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ABSTRACT

The photon map method can easily be extended to handle wavelength-dependent phenomena such as dispersion, chromatic
aberration, etc. Using the computationally effective approach of point sampling for this extension, the size of the photon map is
increased proportionally with the number of samples. In this paper we present a solution for modelling wavelength-dependent
phenomena that keeps variance low, while having a memory usage comparable to that of an RGB based renderer. The method
is best used for photon mapping, where there is a need to storelarge amounts of spectral flux directly in the photon map. Our
method incurs a slight loss of accuracy for photons in the global map, while photons in the caustics map retain all information.
Our tests show negligible loss of accuracy in the image quality.

Keywords: Global illumination, photon mapping, spectral power distribution, rendering, Monte Carlo methods, refraction,
rendering equation

1 INTRODUCTION

In the sense of computer graphics, the discipline of
global illumination has been around for over 20 years.
The problem was first formalized in a ground break-
ing paper by [Kaj86], calledThe Rendering Equa-
tion and introduced a way of solving the equation,
and introduced path tracing as a way of solving it.
Other important advances in global illumination in-
clude radiosity [Gor84], irradiance caching [War88],
bi-directional path tracing [Laf93] and photon map-
ping [Jen01]. The extension of the rendering equa-
tion to make it wavelength-dependent is straightfor-
ward, and is given in Equation 1, whereλ represents
the wavelength.

L(x, ~ω ,λ ) = Le(x, ~ω ,λ )+
∫

Ω
fr(x, ~ω , ~ω ′,λ )L(x′, ~ω ′,λ )(~ω ′ ·~n)d~ω ′ (1)

Many people have tried solving Equation 1 using the
naive approach of solving it one discrete wavelength at
a time. However, this method is time consuming and
introduces variance.
[Col94] made a spectrally global illumination system,
based on Backwards Ray Tracing [Arv86]. Collins uses
sampling for the representation of his spectral power
distributions. He uses 6 bins to represent a spectrum.
One problem that Collins runs into is that the Illumina-
tion Map, which stores the particle power depositions,
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uses quite some memory.
[Wil00] extends a standard ray tracer to handle disper-
sion. Instead of handling dispersion in a deterministic
fashion, where a spectral power distribution ofN sam-
ples is split intoN sub-spectra, a sub-spectrum is jit-
tered by as much as half the width of the wavelength
band represented by the specific bin. This approach
eliminates some of the banding problems caused by
having too few samples, but it introduces variance in-
stead. Unfortunately [Wil00] only implemented the
method in a standard ray tracer and not in the context
of full global illumination.
[Sun00] describes a spectral framework capable of ren-
dering dispersion. This is done using an extended stan-
dard eye tracer. The author extends the ray data struc-
ture with information about the monochromacity of the
ray, and if the ray is monochromatic, the data struc-
ture is also extended with the value of the wavelength.
However, since only an eye tracer is used, important
phenomena, like indirect lighting, are lost.
Much of the work in for this paper has been inspired
by the paper Stratified Wavelength Clusters for Effi-
cient Spectral Monte Carlo Rendering [Eva99]. The
authors have implemented an extended bi-directional
path tracer ([Laf93]), with a method they call Stratified
Wavelength Clustering (SWC). The idea is that emit-
ted light rays carry a cluster ofK wavelengths, instead
of the more naive approach of just a single wavelength.
Only when a ray interacts with a dispersive material are
the clusters split into individual wavelengths. TheK
wavelengths in the cluster are chosen at random, ac-
cording to the spectral power distribution of the light
source. The authors compare their method of emit-
ting clusters of wavelength, against the naive method
of emitting a single wavelength at a time. The authors
show that SWC converges better than the naive method,
while being only marginally more computationally ex-



pensive. However, as the authors point out, since they
implemented SWC using a bi-directional path tracer,
close to pure specular light paths are difficult to model.
The authors suggest using photon mapping instead,
which as they point out, might cause memory problems
because of the relative size of the spectra.
Another work that comes close to what has been done
for this paper is [Ieh00]. They implemented a renderer
based on photon mapping that was capable of render-
ing dispersion. They use an adapative representation
of the spectral data based on [Rou97]. They also in-
troduce a perceptual error control based on a CIELAB
error, which is controlled through a parameter set by
the user. In their implementation photons are emitted
in two passes; first photons are emitted with an aver-
age behavior where even the refraction indices are aver-
aged. Then during rendering, if a caustic is found, non-
average photons are re-emitted at certain wavelengths.
In this case, some of the paths of the average photons
are reused. [Ieh00] shows a lot of promise. However,
their method does not easily fit into the standard frame-
work of the photon mapping method and would be dif-
ficult to port to a hardware implementation.
All of the methods described above solve Equation 1 ei-
ther partly or wholly. However, nearly all of them suffer
from the problem that the representation of the spectral
power distribution is very costly in memory. The main
contribution of this paper is a method for solving Equa-
tion 1 in an efficient manner, which minimizes memory
usage, avoids extra variance, and at the same time is
suitable for implementation on modern graphics hard-
ware as described in section 6. However, our method is
unable to accurately represent fluorescent spectra.

2 SPECTRALLY BASED PHOTON
MAPPING

The method described in this paper has been developed
in the context of photon mapping. However, as de-
scribed in section 6 it appliance goes further than pho-
ton mapping.
In general, photon mapping has many steps where the
representation of reflection values is important. Since
this paper is all about the accuracy and size of the spec-
tral representation, we will go through these steps in
photon mapping, and one by one describe how each
step has been modified to fit to the subject of this pa-
per. Section 2.1 briefly describes and discusses the
representation of the spectral power distribution. Sec-
tion 2.2 and section 2.3 describes how the photon map-
ping method [Jen01] have been modified to work within
the context of the method described in this paper.

2.1 Representation

Two different strategies have dominated in the subject
of representing spectral power distributions; basis func-
tions and point samples.
The first common approach is to represent spectra by
the use of basis functions. By pre-analyzing the scene,

a set of basis functions and weights that "best" repre-
sent the spectra in the scene is found. Each spectrum,
is then represented by a set of weightsw1..wk and a re-
lated set of basesE1..Ek. These are summed together in
a linear combination to represent the final spectrum, as
in Equation 2.

λ =
k

∑
i=0

wi(λ )Ei(λ ) (2)

Basis functions have the advantage of being a compact
representation, while being able to model complex
spectra (i.e. non-smooth). This approach also has the
advantage of requiring only a few basis functions to
represent smooth spectra well. Often the bases are al-
lowed to be different for each spectrum. Unfortunately
this makes spectral multiplication very expensive, as
matrix multiplication is an (n3) operation. To overcome
the expensive multiplications, the same basis functions
can be chosen to represent all the spectra. This will
reduce the cost to O(n). However, unless some spectra
are to be misrepresented by too few basis coefficients,
a lot of basis functions might be needed to represent
all spectra in the scene with sufficient accuracy. The
excessive number of basis functions might defeat the
entire purpose of trying to overcome the (n3) cost of
the folding operation. [Pee93] presents a method that
given a set of spectral power distributions, finds the
"best" m basis functions. Here "best" is a measure
of the distance between the original spectra and the
basis functions. [Pee93] also shows that once the basis
functions have been found, the multiplicative cost is
comparable to that of point sampling (see description
below), while giving a more accurate representation of
the original spectra.
Point sampling is a second commonly used method,
which is a simple extension of the tristimulus (RGB)
method, where a set ofn samples is used to represent
a spectral power distribution. Point sampling can be
seen as a special case of using basis functions, where
the basesE1..Ek are orthonormal to each other.
Point sampling has the advantage, that the folding
operation is an O(n) operation. However to model
complex spectra, a lot of bins might be needed,
which takes up a lot of memory and slows down the
multiplication. [Pee93] shows that using Riemann
summation for numerical integration of the spectral
power distributions, 4 point samples result in less than
5% error of the tristimulus values.
For completeness it should be mentioned that at least
two other methods exists.
Sun [Sun00] extends the linear basis approach by
introducing a composite model. This model has a dual
representation, consisting of a smooth and a spiky part.
The smooth part is approximated by a Fourier series,
while each of the spikes are represented by a pair (λi,
wi), whereλi gives the location of the i’th spike and wi
is a weight. This approach has the advantage of being
compact and accurate at the same time. Sun [Sun00]
overcomes the inherent O(n3) time complexity of



multiplying two bases and reduces it to O(n) by clever
resampling of the Fourier series.
[Rou97] suggests an adaptive representation of the
spectral power distribution. All spectral reflectances
in the scene are gathered and projected onto a set of
basis functions. As basis functions the authors use
Haar wavelets, organized by means of binary trees. A
user controlled error interval helps control the traversal
of the hierachically organized basis functions during
rendering. The idea of the method is that for example
when rendering dispersion, an error tolerance factor
can be used to control the level at which the spectral
power distributions are split.
We chose to use uniformly distributed point samples
for this paper. There are several reasons for this;
multiplication is an O(n) operation and so are the con-
versions between RGB space and the spectral domain.
By using point sampling, reflection values can be kept
at full resolution. If we were using basis functions,
reflection values would have to be approximated more
coarsely than with point samples. In this paper we
show that the memory used by point sampling can
be cut down to that used by the RGB representation,
while still keeping O(n) performance. Thirdly, the
core of our algorithm basically consists of matrix
multiplications of cost O(N) and is therefore suitable
for implementation on modern graphics hardware.

2.2 Photon Mapping, Pass 1: Photon
Emission

For this paper, the flux that photons carry can have two
different representations; thefull format and thecom-
pact format. In the full format, the photon flux is mod-
eled as spectral power distributions, represented as uni-
formly distributed point samples. We need to under-
stand when and how the compact format is needed, be-
fore describing it in full detail in section 2.2.4.

2.2.1 The Full Format

A spectral renderer must solve the rendering equation
(Equation 1) on a pr. wavelength basis.
The naive way to solve Equation 1 is to solve it one
wavelength at time. This approach increases variance,
and therefore also rendering time. As already men-
tioned, [Eva99] uses light rays carrying clusters ofK
wavelengths at a time, which decreases variance. How-
ever, for this paper we have chosen a third approach,
described in the following paragraph.
At the time of emission a photon carries the entire spec-
trum of the emitting light source. As spectral power dis-
tributions are represented as point samples, allN sam-
ples are represented in the flux. This increases mem-
ory usage linearly withN but also decreases variance
in most cases. To see this, assume a photon is hit-
ting a diffuse surface in an epsilon sized area around
x and reflecting alongω . As the diffuse BRDF has
an uniform probability of reflecting along a given sam-
ple, if we were sending out photons carrying only one

wavelength at a time, we would on average need to
sendN times more photons to get the same light in-
tensity alongω than if we sent out a single photon car-
rying all N samples at once. As long as we are using
wavelength-independent BRDFs, except for decreasing
variance and thus rendering time, there is no side ef-
fect of usingN samples instead ofK < N. By carry-
ing all N samples, the decision of exactly how to re-
flect/transmit and in which direction is postponed un-
til a wavelength-dependent BSDF is encountered. By
using just 1 sample, variance is increased as the deci-
sion of which direction to reflect/transmit has already
been made before the wavelength-dependent surface
is met. For scenes containing wavelength-dependent
BSDFs, variance is decreased proportionally with how
many photon bounces are needed on average before
wavelength-dependent interaction is encountered. The
only wavelength-dependent BSDFs used for this paper
are those having transmitting effects.

2.2.2 Surface Interaction

When a photon hits a surface, Russian roulette is used to
choose either reflection, absorbtion, and if applicable,
transmission. If a photon is reflected or transmitted, two
important events must be considered. Firstly, a copy of
the photon must be made, and tracing of the original
continued (see Section 2.2.3). Secondly, the copy of the
photon must be stored in the photon map (also Section
2.2.3). For absorbtion, the original photon is discarded.

2.2.3 Tracing and Storing the Photon

When a photon hits a surface, a copy of the spectral
photon is made. The copy is stored in the photon map,
while the original photon is treated in the following
manner:
Upon surface interaction the flux of the photon is modi-
fied exactly as described in [Jen01]. If the interaction is
a reflection nothing more is done, and we simply keep
tracing. However, if the surface interaction is a trans-
mission, then the transmitted direction is wavelength-
dependent since we are working within the context of a
spectral renderer. This poses a problem, since photons
carriesN different wavelengths simultaneously and not
just one. At the point of transmission, a photon needs to
be sent out into each wavelength-dependent direction.
This can be done using a recursive ray tracing like tech-
nique, Russian roulette, or some third heuristic. The
strength and weaknesses of each heuristic is not impor-
tant in the context of this paper. We have already done
a lot of work in this area, and we plan on this being the
subject of a later paper. In any case the resulting pho-
ton used for tracing along the wavelength represented
by thei’th wavelength, will have all samples except the
i’th be zero.
It is important to note that all surface interactions are
calculated with original spectral data that has not yet
been stored in the compact form (section 2.2.4), and
thus no loss of data occurs, except that imposed by the
discrete sampling representation.



If the photons are stored in RGB format, the flux of
the photons will require a meager 4 bytes∗3= 12 bytes
for each photon. However, if the photons are stored as
spectral samples withN entries then the memory re-
quirements will potentially multiply many times. For
N = 100 the memory requirement will be 400 bytes for
storing the flux of a photon. This is 33 times more than
the memory requirements for the RGB version.
When photons are stored, the flux they carry is con-
verted to the compact format before being added to the
photon map. This compact format is slightly lossy but
only uses memory comparable to that of the RGB rep-
resentation.

2.2.4 The Compact Representation

The compact representation has two different formats.
Exactly which format is used depends on whether the
flux carried by the photon has more than one non-null
sample. As described in section 2.2.3 the flux of a pho-
ton which has been through a transmission consists of
exactly one non-null sample.
If the flux has exactly one non-null sample there is no
need to useN samples for storing the photon, as all sam-
ples except one are zero. Instead we use a RGB triplet
and store special information in it. The first coordinate
is used as a special marker that says this RGB triplet
is a not in the standard format, but is a compact spec-
trum. This is done by setting the entry to -1. This will
never go wrong as we need Equation 1 to converge and
thus all reflectances must be greater or equal to zero.
The second coordinate is used for storing the index of
the non-null sample, and the third coordinate for stor-
ing the amplitude of the non-null sample. Note that this
way of storing the flux does not impose any loss of in-
formation.
Note that when each discrete wavelength is represented
as exactly one photon, the size of the photon map grows
proportionally toN. This fact is not related to our com-
pression method, however. The photon map also grows
proportionally toN in the uncompressed version.
If the flux has more than one non-null sample, the
spectral flux of the photon is converted to RGB space
through the use of Equations 3 to 5.

R = k
∫ 830

360
Mred(λ )L(λ )dλ (3)

G = k
∫ 830

360
Mgreen(λ )L(λ )dλ (4)

B = k
∫ 830

360
Mblue(λ )L(λ )dλ (5)

The mathematical matching functionsMred(λ ),
Mgreen(λ ) and Mblue(λ ) have been found experimen-
tally using psychological tests. The matching functions
used for this paper, have been taken from [hc]1.

1 For a more indepth description of the CIE matching functions, see
[Fol96].

Using Equations 3 to 5 several spectra might map
to the same RGB value. Such spectra are called
metamers. During the final gathering step described in
section 2.3, photons are collected from the photon map
and converted back into the spectral domain. We use
[Smi99] for converting from RGB space to the spectral
domain. When converting back to the spectral domain,
the spectral power distribution might be converted
back to a different metamer than the RGB value was
originally converted from. More formally, letS be the
domain represented by all possible wavelengths, and
let C be the domain represented by all RGB colors.
Define Sc as the metamer subspace ofS that Smits’
method [Smi99] maps to. If a spectrums0 ∈ S \ Sc is
compressed and then converted back to the spectral
domain, the resulting spectrums1 is clearly not equal
to s0, since s1 lies in Sc while s0 does not. This
means lossiness is introduced whenever a spectrum not
belonging toSc is compressed. Dispersion is one of the
more important cases, where this clearly happens.
Dispersion happens as a light path of typeLD∗S and
takes a smooth spectrums0 ∈ Sc and maps it to a spiky
spectrums1 which does not lie inSc (since the mapping
from C to Sc can only produce spectra with more than
one non-zero value). Then whens1 is compacted, it is
mapped to colorc1. Then again whenc1 is mapped to
S it is not mapped tos1, but to a spectrum belonging
to Sc. This phenomena is shown in figure 1. However,
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Figure 1: Effect of remapping a spectrum outside Sc

as stated earlier, the particular case shown in Figure 1
has been fixed by storing a photon with exactly one
non-null sample in a special compact manner. This
is important, as single wavelength spectral power
distributions would be destroyed, which would make
modelling of wavelength-dependent effects such as
caustics difficult. Loss of information can happen in
other ways than dispersion. As soon as the product
or sum of two spectra lies outside ofSc, the resulting
spectrum is lost if it is converted to RGB space and
then back to the spectral domain. Algorithm 1 gives
the outline on compressing flux when storing a photon
in the photon map.
As stated earlier, our method has an inability to
represent flourescent spectra, as these are often combi-
nations of a smooth function and sudden spikes, while
our method assumes all spectra are either spikes or
smooth functions. The straightforward extension of



our method to handle flourescent spectra would be to
do as in [Sun00]. However, this would cost us the
straightforward and efficient hardware implementation
that our method is so well suited for (see section 6).

Color SelectiveCompact-
ing(SpectralPowerDistribution
spd)
if spd.HasOnlyOneNonZeroEntry() then

Color c;
c[0] = -1;
c[1] = spd.IndexOfNonZeroBin();
c[2] = spd.ValueOfNonZeroBin();
return c;

end
else

return spd.AsRGB();
end

Algorithm 1: Selective compressing of a spd

2.2.5 Number of Photon Maps

For this paper, we have split the scene into a number of
wavelength-independent photon maps as described in
[Lar03]. For scenes with lots of wavelength-dependent
BRDFs, this idea could perhaps be extended to have
photon maps for either each type of BRDF or for each
discrete wavelength.

2.3 Photon Mapping, Pass 2: Final Ren-
dering

After the global and caustics maps have been built, the
photon mapping method proceeds to the final gathering
step. During final gathering, photons are collected from
the photon map and used for approximating the Equa-
tion 1 in an epsilon sized area around a pointx.
As the rendering equation is solved spectrally, all com-
pressed photons must be remapped to their spectral rep-
resentations. How this is done depends on whether the
photon represents a single spike or a smooth spectra as
described in section 2.2.
Photons in the photon map which represents a single
spike , have−1 as the first entry in the RGB triplet de-
scribing the flux. To map back into the spectral domain,
a spectrum with all samples set to zero is initially cre-
ated. Then the sample, whose value is represented by
the second coordinate in the RGB triplet, has its value
set to the reflectance given by the value in the third co-
ordinate of the RGB triplet. This finishes the mapping.
Photons which do not have the first coordinate set to
−1, are remapped to the spectral domain using Smits’
method [Smi99]. It is during this remapping that a spec-
tral power distribution might be remapped to a different
metamer than it originally represented, which means in-
formation can be lost.

2.3.1 Locating Photons

It is important to consider exactly how to locate and
sum the photons in the photon map. Photons are

gathered and summed together exactly as described in
[Jen01]. The transformation from the spectral domain
to RGB space is a simple integral, and thus linearity
assures that it is correct to sum the photons along all
wavelengths before conversion to RGB space.
As always, it is important to assure that all photons
in the photons map are of similar intensity. This is
especially important to be aware of when working
with photons that have been through one or more
transmissions, as wavelength-dependent transmission
might a cause a photon to be reduced to oneN’th of its
original energy.

3 IMPLEMENTATION AND SETUP

To prepare for rendering, we have to make sure that
all reflection values in the scene are represented in the
spectral domain.
Most artists are used to working with RGB values, so
a way of transforming a RGB value to a metamer rep-
resentation in the spectral domain is needed. We have
used the algorithm described in [Smi99] for this pur-
pose. The essence of Smits’ method is that it is a fast
method of mapping a RGB value to a metamer in the
spectral domain. This metamer is represented asN uni-
formly distributed point samples. After all reflection
values have been converted to the spectral domain, the
photon mapping algorithm is ready to be executed.
Note, that the renderer not only supports loading of ma-
terials with RGB values, but also reflection values given
as spectral power distribution. This is to make sure that
spectral values that lie outside the mapping of Smits’
method can be used; one example where this is impor-
tant could be for using blackbody light sources.
All tests have been performed on a 3.0 GHz Pentium
4 machine, having 1 GB of RAM and running linux.
The photon mapping setup used 200,000 photons, 0.1
as irradiance cache accuracy, 18×57 stratified samples
for the final gathering and 200 samples per pixel for the
direct lighting. Picture resolution was 128×128. The
tests were setup so that the image with the highest num-
ber of bins have been used as reference as this should
be the most accurate rendering.

4 RESULTS AND DISCUSSION

For testing, we measure the difference in picture quality
in dB using the PSNR (Perceived Signal to Noise Ratio)
measure. Many different definitions of the PSNR exist.
The one used for this paper can be seen in Equation 6,
in which MN is defined as the number of pixels in the
image,a is the reference image,b is the image to be
tested, anda(x,y) andb(x,y) are pixel (x,y) in the im-
ages.

PSNR(a,b) = 10log10

(

MN

∑x,y (a(x,y)−b(x,y))2

)

(6)

The basis of the test is to try to maximize Equation 6.
PSNR(a,b) = ∞ means there is no difference between
the two pictures. Other interesting measures are the
RAM usage and rendering time.



4.1 The Matte Cornell Box

The purpose of the first test is to verify the correctness
of the basic idea and implementation. This has been
done by creating a matte Cornell box with colored walls
and two smaller boxes inside. The verification assump-
tions are as follows: All reflectances have been defined
using RGB colors, the transformation used for map-
ping between RGB space and the spectral domain is
the one described in [Smi99], all illuminants have been
defined using RGB colors and finally all BSDFs have
behavior independent of wavelength. With this setup,
a spectrally based renderer and a RGB based renderer
should produce approximately the same image. The
tests were run with 4,5,6,8,10,20 and 100 samples for
the representation of the spectral power distributions.
The tests show very little variance in PSNR numbers,
when changing between the compressed and the un-
compressed versions or when increasing the number of
samples. The only notable result was the savings in ram
usage; the reference RGB rendering used 20 MBs, the
uncompressed 100 bins version used 103 MBs, while
the compressed 100 bins version used 23 MBs. The
compressed method has near constant memory usage
regardless of bin size. The slight increase in memory
usage is due to the irradiance cache, which is still stored
in uncompressed format.

Images rendered at a slightly higher resolution than

(a) 100 bins compressed (b) 4 bins compressed

(c) 100 bins uncom-
pressed

(d) RGB

Figure 2: Renderings of the tests made in section 4.1

those used for the testings, can be seen in Figure 2.
There seems to be nearly no visible difference between
any of the pictures in Figure 2. Picture (a) is a little bit
brighter, and has a little more pronounced color bleed-
ing than the others, but that is all. Since there is no visi-
ble difference between the two pictures we have shown
that the spectral renderer works.

4.2 Spectral Illuminants

In this test, the light light source from section 4.1 is re-
placed with a blackbody, which a pure RGB renderer is
unable to model correctly. Renderings of the tests are
shown in Figure 3, and the test results seen in Table 1.
The number of bins clearly matters, as 100 bins give
a noticeably different picture than using 4 bins. Due
to the underrepresentation of the blackbody spectrum,
both the RGB and the 4 bins renderings show strong
aliasing in the color of the right wall.
Looking at Figure 3, the renderings of the compressed
and uncompressed pictures match closely, which is con-
firmed by the PSNR values in Table 1.The conclusion
is that the compression method renders with approxi-
mately the same accuracy as the pure spectral method.

Setup PSNR Render Time Ram Usage
uncompressed
100 bins ∞ 16m 30s 103 MB
20 bins 21.36 dB 6m 39s 40 MB
10 bins 30.46 dB 5m 19s 32 MB
8 bins 31.10 dB 5m 6s 30 MB
6 bins 31.49 dB 4m 54s 29 MB
5 bins 31.58 dB 4m 51s 29 MB
4 bins 28.72 dB 4m 27s 27 MB
RGB 29.63 dB 3m 54s 20 MB
compressed
100 bins 62.09 dB 17m 6s 23 MB
20 bins 30.48 dB 6m 46s 22 MB
10 bins 30.55 dB 5m 23s 21 MB
8 bins 31.23 dB 5m 11s 21 MB
6 bins 31.54 dB 4m 53s 21 MB
5 bins 31.49 dB 4m 47s 21 MB
4 bins 28.66 dB 4m 28s 21 MB

Table 1: Spectral illuminants test

(a) 100 bins compressed (b) 4 bins compressed

(c) 100 bins uncom-
pressed

(d) RGB

Figure 3: Renderings of the tests made in section 4.2



4.3 Wavelength-Dependent BSDFs

The last test uses a simple wavelength-dependent glass
BSDF, and is used for showing that our method incurs
no real loss in rendering quality even when highly spec-
ular materials are involved. When calculating transmit-
ted rays, the wavelength of photons in the RGB render-
ing is assumed to be 550nm.
Since the test scene involves large caustics, the number
of caustic photons has been set to 2 million. The 100
bins test used over 1.3 GB, which is more memory than
resided on the test machines.
Thinking a little about the setup, might help to explain
the high rendering times given in Table 2. 200 samples
have been used for the direct lighting and 18×57 sam-
ples for the final gathering. Splitting has been used for
the indirect lighting, with a maximum recursion level
of 5. For the 100 bins example, whenever a dispersive
material is intersected the total number of rays becomes
(18∗ 57+ 200) ∗ 25 ∗ 100= 3,923,200. In the worst
case, one ray spawns nearly 4 million extra rays.
Figure 4 shows the test results. Note the extreme vari-
ance caused by the close-up rendering of the prism
and caustics. The test is difficult as we have an area
light source and it shows how many photons are really
needed to get good caustics, and how much memory
compression matters. This scene really highlights the
significance of modelling dispersive behavior. Com-
pared to the other renderings the RGB picture is quite
dull. The renderings show significant improvement as
the number of bins increases.
Too few bins create aliasing in the form of wrong color
reproduction and banding. One example of aliasing in
the color reproduction can be seen in the red spot at
the front of the prism in the 4 bins rendering. In the
pictures created with larger bin sizes this red spot is ac-
tually yellow. An example of banding can be seen at
the back and front of the prism. The banding becomes
more rainbow-like, as the number of bins is increased.
From the PSNR numbers the compressed version with
100 bins is more accurate than the rest of the tests. Ref-
erence renderings for the tests can be seen in Figure 4.
From Table 2 and Figure 4 it can be concluded that the
compressed method gives just as accurate renderings as
the pure spectral method. This confirms the theoretical
results, as photons which have met dispersive surfaces
are stored without any loss of information. The com-
pressed version is faster than the uncompressed one,
which is probably due to more memory efficient usage.

5 CONCLUSION

This paper has dealt with the problem of memory in-
flation when representing light waves as spectral power
distributions based on point samples. We have devel-
oped a compression method with several advantages:
Firstly, the method is in most cases able to handle spec-
tral materials and light sources, with only a small intro-
duction of error. In other cases, such as with caustics,
no errors at all are introduced. An important fact in this

Setup PSNR Render Time Ram Usage
uncompressed
50 bins ∞ 2h 34m 14s 794 MB
20 bins 24.21 dB 1h 30m 12s 450 MB
10 bins 24.25 dB 1h 1m 50s 335 MB
8 bins 25.13 dB 58m 42s 321 MB
6 bins 24.54 dB 54m 20s 289 MB
5 bins 23.44 dB 51m 15s 289 MB
4 bins 23.72 dB 51m 31s 266 MB
RGB 22.00 dB 26m 29s 195 MB
compressed
100 bins 36.46 dB 3h 30m 48s 206 MB
20 bins 24.18 dB 48m 15s 209 MB
10 bins 24.30 dB 29m 45s 195 MB
8 bins 25.13 dB 28m 20s 195 MB
6 bins 24.63 dB 27m 23s 195 MB
5 bins 23.41 dB 26m 56s 195 MB
4 bins 23.67 dB 28m 39s 195 MB

Table 2: Glass BSDF

(a) 100 bins (b) 20 bins

(c) 10 bins (d) 6 bins

(e) 4 bins (f) RGB

Figure 4: Renderings of the tests made in section 4.3

context, is that intermediate calculations made before a
photon is put into the photon map, are performed with-
out any loss of information.
Because of the memory taken up by the photon map, it
has so far been unfeasible to implement spectral pho-
ton mapping in which photons carried more than a few
wavelengths at a time. Even SWC [Eva99] would be
unfeasible with anything but very small clusters. In-
stead of just solving Equation 1, one orK wavelengths



at a time, the method presented in this paper makes it
feasible to solve the equation at full spectral resolution.
This reduces variance, and thereby also rendering time.
Caustics are calculated at full resolution and without
any loss of information. With the method presented in
this paper, variance can be reduced, as a photon carry
the full spectrum of the light source the first time it
hits a transmitting surface, and accounting for the dis-
crete sampling representation, new refracted photons
can be directed along all relevant wavelengths at the
same time. Contrary to this, if photons represent only
a single wavelength, then the direction of transmission
around a pointx has really been chosen at the time of
emission. This increases variance as more photons with
different wavelengths will have to be emitted, in the
hope of hitting an epsilon sized area aroundx.
Our method works well for simulating how different
lights look in architectural designs and the dispersion
effects are useful in movies or visualizations of techni-
cal designs.

6 FUTURE WORK

So far the method has only been implemented as a way
of saving space when storing photons in the photon
map. However, its usefulness goes beyond that. An
obvious extension would be to apply it to irradiance
caching [War88]. This extends our method to be used
with path tracing and bi-directional path tracing, which
are methods that benefit from irradiance caching.
If spectral effects are wanted within a realtime renderer,
the memory requirements can become a real problem.
A 512 by 512 texture takes up 768 KB with 3 bytes
pr. pixel (RGB). However in a spectral renderer with
100 samples pr pixel at floating point precision, the
memory requirements rise to 400 bytes pr pixel or 100
MBs pr texture, which is clearly not feasible on today’s
hardware. As the compression method described in
section 2.2.4 does not require extra memory and is
basically a matrix multiplication, it is straightforward
to implement in a hardware shader.
Finally it might be interesting to use [Mey88] when
doing the conversion from the spectral domain to
RGB space. [Mey88] achieves better color accuracy
with fewer wavelengths than the CIE XYZ functions.
[Mey88] might allow us to use fewer bins for the spec-
tral power distributions, while still giving acceptable
image quality.
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