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ABSTRACT
Currently there are few parameters that are used to compare the efficiency of different methods of cancerous 
prostate surgical removal.  An accurate assessment of the percentage and depth of extra-capsular soft  tissue 
removed  with  the  prostate  by  the  various  surgical  techniques  can  help  surgeons  with  determining  the 
appropriateness of different surgical approaches. Additionally, an objective assessment can allow a particular 
surgeon to compare individual  performance against  a  standard.  In order to facilitate  3D reconstruction and 
objective analysis and thus provide more accurate quantitation results when analyzing specimens, it is essential 
to automatically identify the capsule boundary that separates the prostate gland tissue from its extra-capsular 
tissue. However the prostate capsule is sometimes unrecognizable due to the naturally occurring intrusion of 
muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour 
can be arbitrarily reconstructed with the generation of a continuing contour line based on the natural shape of 
the prostate gland. We present an algorithm based on a least squares curve fitting technique that uses a prostate 
shape equation to merge previously detected capsule parts with the shape equation to produce an approximated 
curve that represents the prostate capsule. We have tested our algorithms using three shapes on 13 prostate slices 
that are cut at different locations from the apex and the results are promising.
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1. INTRODUCTION
Despite the numerous research studies in segmenting 
structures  from  medical  images  [Aar94,  Liu97, 
Pra92,  Ric96,  and  Pat00]  and  reconstructing  a 
compact geometric representation of these structures, 
no  study,  to  the  best  of  our  knowledge,  has  been 
done to automatically identify the complete prostate 
capsule in medical images. 

As studies show, identifying the prostate capsule is 
essential  in  staging  prostate  cancer  and  it  greatly 
affects  the  treatment  options  since  the  presence  of 
metastases in the prostate’s adjacent organs is highly 
related  to  the  penetration  through  the  prostate 
capsule,  which  therefore  influences  the  prognosis 
after surgical and hormonal treatment [McN90].  In 
addition  to  its  importance  in  prostate  prognosis, 
automatically  identifying  the  prostate  capsule 
provides a more accurate and objective assessment of 
the percentage and depth of extra-capsular soft tissue 
removed  with  the  prostate  by  the  various  surgical 
approaches.  Not  only  does  this  assessment  allow 
surgeons  to  compare  the  quality  of  one  surgical 
approach  versus  another,  it  also  provides  an 
evaluation  of  surgeons’  surgical  performances  as 
related  to  a  standard  [McK03].  Recent  studies  are 
focused  more  on  a  statistical  model  based 
segmentation  algorithms  [Pra92,  Lor97,  Gon04, 
Chi04,  Bet05]  than  deformable  models  [Kas87, 
Pat98, Lad00, Kno99a, Kno99b].
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By  analyzing  the  existing  literature,  the  error 
resulting  from  applying  prostate  segmentation 
methods may increase considerably when the image 
contains shadows with similar gray level and texture 
attached  to  the  prostate,  and/or  when  boundary 
segments  are  missing.  Another  obstacle  that  faces 
segmentation  is  the  lack  of  sufficient  number  of 
training  (gold)  samples  if  a  learning  technique  is 
used. Although algorithms based on active contours 
have been used successfully, their major drawback is 
that they depend on user interaction to determine the 
initial contour.
Therefore,  a  new  segmentation  approach  should 
ideally possess certain properties:
 User  interaction  (e.g.  defining  seed  points  or 

manually  placing  initial  contour)  should  be 
eliminated  due  to  its  drawbacks  such  as  time 
consumption, human bias and/or error. 

 Sample-based  learning  should  be  avoided 
because it is difficult to provide a large number 
of training samples in medical environments.

 Robustness of the segmentation algorithm with 
respect to the presence of noise and shadow is 
crucial.

 Shape information should  be  incorporated  into 
segmentation algorithms to be able to estimate 
contour segments that are missing in some areas.

Our  objective  is  to  establish  an  algorithm  which 
attempts to avoid the problems that exist in literature 
and  to  satisfy  the  above  conditions  as  much  as 
possible. 

2. DETECTING PARENCHYMAL 
CONTOURS AND AREAS OF 
CAPSULE TISSUE
In pathology, tissue samples are processed and made 
into stained tissue sections to be mounted on glass 
slides  for  interpretation.  Representing  the 
histological features of a slide in digital formats may 
require using a very high resolution capturing device 
that can capture the details of the tissue as seen under 
a microscope. 
There are several successful attempts in literature to 
classify  tissues  of  histopathologic  images  using 
texture  analysis  and  image  morphology  [Dia04, 
Ham97, Ned00, and Pet04]. For example, the authors 
of  [Pet04]  were  able  to  correctly  identify  the 
different tissue structures in H&E stained histology 
slides  with 89% ± 0.8 accuracy.  The authors  were 
able to identify fat  cells,  stroma, nuclei  of cells of 
epithelial origin, and other two types of nuclei that 
represent  inflammatory  cells  and  cancer  cells.  The 
slides were scanned using a 40X magnification lens, 
covering  almost  all  the  tissue.  Accordingly,  we 
conclude  that  the  collagenous  fibers  within  the 
prostate capsule as well as the epithelial cells can be 

automatically  identified  using  either  of  the 
techniques mentioned in Dia04] and [Pet04], given 
that the slides are scanned at 40X magnification.  By 
detecting the epithelial cells, a parenchymal contour 
can  therefore  be  generated.  As for  the  tissue  parts 
where  the  prostate  capsule  exists,  the  algorithms 
mentioned above can automatically detect them and 
mark them on the slices’ images to be used as inputs 
to  our  algorithms  which  we  will  explain  in  the 
following sections.

3. ESTIMATION OF THE PROSTATE 
CAPSULE USING SHAPE 
INFORMATION
In order to automatically identify the capsule of the 
prostate and replace the arduous and costly manual 
process  of  detecting  it,  a  software  algorithm  was 
developed  that  recognizes  the  capsule  utilizing 
elements  of  prostate  anatomy  and  shape.  Certain 
anatomical  features  make  capsule  generally 
detectable; however, the capsule is unrecognizable in 
some  areas  because  of  the  naturally  occurring 
intrusion  of  muscle  into  the  prostate  gland  at  the 
anterior apex and fusion of extraprostatic connective 
tissue with the prostate  gland at  its  base.  At  these 
regions  where  the  prostate  capsule  disappears,  its 
contours  need  to  be  reproduced  by  drawing  a 
continuing contour line from those areas where the 
capsule  can  be  objectively  recognized.  The  elastic 
fibers  within  the  prostate  capsule  can  be  clearly 
recognized under the microscope and also under high 
resolution  of  scanned  digital  images.  In  order  to 
correctly locate those lines,  it  is  essential  to detect 
the  parenchymal  outer  contour  of  the  prostatic 
glandular  epithelial  elements  [McK03],  since  the 
capsule is normally located between this contour and 
the perimeter of the slice. 

3.1 A Mathematical Model for a 
Standard Prostate Shape Top Down 
Anterior To Posterior

In general, any prostate has a standard shape that can 
be defined in terms of equations as we had reported 
in a previous publication [Hus04]. Those equations 
can be approximated by the Limaçon curve equation 

       r = b + a cos θ    

The limacon serves only as an approximation since 
there is always a degree of roundness to this shape. 
Therefore, the limacon serves as a better shape than a 
circle but  may not be as good as an ellipse where 
more elongated prostate shapes are observed.



3.2 Approach
We present a general  process that  utilizes different 
shape algorithms to detect the prostate capsule. This 
process can be summarized as follows:
2. Using digital images of prostate slices scanned 

with  40x  magnification,  identify  the  input 
sections  of  the  prostate  capsule  (the  outer 
perimeter,  the  parenchymal  contour,  and  the 
observable  portions  of  the  capsule) 
automatically  using texture  analysis  techniques 
[Dia04].

3. Use  the  least  squares  shape  algorithm  to 
generate  a  curve  that  interpolates  between  the 
parts generated in step 1.

4. Adjust  the generated curve so that  it  does  not 
violate any constraints. In our case the constraint 
is  that  the  curve  should  be  between  the 
parenchymal contour and the prostate perimeter.

5. Repeat  steps  2  and  3  until  a  satisfactory 
threshold is acquired.

3.2.1  The Least Squares Shape Algorithm
The least squares method is a very popular technique 
used  to  compute  estimations  of  parameters  and  to 
find  the  best  fitting  model  for  discrete  data.  It  is 
widely used in literature to fit a function (which may 
represent a certain shape) to a set of data which can 
be  used  in  many  applications  including  medical 
imaging [Pil96]. 
Assuming that we have a number n of discrete data 
(x1,y1), (x2,y2), …….(xn,yn) and f(x) is a function for 
fitting  a  curve.  Therefore,  f(x)  has  the  deviation 
(error) d from each data point, i.e. d1 = y1-f(x1), d2 = 
y2-f(x2), …….., dn = yn-f(xn)

The best-fit curve is the curve that has the minimal 
sum of the deviations squared from a given set  of 
data, i.e. it  is the curve that satisfies the following 
equation 

Minimum Least square error (∏) = d1
2 + d2
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3.2.2 Implementing the least squares using 
the limacon shape equation

We  have  used  the  least  square  error  to  find  the 
closest location of the prostate shape equation with 
respect to the parts of the capsule that are present in 
the tissue (Figure 1)

                   (a)                                           (b)

Figure 1. Least squares method and prostate shape 
equation. (a) Arrows point to the detected parts of the 

prostate capsule, (b) Arrow points to the curve 
representing the prostate shape located as close as 

possible to the capsule parts.

Known Capsule Regions Preservation
Once  the  curve  is  positioned  close  to  the  capsule 
parts,  parts  of  the  shape  curve  is  replaced  by  the 
capsule segments and a new curve is  generated by 
connecting  all  the  curve  points  and  capsule  points 
using cubic splines (Figure 2)

Figure 2. New shape curve after merging the capsule 
parts into the original shape curve.

Curve Adjustment Algorithm
Sometimes  the  generated  curve  violates  the 
constraint  that  states  that  the  prostate  capsule  is 
typically  located  between the  parenchymal  contour 
and the prostate perimeter as shown in Figure 3. 

Figure 3. Shape curve extending beyond the prostate 
perimeter.

In  this  case,  we  use  the  flood  fill  algorithm  to 
relocate  the curve parts  that  violates the  constraint 
such  that  new points  are  generated  between the  2 



contours (Figure 4) for the least square algorithm to 
be executed again for better results. 

Figure 4. Contours.

The curve adjustment algorithm was used primarily 
to generate new boundary points to feed the shape 
algorithm for  consecutive  runs for  improved shape 
fitting. However, in case that one wishes to stop after 
a  certain  number  of  runs  and  the  output  curve 
extends  beyond  the  slice  perimeter  or  inside  the 
parenchymal contour, the algorithm is used as a final 
step to enforce this constraint. This enforcement may 
result  in  some  sharp  edges;  a  curve  smoothing 
technique can be added as a future extension to our 
algorithm to solve this problem.

4. PERFORMANCE EVALUATION
To  evaluate  the  performance  of  the  least  squares 
algorithm, we have used two measurements, the root 
mean square error RMSE and the percentage of error, 
which are defined as follows:

Root Mean Square Error (RMSE):
Assuming  that  curves  are  represented  by  control 
points,  the  mean  square  error  is  the  average  of 
squared deviations. Deviations can be calculated by 
getting the distance from each point on the curve to 
the closest  point  on the reference curve.   The root 
mean square error can be calculated by getting the 
square root of the mean square error as shown in the 
following equation:

∑
=

=
n

i n
diRMS

1

2

Where
n is the number of points in the curve
di  is the min distance from point i in the curve to the 
reference curve. The following figure shows the 
RMS error of the least squares algorithm 
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Figure 5. Root Mean Square Error for the least 
squares algorithm.
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di   is  the  min  distance  from  point  i  in  the 
reference curve to the curve

The thresholds considered in our study are equal to 
1%, 1.5%, and 2% of the number of  pixels of  the 
image  diagonal.  We  found  that  the  2%  threshold, 
which is the biggest threshold we used, is less than 
2mm in length. According to the fact that the capsule 
thickness is between 0.5 to 2mm [Sat95], we believe 
that  the  2%  threshold  is  reasonable  and  within 
acceptable limits while the 1.5% threshold is used to 
gauge performance improvement.  The 1% result  is 
essentially directly on top of the reference line.  
The following figures show the % matching between 
the calculated curve and the  optimal curve for  the 
least  squares  algorithm  at  0.01,  0.015  and  0.02 
threshold, respectively.
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Figure 6. Percentage matching for least squares 
algorithm.

The results  presented show the least  squares shape 
algorithm shows an aptitude for  increasing capsule 
detection  as  better  shape  equations  are  used.  The 
results  presented  are  the  outcome  of  running  the 
algorithm for 2 runs only; however, it can be run for 
as  many  times  as  needed  until  a  satisfactory 
threshold  is  acquired.  Obviously,  increasing  the 
number  of  runs  for  a  particular  specimen  is  more 
important  for  complex prostate  equations that  have 
more degrees of freedom.

5. CONCLUSION
In this paper, we presented an overall process and a 
novel shape algorithm to detect the prostate capsule 
boundary with the use of least squares fitting along 
with  prostate  shape  equations.  We have  tested our 
algorithms on a data set of 13 different prostate slices 
and our results show promises. Our algorithm show 
an aptitude for increasing capsule detection as better 
shape equations are used. 
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