
From Bag of Categories to Tree of Object Recognition

Haijing Wang Tianwen Zhang Peihua Li
School of Computer Science and Technology College of Computer Science and Technology
Harbin Institute of Technology, Harbin, China Heilongjiang University, Harbin, China

haijing.wang@yahoo.com peihualj@hotmail.com

ABSTRACT

To recognize different category of objects, multiclass
categorization problem is often reduced to multiple bi-
nary problems. Traditional approaches require train-
ing different classifiers for each category. This can be
slow and the performance of learned single classifier is
poor for limited training samples. We present a mul-
ticlass object recognition tree, in which the leaf node
and the non-leaf node correspond to one category and
a bag of categories, respectively. Each non-leaf node
captures the shared features of a bag of categories.
Each node also holds a group of classifiers trained by
AdaBoost, to discriminate the categories locating at its
left and right child node. Recognition is then a process
to find a path from the root to a leaf, which represents
a unique category. The very promising result on Cal-
tech 101 dataset shows the robustness of the proposed
approach.

Keywords
object recognition, bag of categories, multiclass object
recognition tree, AdaBoost

1. INTRODUCTION

Object recognition[1, 2, 3, 4, 5] is a fundamental vi-
sion problem: put simply, what’s in the image, and
where? To recognize different categories of objects in
images, people usually reduce multiclass categoriza-
tion problem to binary problem [6]. The approaches
include that each category is compared against all oth-
ers, or all pairs of categories are compared to each

Permission to make digital or hard copies of all
or part of this work for personal or classroom use
is granted without fee provided that copies are not
made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full ci-
tation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen,
Czech Republic.

other, or error correcting output codes (ECOC) are used.
They all ignore one fact that the subset of categories
may exist some common features. And these tradi-
tional approaches require training different classifiers
for each category. This can be slow and the perfor-
mance of learned single classifier is poor for limited
training samples.

We propose a novel concept “bag of categories” to
show how to share the common features among dif-
ferent categories. Just like in the context of document
analysis, bag-of-words [7] assumes that the order of
words in a document can be neglected. In computer
vision, the bag of keypoints [8, 9] method is based
on vector quantization of affine invariant descriptors
of image patches. Bag-of-features [10, 11] methods
represent an image as an orderless collection of local
features. Bag of patches and bag of codewords [12]
are also appeared in the context of vision analysis.

For “bag of categories”, two questions should be
answered:

(Q1) How to combine these bags of categories?

(Q2) How to describe each bag of category?

For the first question, we build a multiclass object
recognition tree, in which the leaf node and the non-
leaf node correspond to one category and a subset of
all categories, respectively. For each non-leaf node,
its left and right children node hold two disjoint cate-
gory subsets of its parent node. We call the category
subset at each non-leaf node of tree as “a bag of cat-
egories”. That is, bags of categories are combined by
object recognition tree. For the second question, fea-
tures with classifier is used to describe a bag of cat-
egory. To improve the performance of each node, a
group of classifiers are trained by AdaBoost [13, 14]
based on the same dataset and different feature set. In
the proposed framework, object recognition turns into
a process to find a path from the root to a leaf, which
represents a unique category, instead of the common
nearest neighbor algorithm.

Our approach is different with probabilistic boost-
ing tree (PBT) [15]. At each layer of the tree, each

category only exists in one node in our approach, how-
ever, each category may appear in more than one nodes
in PBT. The construction and training of tree are to-
gether done by PBT. They are two different phases in
our approach. In addition, we take more complicated
features than PBT approach. Each node holds more
than one strong classifier in our approach comparing
one strong classifier in PBT. The recognition rate is
20% for PBT, however, it is 56.3% in our approach
under the same dataset Caltech 101 [16].

The whole paper is scheduled as follows. Binary
decision tree for multiclass object recognition is pre-
sented in Section 2. Details of bag of categories are
introduced in Section 3. In Section 4, experiment de-
sign and analysis result are given. Finally, the conclu-
sion of the paper is presented.

2. BINARY DECISION TREE FOR
COMBINING BAGS OF CATEGORIES

Decision tree employs a hierarchically structured deci-
sion function in a sequential fashion. To combine bags
of categories, the binary decision tree is constructed.
For each non-leaf node, it corresponds to a binary clas-
sification. Thus, multiclass object recognition is trans-
ferred into many binary classification problems. It is
the basis to construct a tree framework. In this section,
we first describe the elements of the recognition tree
and the splitting rules. Then we present the algorithm
of tree construction for combining bags of categories.

2.1. From Multiclass Problem to Binary Classifi-
cation Problem

Suppose we have m samples, each of which corre-
sponds to an image,

{xi|xi ∈ X,X ⊂ Rn}m
i=1

where n is equal to the number of image pixels. The
corresponding class label of each sample is

{yi|yi ∈ Y,Y = {1, . . . , C}}m
i=1

where C is the total number of categories.
There are many ways to reduce a multiclass prob-

lem to multiple binary classification problems [6], such
as one-against-all approach, all-pairs approach, and er-
ror correcting output codes (ECOC).

• One-against-all approach is the simplest approach
to create one binary problem for each of the C
categories. That is, for any category label r ∈
Y, all samples labeled yi = r are considered as
one class and all other samples are considered
as the other class.

• In all-pairs approach, for each distinct label pair
r, s ∈ Y, samples labeled yi = r are considered
as one class, and those labeled yi = s belong to
the other class. All other samples left are simply
ignored.

• Error correcting output codes (ECOC) is to as-
sociate each class r ∈ Y with a row of a “coding
matrix” M ∈ {−1, 0,+1}C×l for some l, where
l is number of classifiers. The binary classifica-
tion problem is then run once for each column
of the matrix.

Unlike the one-against-all, all-pairs, and ECOC ap-
proach, we construct the multiclass object recognition
tree by subdividing the whole category set into two
subsets, as the two sides of the binary classification
tree, and recursively to apply this kind of subdivision
until all category is distinguished each other. To con-
struct the decision tree, some elements should be con-
sidered first.

2.2. Elements of Decision Tree

Binary decision tree is known as a class of nonlinear
classifiers. The root of the tree T is associated with the
training set X, which corresponds to all categories to
be recognized. Each node, t, represents a specific sub-
set Xt of the training set X, which corresponds to a
subset of all categories. We call categories in one sub-
set as “a bag of categories”, since we describe these
categories in the subset using the same classifiers with
sharing features. Splitting of a node is equivalent to
split the subset Xt into two disjoint descendant sub-
sets, XtL, XtR. For every split, the following equation
(1) and (2) need to be satisfied:

XtL

⋂
XtR = ∅ (1)

XtL

⋃
XtR = Xt (2)

Here XtL and XtR correspond to two bags of cate-
gories, and locate at the left and right children node,
respectively.

In order to develop a binary decision tree, the fol-
lowing design elements have to be considered in the
constructing phase:

(E1) A splitting criterion should be adopted accord-
ing to which the best split from the set of candi-
date one is chosen.

(E2) A stop splitting rule is required to control the
growth of the tree and to declare a node as a
terminal leaf.

(E3) A rule is required that assigns each leaf to a spe-
cific category.

A leaf node is formed when the subset Xt only
includes the samples which belong to a single cate-
gory. That is, a leaf node corresponds to a single cat-
egory. And non-leaf node is a bag of categories. The
code word from the root to each leaf node represents
a specific category. Details on splitting criterion are
described in the next subsection.

2.3. Splitting Criterion

The descendant nodes are associated with two new
subsets, i.e., XtL, XtR, respectively. For the tree grow-
ing methodology, from the root down to the leaves,
every split generates new subsets, in which elements
are are more similar each other compared to the an-
cestor’s subset Xt. This means that the training feature
vectors in each one of the new subsets show a higher
preference for specific categories. The splitting algo-
rithm is described as follows.
Algorithm 1. Splitting algorithm
Input:

• Matrix of feature values Gt of samples Xt with
corresponding label set Yt.

• Desired number of clusters L, here L = 2 for
left and right node of the binary tree.

• Iteration times N of splitting.

Algorithm:

(S1) For j = 1 to L

– Initialize arbitrary clustering center θj(0)
for the j-th cluster center θj .

(S2) Repeat N iterations to find L cluster centers.

(S2a) For i = 1 to mt (mt is the number of
samples to be split.)

– Determine the closest representative, say
θj , for gi ∈ Gt. Here gi is the feature
value of sample xi. The closest represen-
tative means that d(gi, θj) < d(gi, θk), k =
1, . . . , L, and k 6= j, where d(·, ·) is a dis-
tance measure.

– Set b(i) = j for sample xi. It shows sam-
ple xi is allocated to the j-th node of the
tree.

(S2b) For j = 1 to L

– Determine θj as the mean of the vectors
gi ∈ G with b(i) = j to update parame-
ter. That is, the original θj is replaced by
the mean of the feature values of samples
which are allocated to the j-th node of the
tree in step (S2a).

(S3) For each category, count the number of samples
located in each child node.
For j = 1 to L
For k = 1 to Ct (Ct is the number of categories
to be split.)

– Compute

λjk =
m∑

i=1

δ(xi) (3)

where

δ(xi) =
{

1 if yi = k and b(i) = j
0 otherwise

(4)

(S4) Decide the final splitting
For i = 1 to mt

– Set b(i) = j, if λjyi
≥ λkyi

, k = 1, . . . , L,
k 6= j. It means sample xi is split to the
j-th node of the tree.¥

For binary tree (L = 2), the descendant nodes are
derived with two new subsets, i.e., XtL and XtR.

XtL = {xi|b(i) = 1},XtR = {xi|b(i) = 2}

Therefore, the splitting algorithm is also the process
to transfer each bag of categories into a smaller bag of
categories. The process is continued until the stop rule
is satisfied.

2.4. Algorithm for Constructing Binary Decision
Tree

After the discussion on the major elements needed for
the growth of a decision tree, we are now ready to sum-
marize the basic algorithmic steps for constructing a
binary decision tree for bag of categories.
Algorithm 2. Tree constructing algorithm

(S1) Begin with the root, i.e., Xt = X

(S2) For each new node t

– Learn a group of classifiers with AdaBoost
based on sample set XtL and XtR.

(S3) Do all samples of the subset Xt belong to a sin-
gle category?

– If yes, stop splitting and declare node t as a
leaf and designate it with a category label.
End.

– If not, generate two descendant nodes tL
and tR with associated subsets XtL and
XtR. Return to (S2).¥

In the algorithm, we first classify the whole sample
set into two subsets. In the first stages of binary tree,
the root includes all categories to be classified. The ex-
isted classifiers in the node of tree are used to estimate
the image’s category label for its children nodes. Next,
we classify each subset into two new subsets follow-
ing Equ.(1) and Equ.(2). Each subset corresponds to
a bag of categories. We end up the classification until
each category is a sole part. This is a binary decision
tree model for multiclass object recognition.

3. BAG OF CATEGORIES FOR VISUAL
CATEGORY VOCABULARY

The classifier with selected features in each node of
the tree corresponds a visual category vocabulary. To
make the visual category vocabulary describe the bag
of categories more clearly, we learn a group of clas-
sifiers for each node. Since these classifiers are in-
dependent, we propose a two-stage voting strategy to
help the final decision of each bag of categories. After
describing the bag of categories with visual category
vocabulary and combing the bag of categories with bi-
nary decision tree, the recognition process for a new
sample can be finished by the traversal of the tree from
root to leaf.

3.1. Visual Category Vocabulary

Each category vocabulary is a group of AdaBoost strong
classifiers. Once the samples are grouped into a binary
tree, we train a group of classifiers for each node of
the binary tree. AdaBoost[13, 14] is used to train each
classifier, and original haar-like features proposed by
viola and Jones[17] are taken as feature set. AdaBoost
algorithm, proposed in the Computational Learning The-
ory literature, is a method to find a highly accurate hy-
pothesis (a strong classifier) by combining many “weak”
hypotheses, each of which is based on the reweighted
version of the training data in order to emphasize those
which are incorrectly classified by previous weak clas-
sifiers, and only moderately accurate. The final strong
classifier is a weighted combination of weak classifiers
followed by a threshold. The decision of a strong clas-
sifier is bias. Thus, we learn a group of independent
strong classifiers at each node. The final decision is
created with the voting rule described as follows.

3.2. Voting Rule

The combined decision is obtained by a majority vote
of the individual classifiers. Majority vote does not as-
sume prior knowledge of the behavior of the individual
classifiers.

We assume that there are n classifiers, and each
classifier produces a unique decision regarding the iden-

tity of the sample. In our approach, the following con-
ditions are satisfied:

(C1) The number of voters is odd.

(C2) Each voter has the same probability of voting
one way.

(C3) The individual decision is independent, since each
classifier is trained independently and is based
on different feature set.

We take two-stage voting strategy.
Algorithm 3. Two-stage voting algorithm

(S1) If |kt− nt+1
2 | > τ , the sample is assigned to the

side when k experts are agreed.

(S2) If |kt − nt+1
2 | ≤ τ , consider two descendant

nodes tL and tR with associated subsets XtL

and XtR.

– If |ktLL + ktLR−ntL| > |ktRL + ktRR−
ntR|, the sample is assigned to the left node.

– If |ktLL + ktLR−ntL| < |ktRL + ktRR−
ntR|, the sample is assigned to the right
node.

– If |ktLL + ktLR−ntL| = |ktRL + ktRR−
ntR|, the sample is assigned to the left or
right node randomly.

Here τ is voting factor. kt, ktL, and ktR are the num-
ber of experts (strong classifiers) agreeing on the iden-
tity in the parent node, left child, and right child node,
respectively. ktLL and ktLR are left and right child of
the left child node tL. And ktRL and ktRR are left and
right child of the right child node tR.

3.3. Category Encoding

In the proposed framework, each node is a set of classi-
fiers. The bag of categories refers to a set of classifiers
to describe a group of categories. More precisely, the
category recognition is a two-step process.

(a) The local regions (patches) corresponding to the
features of each classifier are sampled from im-
age.

(b) The sample is assigned to the left or right node
of the binary decision tree.

We repeat (b) until we reach a leaf node classifier to
make a global decision about the test image.

Decision tree is a multistage system, in which cat-
egories are sequentially rejected until we reach a final
accept category. To this end, the feature space is split
into unique regions, corresponding to each category, in
a sequential manner. Recognition is achieved from the
root to the leaf node. Each leaf node corresponds to a
code book, and each category can be noted by a binary
code. This is a deep first traversal of tree.

4. EXPERIMENTS

We use the Caltech 101 object class dataset [16]. The
Caltech 101 dataset1 contains 9,197 images compris-
ing 101 different object categories, plus a background
category, collected via Google image search in Sep-
tember 2003 by Fei-Fei Li, Marco Andreetto, and Marc
’Aurelio Ranzato. Each category contains about 40 to
800 images. Most categories have about 50 images.

Average width vs. height of CalTech 101 samples

(230, 205)

105

145

185

225

265

165 195 225 255 285

Average width (pixel)

A
v

er
a

g
e

h
ei

g
h

t
(p

ix
el

)

Fig. 1. Average width vs. height of Caltech 101 sam-
ples. Each circle represents a pair of width and height
of one category. Some small width and height pairs are
excluded. The solid circle point with coordinate (230,
205) is the average width and height of samples for all
categories.

In our experiment, “Faces” and “Faces easy” cat-
egory are combined into one category. Therefore, the
total number of categories is 100. Fig. 1 computes the
average width and height of Caltech 101 samples. In
Fig. 1, fifteen pairs of width and height are excluded
because their small values in width, height, or both.
In order to accelerate the training speed, we resize the
width and height to 100 × 90 following the scale of
average width and height 230× 205.

Thirty samples were chosen randomly from each
of the 100 object categories, yielding a total 3000 sam-
ples. For each class, testing images are ones excluding
those used as training samples. Samples are not align-
ment before training.

Experimental results on Caltech 101 dataset show
the robustness of our proposed approach. The results
are shown in Table 1 and Fig. 2 for 15, 25 and 30 train-
ing samples per category. Results are reported from
Fei-Fei, Fergus, & Perona [2], Serre, Wolf, & Pog-
gio [4], Holub, Perona, & Welling [5], Berg, Berg, &
Malik [1], Mutch & Lowe [3], Tu [15], and proposed
approach.

1www.vision.caltech.edu/ImageDatasets/Caltech101/

The final decision tree of our experiment based on
Caltech 101 dataset is given in Fig3. Each row cor-
responds to the coding of each category, and 0 and 1
shows the node locates at the left and right of its fa-
ther node. For example, the ID of the second row is
23, and the code string “00000010” is the code word
of the category 23 named “crab”. It exists in the left
child node from stage 1 to stage 6, the right child node
of the stage 7, and the left child node of the final stage
8. Its substring represents a node of the tree, whose
length indicates the number of layer of the tree.

SamplesApproach 15 25 30
Fei-Fei, Fergus, & Perona [2] 16 – –
Tu [15] – 20 –
Serre, Wolf, & Poggio [4] 35 – 42
Holub, Perona, & Welling [5] 37 – 43
Berg, Berg, & Malik [1] 48 – –
Mutch & Lowe [3] 51 – 56
Proposed approach 42 – 56.3

Table 1. Correct rate in percentage with 15, 25, or 30
training samples per category on Caltech 101 dataset.

Caltech 101 categories Data Set

16

35

42

37

43

48

51

42

20

56

56.3

15

20

25

30

35

40

45

50

55

10 15 20 25 30 35

number of training examples per class

m
ea

n
 r

ec
o

g
n

it
io

n
 r

a
te

 p
er

 c
la

ss
 (

%
)

Fei-Fei, Fergus, & Perona

Serre, Wolf, & Poggio

Holub, Perona, & Welling

Berg, Berg, & Malik

Mutch & Lowe

Our approach

Tu

Fig. 2. Mean recognition rate on the Caltech 101 data
set. This plot shows the recognition rate using the bi-
nary decision tree for multiclass object recognition for
15, 25 and 30 training samples per category. All points
on the plot refer to recognition rates that have been
normalized according to the number of test samples
per category. (The figure is best viewed in color.)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 accordion 0 0 0 0 0 0 0 4 ant 1 0 0 0 0 0

23 crab 0 0 0 0 0 0 1 0 14 camera 1 0 0 0 0 1

48 hedgehog 0 0 0 0 0 0 1 1 17 ceiling_fan 1 0 0 0 1 0 0 0

20 chandelier 0 0 0 0 0 1 0 0 34 emu 1 0 0 0 1 0 0 1 0

55 lamp 0 0 0 0 0 1 0 1 0 63 menorah 1 0 0 0 1 0 0 1 1

80 schooner 0 0 0 0 0 1 0 1 1 74 platypus 1 0 0 0 1 0 1

89 stop_sign 0 0 0 0 0 1 1 85 soccer_ball 1 0 0 0 1 1

13 butterfly 0 0 0 0 1 0 0 7 beaver 1 0 0 1 0 0 0 0 0

53 kangaroo 0 0 0 0 1 0 1 0 36 ewer 1 0 0 1 0 0 0 0 1 0

83 sea_horse 0 0 0 0 1 0 1 1 52 joshua_tree 1 0 0 1 0 0 0 0 1 1

73 pizza 0 0 0 0 1 1 0 56 laptop 1 0 0 1 0 0 0 1

94 umbrella 0 0 0 0 1 1 1 61 mandolin 1 0 0 1 0 0 1

19 chair 0 0 0 1 0 0 32 electric_guitar 1 0 0 1 0 1 0

41 flamingo_he 0 0 0 1 0 1 0 79 saxophone 1 0 0 1 0 1 1

65 minaret 0 0 0 1 0 1 1 88 stegosaurus 1 0 0 1 1

76 revolver 0 0 0 1 1 0 8 binocular 1 0 1 0 0 0

95 watch 0 0 0 1 1 1 33 elephant 1 0 1 0 0 1

2 airplanes 0 0 1 0 0 0 0 18 cellphone 1 0 1 0 1 0 0

39 ferry 0 0 1 0 0 0 1 21 cougar_body 1 0 1 0 1 0 1

6 bass 0 0 1 0 0 1 0 93 trilobite 1 0 1 0 1 1

46 hawksbill 0 0 1 0 0 1 1 44 gramophone 1 0 1 1 0

62 mayfly 0 0 1 0 1 0 66 Motorbikes 1 0 1 1 1 0

67 nautilus 0 0 1 0 1 1 72 pigeon 1 0 1 1 1 1 0 0

12 buddha 0 0 1 1 0 0 77 rhino 1 0 1 1 1 1 0 1

50 ibis 0 0 1 1 0 1 99 windsor_chair 1 0 1 1 1 1 1

35 euphonium 0 0 1 1 1 0 9 bonsai 1 1 0 0 0 0 0

98 wild_cat 0 0 1 1 1 1 22 cougar_face 1 1 0 0 0 0 1

3 anchor 0 1 0 0 0 81 scissors 1 1 0 0 0 1

25 crocodile 0 1 0 0 1 0 29 dollar_bill 1 1 0 0 1 0

31 dragonfly 0 1 0 0 1 1 70 pagoda 1 1 0 0 1 1 0 0

28 dalmatian 0 1 0 1 0 0 0 82 scorpion 1 1 0 0 1 1 0 1

57 Leopards 0 1 0 1 0 0 1 86 stapler 1 1 0 0 1 1 1

71 panda 0 1 0 1 0 1 11 brontosaurus 1 1 0 1 0 0 0

43 gerenuk 0 1 0 1 1 0 24 crayfish 1 1 0 1 0 0 1 0

84 snoopy 0 1 0 1 1 1 59 lobster 1 1 0 1 0 0 1 1 0 0

5 barrel 0 1 1 0 0 0 0 69 okapi 1 1 0 1 0 0 1 1 0 1

37 Faces 0 1 1 0 0 0 1 78 rooster 1 1 0 1 0 0 1 1 1

10 brain 0 1 1 0 0 1 0 15 cannon 1 1 0 1 0 1 0 0 0

54 ketch 0 1 1 0 0 1 1 0 45 grand_piano 1 1 0 1 0 1 0 0 1

60 lotus 0 1 1 0 0 1 1 1 64 metronome 1 1 0 1 0 1 0 1

16 car_side 0 1 1 0 1 0 0 91 sunflower 1 1 0 1 0 1 1 0

47 headphone 0 1 1 0 1 0 1 92 tick 1 1 0 1 0 1 1 1

96 water_lilly 0 1 1 0 1 1 30 dolphin 1 1 0 1 1 0 0 0

26 crocodile_h 0 1 1 1 0 42 garfield 1 1 0 1 1 0 0 1

40 flamingo 0 1 1 1 1 0 68 octopus 1 1 0 1 1 0 1

100 wrench 0 1 1 1 1 1 97 wheelchair 1 1 0 1 1 1

27 cup 1 1 1 0 0

49 helicopter 1 1 1 0 1

51 inline_skate 1 1 1 1 0 0 0

75 pyramid 1 1 1 1 0 0 1 0

87 starfish 1 1 1 1 0 0 1 1

90 strawberry 1 1 1 1 0 1

58 llama 1 1 1 1 1 0

101 yin_yang 1 1 1 1 1 1

ID
Category

Name

STAGE(RIGHT)
ID

Category

Name

STAGE(LEFT)

Fig. 3. Final decision tree for multiclass object recognition of Caltech 101 dataset. The first two columns are
category ID and name. From Column three to Column twelve is the code of category.

5. CONCLUSION

We construct the multiclass object recognition tree by
subdividing the whole category set into two subsets,
as two sides of the binary classification tree, and re-
cursively to apply the subdivision until all category is
distinguished each other. A subset corresponds to a
bag of categories. Recognition is a process to find a
path from root to a leaf, which represents a unique cat-
egory. Multiclass object recognition is transferred into
many binary classification problems by the binary tree.

We answer three issues for object recognition.

1. How do we represent the object? We represent
object by code book and bag of categories.

2. Using the representation, how do we learn a par-
ticular object category? The binary decision tree
is constructed for multiclass object recognition.

3. Finally how do we use the model we have learnt
to find further instances in query images? This
is a deep first traversal of tree.

More complicated features will be considered in the
future work to improve the performance.

6. REFERENCES

[1] A. C. Berg, T. L. Berg, and J. Malik, “Shape
matching and object recognition using low dis-
tortion correspondence,” in Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, 2005.

[2] L. Fei-Fei, R. Fergus, and P. Perona, “Learn-
ing generative visual models from few training
examples: An incremental bayesian approach
tested on 101 object categories,” in CVPR Work-
shop of Generative Model Based Vision, 2004.

[3] J. Mutch and D. Lowe, “Multiclass object recog-
nition with sparse, localized features,” in Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2006, pp. 11–18.

[4] T. Serre, L. Wolf, and T. Poggio, “object recog-
nition with features inspired by visual cortex,”
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2005.

[5] A. D. Holub, M. Welling, and P. Perona, “Com-
bining generative models and fisher kernels for
object recognition,” in Proceedings of IEEE
International Conference on Computer Vision,
2005.

[6] E. L. Allwein, R. E. Schapire, and Y. Singer, “Re-
ducing multiclass to binary: a unifying approach

for margin classifiers,” The Journal of Machine
Learning Research, vol. 1, pp. 113–141, 2001.

[7] D. Blei, A. Ng, and M. Jordan, “Latent dirich-
let allocation,” The Journal of Machine Learning
Research, vol. 3, pp. 993–1022, January 2003.

[8] G. Csurka, C. Bray, C. Dance, and L. Fan, “Vi-
sual categorization with bags of keypoints,” in In
Workshop on Statistical Learning in Computer
Vision, ECCV, 2004, pp. 1–22.

[9] J. Zhang, M. Marszalek, S. Lazebnik, and
C. Schmid, “Local features and kernels for clas-
sification of texture and object categories: A
comprehensive study,” International Journal of
Computer Vision, vol. 73, no. 2, pp. 213–238,
2007.

[10] M. Marszalek and C. Schmid, “Spatial weight-
ing for bag-of-features,” in Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, vol. 2, 2006, pp. 2118–2125.

[11] E. Nowak, F. Jurie, and B. Triggs, “Sampling
strategies for bag-of-features image classifica-
tion,” in Proceedings of European Conference on
Computer Vision, 2006, pp. 490–503.

[12] L. Fei-Fei and P. Perona, “A bayesian hierarchi-
cal model for learning natural scene categories,”
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2,
2005, pp. 524–531.

[13] Y. Freund and R. E. Schapire, “A decision-
theoretic generalization of on-line learning and
an application to boosting,” in Proceedings of
European Conference on Computational Learn-
ing Theory, 1995, pp. 23–37.

[14] Y. Freund and R. Schapire, “Experiments with
a new boosting algorithm,” in Proceedings of
International Conference on Machine Learning,
1996, pp. 148–156.

[15] Z. Tu, “Probabilistic boosting-tree: Learning dis-
criminative models for classification, recogni-
tion, and clustering,” in Proceedings of IEEE
International Conference on Computer Vision,
vol. 2, Beijing, China, Oct 2005, pp. 1589–1596.

[16] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot
learning of object categories,” IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 4, pp. 594–611, 2006.

[17] P. Viola and M. J. Jones, “Robust real-time face
detection,” International Journal of Computer
Vision, vol. 57, no. 2, pp. 137–154, 2004.

