based techniques
[MTS+05] are known for their performance and robust-
ness and therefore often used in practice. A scale space
or representation over scales is computed by successive
smoothing an input signal to a space consisting of the
smoothed signals. In this space, the scale parameter
determines the magnitude of the smoothing of the in-
put signal. Figure 1 shows two input signals (bottom),
that are iteratively smoothed to obtain a scale space. A
scale space of a function f : RD → R is defined as fol-
lows: If a continuous signal f is given, then a scale
space L : RD ×R+ → R of f is defined as the solution
of the heat diffusion equation

∂tL =
1
2

∇
2L =

1
2

D

∑
i=1

∂xixiL, (1)

with L(·,0) = f (·). This scale space can be computed
by convolution of f (·) with a Gaussian kernel g:

L(·, t) = g(·, t)⊗ f (·), (2)

with g : RD×R+\{0}→R. Note that the Gaussian ker-
nel is the unique kernel to solve the diffusion equation,
what was shown in [Koe84, JWBD86].



Figure 1: An input signal (bottom) is iteratively
smoothed to obtain a scale space. a) One dimen-
sional. b) Two dimensional with marked extrema.
[Wit83]

To detect scale invariant blob features, Lindeberg
[Lin98] used a scale-normalized Laplacian of Gaus-
sian (LoG) function t∇2L to detect features in the scale
space. Scale invariance means, that if an image is scaled
with a certain factor, then its features corresponding to
features of the non-scaled image will be detected in
scales, which are multiplied with the same factor. In
Figure 2 two exemplary scale invariant feature points
are shown with their signatures, detected in the scale-
normalized LoG.

Figure 2: Top row shows two images taken with dif-
ferent zoom. Bottom row shows the responses of the
Laplacian over scales. The ratio of scales corresponds
to the scale factor (2.5) between the two images. The
radius of displayed regions in the top row is equal to 3
times the selected scales. [MTS+05]

For the case of 2D images Lowe [Low04] introduced
a so called difference of Gaussian representation (DoG)
of f , defined as follows:

DoG(x, t) = (g(x,kt)−g(x, t))⊗ f (x)
= L(x,kt)−L(x, t). (3)

The initial image is incrementally convolved with
Gaussians to produce images separated by a constant
factor k in the scale space. Adjacent images are
subtracted to produce the so called difference of

Gaussian images. For the discrete case, beginning with
a constant σ0 (e.g. σ0 = 1), the σi are obtained as
follows:

σi = ki
σ0, (4)

where t = σ2. This results in an exponential time step.
To be able to find all extrema, the factor k should be
small enough. Lowe [Low04] used values from the in-
terval (1;

√
2]. Depending on the magnitude of σ0, more

or less initial scales of L are excluded for building the
DoG. Lowe [Low04] used this representation to ap-
proximate the scale normalized Laplacian of Gaussian.

A feature point is extracted, if a pixel in a level of the
DoG has an extremal value with respect to its spatial
neighbors in the same scale as well as to its and their
temporary neighbors in adjacent scales. The informa-
tion about the scale a feature was detected in is a great
advantage, because the scale indicates the size of the
structure the feature point describes. In addition to that,
the feature points of two images of different resolutions
can be compared in an appropriate manner, because of
the scale invariance property.

Following this idea, we generalized the scale space
and the feature extraction from the 2D image case to the
case of triangulated two manifold surfaces in 3D. We
use a diffusion flow to derive the sequence of smoothed
surfaces and use the vertex movements as a measure
similar to the DoG-values in order to extract feature
points as well as their scale.

5 GENERALIZATION TO SURFACES
To simulate the diffusion equation (see Equation 1), we
use a surface diffusion flow to iteratively smooth the
model and to obtain a set of smoothed surfaces that con-
stitute our scale space.

In this section we first describe the mean curvature
flow and some of its properties. Furthermore, we give
the discretisation used in our implementation and fi-
nally, the definition of our feature points is introduced.

5.1 Building the Scale Space
In the image case usually a Gaussian kernel is used to
generate the representation over scales. That is possi-
ble because it exists a global parameterization invari-
ant over all scales. However, in the case of two man-
ifold surfaces such a parameterization is generally not
defined. But nevertheless, a local parameterization for
each vertex in each scale is calculable. Therefore an it-
erative flow is utilizable to simulate a similar diffusion
process.

Averaged Mean Curvature Flow The ordinary mean
curvature flow is defined as follows:

∂vi

∂ t
=−Hini, (5)



where Hi is the mean curvature at vertex vi. ∂vi
∂ t is the

position increment vector of vertex vi so the new posi-
tion results in ṽi = vi + ∂vi

∂ t . That means, a vertex vi is
moved in direction of its normal ni with the magnitude
of the mean curvature H = 1

2 (κmin + κmax), where κmin
and κmax denote the principal curvatures. A vertex on a
convex region will move inwards, whereas a vertex on
a concave region will show an outward movement. At
a saddle point, the minimal curvature is negative, while
the maximal curvature is positive, so the direction of the
movement depends on their magnitudes.

The mean curvature flow is known to shrink volume.
Thus, a closed surface with genus zero will evolve into
an infinitesimally small sphere (see Figure 3).

Figure 3: Ordinary mean curvature flow evolves ob-
jects to an infinitesimal small sphere.

Therefore we use a modification of the ordinary
mean curvature flow: the averaged mean curvature
flow, which is defined as follows:

∂vi

∂ t
=−(Hi− ∑

v j∈M

H j

|V |
)ni. (6)

The result is a volume preserving flow as shown in Fig-
ure 4. Whereas the averaged mean curvature flow is
more stable than the ordinary one, it still suffers from
one deficiency. If an object has a long thin limb, the
flow will trench it after a few steps as shown in Figure
5. However, with a little variation in the thickness, it
is possible, that the object is not fragmented. This re-
sults in big variations of the feature detection, so that
the computed features for such objects are not robust.
For this reason, it is only useful for restricted types of
objects. Therefore, in our work, we use and compare
only objects, that do not cause fragmentations. Note
that such a fragmentation can be detected in the smooth-
ing process by checking if local mesh triangles are de-
generated to line segments or points.

Figure 4: Averaged mean curvature flow evolves ob-
jects to a sphere with the same volume.

Figure 5: Mean curvature flow trench thin limbs after
a few steps.

Another approach to derive and smooth a surface
from polygonal data to multiple scales is done in
[SOS04]. By using a constrained moving least-squares
formulation a surface can be generated, which approx-
imates the input, whereas features with a specified
size are smoothed away. Unfortunately, if the surface
nearly touch itself, it will accrete at this point, so that
marginal differences of the surface could result in a
highly different behavior of this smoothing process.
For this reason, this formulation of a smoothing of a
surface is not usable to replace the mean curvature flow
in order to solve the problem of fragmentation.
Discretisation In the following the implementation
details for the iterative computation of the flow are
provided. The principal curvatures are computed by
first locally approximating the surface with a quadratic
function and then computing the eigenvalues of its hes-
sian, which correspond to the principal curvatures. The
sampling of the local neighborhood is obtained via the
Dijkstra-Algorithm, it consists of the n nearest vertices
vik of vertex vi.

To fit a quadratic function in the collected points, first
the sampled points vik have to be transformed onto the
tangent plane of vi. For that purpose two arbitrary or-
thonormal vectors o1 and o2, lying in the plane with
normal ni, are computed. Then the sample points are
transformed to points qk as follows:

qk = ((vik − vi)∗o1,(vik − vi)∗o2). (7)

To get the coefficients cl ∈ R, the basis
{Bl(ξ1,ξ2)}5

l=1 = {ξ1,ξ2,
1
2 ξ 2

1 ,ξ1ξ2,
1
2 ξ 2

2 } of the
quadratic functions (without constant coefficient) is
used to set up the following system of equations:

5

∑
l=1

clBl(qk) = (vik − vi)ni, k = 1, ...,n. (8)

With A = (Bl(qk))
n,5
k=1,l=1 ∈ Rn×5 and C =

(AT A)−1AT ∈ R5×n is its pseudo inverse matrix,
it can be written as

[c1, ...,c5]T = C[(vi1 − vi)ni, ...,(vin − vi)ni]T . (9)

This way the coefficients of the quadratic function
f (x,y) = c1x + c2y + c3x2 + c4xy + c5y2 can be cal-
culated and by computing the eigenvalues of the
function’s hessian matrix we get the principal curva-
tures. This scheme is based on the quadratic fitting
technique from Xu [Xu04].
Remeshing Since geometry changes greatly during
smoothing, the mesh has to be adopted, in order to ob-
tain a mesh with neither too large nor too small or nar-
row triangles. To this end we use flips, collapses and
splits. After each smoothing step the following tasks
are executed in sequence:



1. Flip all edges ei j, if the resulting edge is shorter than
‖vi − v j‖ and the angle between the normals of the
two adjacent facets of ei j is smaller than three de-
grees. This improves the structure of the mesh with-
out adding or deleting a vertex.

2. Collapse all edges ei j, if their lengths are below one
fifth of the average edge length. This avoids too
small triangles.

3. Split all edges ei j, if their lengths are above five
times of the average edge length or if the round-
ness of one of the adjacent triangles is above 1.5.
The roundness is defined as the ratio between the ra-
dius of the circumcircle and the length of the shortest
edge of the triangle. This avoids too big or narrow
triangles.

The movement of the vertices in one smoothing step is
very small, so one iteration after each smoothing is suf-
ficient. Additionally, we assume the initial meshes to
have a structure, which does not make such an remesh-
ing operation necessary.

5.2 Scale Space Signatures
To define the scale space signatures, we first need to
formally define our scale space L. Because we are us-
ing an explicit scheme, the time step between two scales
has to be constant and not too large. If the sample rate is
higher, the time step in the smoothing process should be
smaller, because otherwise oscillations and other sin-
gularities would arise. Especially the exponentially en-
largement would cause those problems. For this, we
first build a discrete scale space as follows:

LD(v, j) =
j

∑
i=0

di(v), j ∈ N, (10)

di(v) = sign(v, i)‖∂vi

∂ t
‖

sign(v, i) =
{

−1 , if 〈 ∂vi

∂ t ,ni〉< 0
1 , else

with vi is the vertex v in scale i (v0 = v) and ni its normal
in this scale. di(v) are the signed distances between two
scale levels i and i + 1 of vertex v. To get an approxi-
mation to a continuous scale space with scale level σ ,
we use the discrete values with

L(v,σ) = LD(v,bσc)+(σ −bσc)ddσe(v), σ ∈ R.
(11)

Now, we define analogously to the discrete difference
of Gaussian representation of Lowe [Low04]:

D(v, j) = L(v,σ j+1)−L(v,σ j), j ∈ N, (12)
σ j = k j

σ0.

σ0 depends on the constant smoothing step, that is used
to smooth the surfaces. If the resolution is high, the step

has to be smaller than for a mesh with a lower resolu-
tion. Moreover, in order to subdivide each octave of σ0

to sixteen steps, we used k = 2
1

16 .

Figure 6: (Left) The trajectories of two vertices on the
ears of the bunny. (Right) The scale space signatures
(smoothed) of the trajectories.

As a signature S of a vertex v we now use the vec-
tor S = {D(v,0), ...,D(v,m− 1)}, where m denotes the
maximal computed scale. In Figure 6 the trajectories
and signatures of two vertices are shown.

5.3 Feature Points

In the application of feature detection we need features
which provide a sufficient description of the surface and
stays nearly the same, if the object changes marginally.

In our case, we compute feature points as extrema on
extremum paths as analogously done in [Lin98]. An ex-
tremum path r is a sequence of extremal vertices over
the scales. That means, the vertices r(i) of the maxi-
mum path r have locally maximal signature values in
all scales i = 1, . . . , l:

D(r(i), i)≥ max
vk∈Ni(r(i))

(D(vk, i)), (13)

where vk are the neighbors of v = r(i) in scale i and
l is the length of the path. Note that a vertex v has a
different position depending on the scale that is consid-
ered. Is di

geo(v,w) the geodesic distance of two vertices
in scale i and the signature values of vertices v j are max-
imal in respect to their neighbors in this scale, then the
following constraints have to be satisfied:

∀v j : di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i)) and

di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i−1)),
i = 1, . . . , l. (14)

Note that the length l of a path r depends on whether a
following maximum exists or not. The computation of
the minimum paths is analogously done. An extremum
path always begins in the first scale and ends if no fol-
lowing extremum exists.

Now, we detect v as a feature vertex in scale i, if it
is included in a maximum/minimum path r with r(i) =
v and if the value D(r(i), i) is maximal/minimal with
respect to its neighbors r(i−1) and r(i+1).



5.4 Reducing Noise
To reduce noise due to remeshing (because of its local
changes in the triangulation), a filtering over the mesh
(see Figure 7) on the one hand and a filtering over the
signatures of the extremum paths (see Figure 8) on the
other hand is done with Gaussian kernels. The standard
deviation σ of the first Gaussian kernel (two dimen-
sional) is set in dependency of the average edge length
in the mesh. This is a good choice, because normally
the higher the resolution (corresponds to the average
edge length) of a mesh, the smaller are the structures
in the mesh that can be modeled and the more feature
points should and can be extracted. In our application
we took a width of twice the average edge length. The
standard deviation of the second Gaussian kernel (one
dimensional), used to smooth the signatures, is set to
four.

Figure 7: A fish with relatively colorcoded differences.
(Left) Unfiltered. (Middle) Filtered with σ = 2. (Right)
Filtered with σ = 4.

Figure 8: The scale space signatures of three ex-
tremum paths of the fish model. (Left) Unfiltered.
(Right) Filtered with σ = 8.

5.5 Eliminating Unstable Features
If a feature point describes a ridge or ravine like
structure of the object, often its position is not well
determined, because the vertices along this structure
have very similar DoG-values. For this reason, Lowe
[Low04] introduced the hessian condition. This
condition rejects such feature points by thresholding
the ratio of its eigenvalues. Therefore, the eigenvalues
λmax and λmin of the hessian matrix H in respect of the
difference of Gaussian values

H =
(

Dxx Dxy
Dyx Dyy

)
(15)

are computed. Now, if the ratio λmin
λmax

is above 0.5, the
point is not taken as a feature. Additionally, features are
rejected, if their eigenvalues of H have different signs.
Because of this threshold all unstable feature points can
be removed. Analogously to the image case, we com-
pute the hessian matrix of a feature point in its scale

with an radius proportional to its scale. By this, we get
a good indicator for figuring out, whether a feature has
an unstable position.

6 RESULTS
In this section, several examples of our feature de-
tection method are presented. For all examples, the
same thresholds and widths of the Gaussian kernels to
smooth the DoG-values are used.

In all following figures, the feature points detected as
a maximum are printed in red, while those detected as a
minimum are printed in blue. The signatures of the ex-
tremum paths are printed in accordant colors. A feature
point is illustrated as a circle with a radius proportional
to the scale the feature was detected in. Thereby, the
object is shown in the scale of the feature points.

The computation times for the following examples
ranged from 30 seconds (for approx. 1400 vertices) to
20 minutes (for approx. 5000 vertices). For meshes
larger than 10000 vertices a computation time of more
than 2 hours is needed. Therefore, we decided to sim-
plify large meshes in a preprocessing step. To this end
a curvature driven simplification is used in order to pre-
serve small features.

6.1 Differently Scanned Objects
To show the robustness by extracting feature points of
differently sampled models, the features of two ants
with different resolutions are shown in Figure 11. It
can be seen, that the same features are extracted, and
only the signatures differ marginally.

6.2 Similar Objects
To demonstrate the robustness of our method for pose
invariance, we applied our technique on three postures
of a hand. The results in Figure 12 show a great attitude
in this case.

6.3 Other Examples
The third feature point of the vase in Figure 9 shows,
that important features are found, which probably
would not be found by other methods.

Figure 9: Feature points and signatures of a vase.
(Left) Original model (approx. 1500 vertices). (Middle)
Smoothed object in scales of the features. (Right) Sig-
natures.

In the feature detection process for the Max Planck
head in Figure 13 a lower threshold (0.35) is used for
performing the hessian condition, because otherwise
the nose and the ears would not have been extracted.



Unfortunately, the problem of choosing the most appro-
priate threshold arises, so we think, that in a practical
application the ratio of the eigenvalues should better be
used as a confidence of a feature than for thresholding.

Last but not least we applied our method also on the
Stanford Bunny. The results are shown in Figure 10.

Figure 10: Feature points and signatures of the Stan-
ford Bunny. (Top) Smoothed object in scales of the
features. (Bottom) (Left) Original model (approx. 3100
vertices). (Middle) All feature points. (Right) Signa-
tures.

7 CONCLUSIONS AND FUTURE
WORK

Robust feature points are needed for many applications,
as for instance matching and morphing. Based on ap-
proved methods for the image case, we introduced a
novel technique for the extraction of feature points on
3D surfaces. Therefore we generalized the scale space
method of Lindeberg [Lin98] to 2-manifolds in 3D and
use the averaged mean curvature flow to build an analog
representation over scales. We detect a salient point by
checking if it is extremal both in the adjacent scales and
in the adjacent mesh vertices. The transfer of the hes-
sian condition has shown good results by thresholding
unstable features. Furthermore, we have shown the ro-
bustness of our method by processing several example
surfaces.

One problem of our approach is the dependency on
the used flow. The mean curvature flow is not qualified
to be used in a general application, because it tends to
fragment specific objects. Because of this, we want to
explore different flows and their properties, in order to
find a more suitable one for our method.

Due to the fact that we use a scale space based detec-
tion, we obtain features, that are robust against noise on
the surface. Only in the first scales wrong features were
found.

In a matching application a descriptor could be used
to additionally improve the descriptive power of our
features. To get scale invariance, this descriptor could

work with a radius proportional to the scale of its fea-
ture point.

In the future, we would like to modify our method
to compute other types of features, as for example line
features.
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Figure 11: The feature points of an ant model with different sample rates. (Left) Smoothed models in scales of
the features. (Right) Signatures.

Figure 12: Feature points and signatures of three poses of a hand. (Left) Original models (approx. 1400 vertices).
(Middle) Smoothed objects in scales of the features. (Right) Signatures.

Figure 13: Feature points and signatures of the Max Planck model. (Left) Original model (approx. 1650 vertices).
(Middle) Smoothed object in scales of the features. (Right) Signatures.


