
Isosurface Ray-casting for Autostereoscopic Displays
Balázs Domonkos, Attila Egri, Tibor Fóris, Tamás Juhász, and László Szirmay-Kalos

TU Budapest

ABSTRACT

In this paper the GPU implementation of a real-time isosurface volume-rendering system is described in detail, which aims at
autostereoscopic displays. Since autostereoscopic displays provide images for many views, and thus require different camera
settings in each pixel, and even in the three color channels of a pixel, naive rendering approaches would slow down the rendering
process by a factor of the number of views of the display. To maintain interactive rendering, our approach is image centric, that
is, we independently set the eye position for each pixel and implement iso-surface ray-casting in the pixel shader of the GPU. To
handle the different camera settings for different color channels, geometric and color computation processes are decomposed
into multiple rendering passes. This solution allows rendering rates that are independent of the number of main views of the
autostereoscopic display, i.e. we cannot observe speed degradation when real 3D images are generated.

Keywords: Iso-surface ray-casting, autostereoscopic displays, GPU programming.

1 INTRODUCTION

3D autostereoscopic displays provide realistic depth
perception for multiple viewers without any special aids
like stereo glasses [9, 10]. To achieve the stereo effect,
these displays emit spatially varying directional light,
thus when a human observer looks at the screen with
two eyes, the directions corresponding to the two eyes
are slightly different, so are the perceived images. If
these images are generated appropriately, the required
stereo effect can be provided, allowing the viewers
to move their head from side to side and see differ-
ent aspects of the 3D scene. Current autostereoscopic
displays equipped with parallax barriers or lenticular
sheets placed on top of conventional screens offer a
cheap and practical solution for 3D imaging [8].

Parallax barrier methods [5] use a fine vertical grat-
ing placed in front of the screen. The grating is made
of an opaque material with fine transparent vertical slits
at a regular spacing. Each transparent slit acts as a win-
dow to a vertical slice of the image placed behind it,
and the exact slice depends on the position of the eye.
Lenticular displays[1], on the other hand, separate im-
ages into different viewing directions using a sheet of
long thin lenses.

Lenticular sheets contain a series of cylindrical lenses
molded into a plastic substrate. The lens focuses on
an image on the back side of the lenticular sheet. The
lenticular image is designed so that each eye’s line of
sight is focused onto different strips.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2007 conference proceedings, ISBN 1213-6964
WSCG’2007, January 29 – February 1, 2007
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Image

Barrier

Image

Lenticular

Figure 1: Parallax barrier and lenticular displays

window object

in
 s

cr
ee

n

ou
t s

cr
ee

n

be
hi

nd
 s

cr
ee

n

Figure 2: Virtual camera model for autostereoscopic
displays

For these displays, the virtual scene should be ren-
dered from several camera positions defined by the
structure of the barriers or lenticules. Creating the sev-
eral subimagesrequires the precise positioning of the
camera and frustum. One common solution rotates the
camera around a single point and symmetric camera
frustums are used. This approach is quite popular since
it is supported by conventional rendering systems. This
is called the “toe-in” method [1]. However, it is not
the correct method when a single flat physical display
surface is used, and the viewing directions are not or-
thogonal to the surface. Applying the toe-in method on
a flat surface causes not only horizontal but vertical par-
allax between the projections of the same spatial point.
This distortion increases as one moves towards the cor-

ners. The correct approach is to offset the camera along
a linear path and to use an offaxis frustum (figure 2).

Figure 3: Correspondence between the r,g,b channels
of pixels and the 8 main directions, and the utilization
of the first two subimages in the X3D-17 lenticular dis-
play. This pattern repeats itself on the screen and se-
lects one direction from the possible 8, from where the
particular pixels’ r,g,b channels are visible. For exam-
ple, the red, green, and blue points of the pixel at the
left-top pixel are visible from directions 0, 2, and 3, re-
spectively, and the same is true at every pixel whose
horizontal and vertical distances from the left-top cor-
ner are multiples of 5 and 8, respectively.

Since the lenses are usually not placed exactly ver-
tically in order to reduce aliasing and abrupt changes
in the image, the pixel-direction correspondence (fig-
ure 3) may change in every pixel row [12]. Further-
more, due to the fact that red, green, and blue emitting
points have slightly different location in a single pixel,
and lenses on these wavelengths have different index of
refraction, the red, green, and blue channels of a single
pixel correspond to different directions. These effects
make the pixel-direction correspondence rather com-
plex (figure 3), and prohibit the easy composition of
low resolution subimages into a higher resolution dis-
play image. Therefore the subimages are usually com-
puted on the same resolution as the final image, and the
compositing procedure selects the red, green, and blue
components for each target pixel from the subimages
according to the pixel-direction correspondence (fig-
ure 3). This means that a larger part of original subim-
ages are ignored during compositing (see the poor uti-
lization of the first two subimages in figure x3d). If
the bottleneck of rendering is fragment processing —
which is usually the case in volume rendering and pho-
torealistic image synthesis — this divides the speed by
the number of main display directions (8–24 in current
systems).

Using direct volume rendering, an isosurface can
be implicitly extracted by resampling the volume data
along the viewing rays at evenly located sample points
[7, 11]. Rays are cast from the eye through the center
of each pixel and the first samples, where the isosurface
intersects the rays are determined.

This paper proposes an isosurface ray casting algo-
rithm that does not increase the rendering time when
the number of display directions gets higher. The speed
degradation is avoided using an image centric rendering
algorithm, such as ray-casting, and decomposing the
rendering algorithm into geometric and spectral passes.

2 THE NEW ALGORITHM
Our approach decomposes the rendering process into
two passes, one deals with geometric computations,
while the other with spectral color data. This way we
can solve the problem that the r,g,b channels of a pixel
correspond to different camera positions without un-
necessarily repeating the same geometric calculations.
The geometric pass generates visible isosurface points
and volume derivatives, such as the normal vector and
curvature values, and derived values such as the cosine
of the angle between the surface normal and the illu-
mination direction. Formally, we assume that the sur-
face reflection formula can be expressed in the follow-
ing form

L(λ) =
n

∑
i=1

ai(λ) ·Gi · Ii(λ)

whereai(λ) is the spectral property of the isosurface,
Ii(λ) is the spectral property of the light source, andGi

is the geometric property of both the illuminated sur-
face and the light source. For example, if there is just a
single directional light source and the diffuse + Phong-
Blinn reflection model is used, then

G1 = cosθ , G2 = cosmδ

whereθ is the angle between the gradient vector of the
density field

g = ∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
,

and the illumination direction,δ is the angle between
the gradient vector of the density field and the halfway
vector of the view and illumination directions, andm is
the shininess of the material. On the other hand, con-
cerning the spectral properties,I1(λ) = I2(λ) are the
intensity of the light source, isosurface spectral prop-
ertiesa1(λ) anda2(λ) are the diffuse and specular re-
flectances, respectively.

Note that if the cosines are negative, they should be
replaced by zero.

2.1 Geometric pass

The geometric pass takes the definition of the vir-
tual camera system and the 3D voxel array, and gener-
ates geometric propertiesg1, . . . ,gn for each pixel of the
screen. Ifn is not greater than 4, the result of the ren-
dering pass is a floating point texture. Otherwise, we

should use the multiple render target option and store
the result in more than one floating point textures.

Since the actual color channel of a pixel also affects
the camera model, during geometric computations we
assume that the wavelength corresponds to the red color
channel.

Ray traversal
Comparing to conventional ray traversal, now we also

have to find the eye position that corresponds to the pro-
cessed pixel (figure 4).

volume

z

x
y

window

eye

p

p p

p

p

1

2

3

4

2

eye3

eye4

eye
1

Figure 4: When autostereoscopic camera model is
used, we have to dynamically find the eye position for
each pixel

In this pass we render a singlefull screen quadri-
lateral (figure 5). To do that we set the model, view,
and projection matrixes to be unit matrices, and pass a
rectangle with vertices(−1,−1,0), (−1,1,0), (1,1,0),
(1,−1,0). In the texcoord0 registers the 2D screen
space pixel coordinates ([0,0] to [XM,YM]) of the ver-
tices are passed. On the other hand, texcoord1 registers
encode verticesp1, p2, p3, p4 of the camera window in
world space. The viewport resolution is set to the reso-
lution of the display. This guarantees that the fragment
shader is called once for every pixel. During fragment
processing the interpolated texture coordinates will de-
fine pixel coordinates[X,Y], and pointp corresponding
to this pixel in world space, respectively. Looking up
the eye position of the red component of the particu-
lar pixel from the pixel-direction correspondence table
(figure 3) using the interpolated pixel coordinates, we
define the viewing ray from the eye and through world
space point~p corresponding to the current pixel.

This ray is intersected with the bounding box of
the volumetric model to find entry pointpentry and
exit point pexit of the bounding box using the Cohen-
Sutherland clipping algorithm. Then the ray is marched
between the entry and exit points, evaluating sample
pointspi as:

pi = pentry+(pexit−pentry) · i/N, (1)

whereN is the number of samples along the ray.

Density estimation
At each sample positionpi density f (pi) of the vol-

ume is evaluated. Regarding the quality of isosur-
face rendering, the applied resampling technique to find
f (pi) is crucial.

As the volume data is a discrete representation, an ap-
propriate reconstruction filter has to be applied to eval-
uate a density sample at an arbitrary sample position.
Furthermore, the isosurface has to be shaded, therefore
a surface normal, i.e. the first derivative, and sometimes
curvatures, i.e. higher order derivatives, are calculated
for each intersection point. The derivatives are obtained
by resampling the volume by a derivative filter.

Generally the wider the support of the reconstruction
filter is, the better its quality. On the other hand, by
increasing the support of the filter kernel a convolution
with it is getting more and more expensive computa-
tionally. In practical volume-rendering applications the
most popular filter is the trilinear filter, since it repre-
sents a reasonable trade-off between quality and ren-
dering speed. The most important drawback of trilin-
ear interpolation, however, is that it produces discon-
tinuous derivatives. Furthermore, some of the non-
photorealistic volume-rendering techniques take also
second derivatives into account, which can hardly be
estimated by a linear filter. Therefore, to make our im-
plementation generally usable with different rendering
models, we apply a high-quality third-order (cubic) fil-
tering technique proposed in [2].

The cubic reconstruction of a 1D signal can be for-
mulated at an arbitrary positionx as a weighted sum of
the signal values at the nearest four sample positions:

f (x)≈ f̃ (x) =

w0(x) · fi−1 +w1(x) · fi +w2(x) · fi+1 +w3(x) · fi+2,

wherei = bxc is the integer part ofx and fi = f (i) are
the samples of the original signal. The filter weights
wi(x) are periodic in the intervalx ∈ [0,1] : wi(x) =
wi(α), whereα = x− bxc is the fractional part ofx.
Specifically,

w0(α) = (−α3 +3α2−3α +1)/6,

w1(α) = (3α3−6α2 +4)/6,

w2(α) = (−3α3 +3α2 +3α +1)/6,

w3(α) =
1
6

α3.

The reconstructed functioñf (x) can be evaluated as a
linear combination of two linear texture fetches as fol-
lows:

f̃ (x) = g0(x) · fx−h0(x) +g1(x) · fx+h1(x), (2)

where

g0(x) = w0(x)+w1(x),

(-1,-1, 0)
texcoord0: [0,0]
texcoord1: p1

(1,-1, 0)
texcoord0: [XM,0]
texcoord1: p2

(1,1, 0)
texcoord0: [XM,YM]
texcoord1: p3

(-1,1, 0)
texcoord0: [0,YM]
texcoord1: p4

OpenGL API

unit transform

vertex shader

texcoord0: [X,Y]
texcoord1: p

X

Y

fragment shader

pixel-direction
table

eye

ray
definition

ray

Figure 5: Generation of the ray to be traced

volume

z

x
y

isosurface

hit entry

exit

eye

p

2

Figure 6: Ray casting volume isosurfaces

h0(x) = 1− w1(x)
w0(x)+w1(x)

+x,

g1(x) = w2(x)+w3(x),

h1(x) = 1− w3(x)
w2(x)+w3(x)

−x.

Since functionsgi(x) andhi(x) are also periodic, they
can be stored in a lookup texture. In the 3D space
the cubic reconstruction kernel is evaluated separately
along the major axes and the resulting weights are sim-
ply multiplied (tensor product extension).

The samples of functionsh0(x), h1(x), andg0(x) are
stored in thex, y, andz components of an 1D texture.
Functiong1(x) does not need to be explicitly stored as
g1(x) = 1−g0(x).
Isosurface intersection calculation

A ray-isosurface intersection is found between sam-
ple positionspi andpi+1 if f (pi) < s and f (pi+1) ≥ s,
where f (p) denotes the density function ands is a
threshold defining the isosurface. The ray traversal al-
gorithm with isosurface intersection calculation is exe-
cuted by the following fragment shader:

float3 raydir = pexit - pentry;
float fv, fvprev;
float3 p, pprev;
// march the ray
bool found = false;
for(float t = 0; t <= 1.0f; t += dt) {

if (!found) {
float3 p = pentry + raydir * t;
float fv = f(p);
if (fv > s) { // intersection found

found = true;
} else {

pprev = p;
fvprev = fv;

}
}

}

Note that in this way we take the same number of
samples along each ray between the entry and exit
points of different distances, that is, the length of the
steps is different for different rays. It seems to be a dis-
advantage, but current GPUs are much faster if they do
not use the dynamic looping features. Step sizedt is
set to take at least one sample in each voxel along the
ray.

A refined intersection point can be calculated by us-
ing the following root searching algorithm:

float3 pnew;
for(int n = 0; n < nIter; n++) {

pnew = (p - pprev) * (s - fvprev) /
(fv - fvprev) + pprev;

fvnew = f(pnew);
if (v < s) {

pprev = pnew;
fvprev = fv;

} else {
p = pnew;
fv = fvnew;

}
}

According to our experience 1-2 additional iteration
steps provide sufficient accuracy.

This algorithm is mathematically equivalent to the
numerical solution of equationf (p) = sstarting a linear
search then refining the solution with secant search.
Gradient estimation and calculation of geometric
properties

After computing an accurate intersection point for
each ray, the geometric factors are determined, which
will be used by the next shading pass. The geometric
properties depend on the gradient of the density vol-
ume, and possibly on second derivatives.

The gradient components are calculated by filtering
the volume data with the partial derivatives of the 3D re-
construction kernel. For efficient derivative reconstruc-
tion the same fast filtering scheme can be used as for

the function reconstruction with the following modifi-
cations. Now the weighting functionswi(x) sum up to
zero instead of one, thereforeg1(x) =−g0(x).

The normalized gradients can be used for all shad-
ing models that require a surface normal, like the
Phong-Blinn or tone shading. More sophisticated
non-photorealistic or illustrative shading models,
however, rely on second-order partial derivatives of
the scalar field as well. The second-order derivatives
yield the Hessian matrix [4], which characterizes the
curvature in a given sample point:

H = ∇g =

∂ 2 f
∂x2

∂ 2 f
∂x∂y

∂ 2 f
∂x∂z

∂ 2 f
∂y∂x

∂ 2 f
∂y2

∂ 2 f
∂y∂z

∂ 2 f
∂z∂x

∂ 2 f
∂z∂y

∂ 2 f
∂z2

 . (3)

The first and second principal curvature magnitudes
(κ1, κ2) of the isosurface can be estimated from the gra-
dient g and the Hessian matrixH [6]. The principal
curvature magnitudes amount to two eigenvalues of the
shape operatorSdefined as the tangent space projection
of the normalized Hessian:

S= PT · H
|g| ·P, (4)

where

P = I − g·gT

|g|2 ,

and I is the unit matrix. The eigenvalue correspond-
ing to eigenvectorg vanishes, and the other two eigen-
vectors are the principal curvature magnitudes. Be-
cause one eigenvector is known, it is possible to solve
for the remaining two eigenvectors in the 2D tangent
space without computingS explicitly [2]. This results
in reduced number of operations and improved accu-
racy compared to the approach published in [6]. The
transformation of the shape operatorS to some orthog-
onal basis(u,v) of the tangent space is given by

A =
(

a11 a12

a21 a22

)
= (u,v)T · H

|g| · (u,v). (5)

Eigenvalues ofA can be computed using the direct for-
mulas for2×2 matrices:

κ1,2 =
1
2

(
trace(A)±

√
trace(A)2−4det(A)

)
, (6)

This amounts to a moderate number of vector and ma-
trix multiplications, and we have to solve a quadratic
polynomial.

Having computed the gradient and the principal
curvatures, the geometric properties are evaluated
and stored in the target pixel. In our current imple-
mentation we store the geometric properties of the
diffuse + Phong-Blinn reflection model (G1 = cosθ ,

G2 = cosmδ). Using the principal curvatures the mean
curvature (G3 = (κ1 + κ2)/2) and the Gaussian curva-
ture (G4 = κ1κ2) are obtained. Scalars(G1,G2,G3,G4)
scalars can be conveniently packed into a single pixel.

If the ray happens not to intersect the isosurface, we
put an invalid data item into the first channel, that is
a G1 = −1 is stored instead of the cosine of the angle
between the surface normal and the illumination direc-
tion.

3 SHADING PASS

The shading pass is invoked after generating the image
of the geometric properties, storingcosθ , cosmδ , and
the two curvature values in each pixel. Note that the ge-
ometric properties were obtained using the camera cor-
responding to the red channel of pixel. The geometric
properties of the green and blue channels are stored in
the neighboring fragments because of the shifts in the
pixel-direction correspondence table (figure 3).

To complete shading, having changed the fragment
shader program, a full screen quad has been rendered
again. The fragment shader takes the geometric prop-
erties of the actual fragment, which provides infor-
mation for the red channel, and based on the pixel-
direction correspondence table, it also fetches the ge-
ometric properties for the green and blue channels from
the fragments nearby using the table of figure 3. The
fragment shader receives the spectral properties, such as
the reflectances and light source intensities as uniform
parameters, and the standard diffuse + Phong-Blinn re-
flection formula is evaluated. To add curvature infor-
mation to the image, we take the two curvature values,
consider them as a texture coordinate pair, and fetch a
curvature color from a prepared lookup texture. This
curvature color is added to the reflected illumination.
Finally, the computed color is written into the frame
buffer memory. Note that our shading pass is quite sim-
ilar to deferred shading[3]. An important difference,
however, is that we use also neighboring fragment data
when a fragment is shaded since the data for blue and
green channels are stored in other pixels.

4 RESULTS

The proposed algorithm has been implemented using
OpenGL/Cg and run on an NV7800GT GPU. We used
an X3D-17 autostereoscopic display that has a lenticu-
lar sheet in front of a1280× 1024resolution 17 inch
Fujitsu-Siemens TFT. The lenticular sheet is able to
separate 8 main views. The zero parallax of the display
is at 1.5 meter, that is the highest quality 3D images can
be seen from this distance.

The visible human head used in our simulation has
5123 resolution and a single voxel is stored in two
bytes. The complete rendering, including isosurface lo-
calization, geometric property calculation, and shading

can be executed at 11 frames per second for a con-
ventional 2D display screen, and the same rendering
speed is attained when we used the proposed algorithm
for the autostereoscopic display. It means that the ad-
ditional overhead of reading the pixel-direction corre-
spondence table is negligible. The beetle dataset has
256×256×128resolution and is rendered at 15 FPS.

The rendering speed is dominated by the geometric
step, more precisely the computation of the ray isosur-
face intersection. In order to obtain higher rendering
rates the intersection calculation should be speeded up
by employing an empty space leaping scheme.

5 CONCLUSIONS

In this paper we presented an algorithm to interactively
render volume isosurfaces onto a 3D autostereoscopic
display. Since these displays trade off spatial resolu-
tion with directional dependence and thus 3D percep-
tion, the rendering time should not be higher than that
of conventional 2D displays. However, previous ap-
proaches usually rendered the directional data on higher
than necessary resolutions and composited the final im-
age in the last pass. In this paper we showed that it
is possible to eliminate unnecessary computations and
obtain just as many pixel values that the underlying dis-
play surface has. To achieve this, we have to transfer all
camera dependent computations to the pixel shader.

The proposed algorithm runs interactively for large
volumetric models and does not slow down when 3D
displays with many possible view directions are used.

ACKNOWLEDGEMENTS

This work has been supported by OTKA (T042735),
GameTools FP6 (IST-2-004363) project, and by
Hewlett-Packard and the National Office for Research
and Technology (Hungary).

REFERENCES

[1] P. Bourke. Autostereoscopic lenticu-
lar images. Technical report, 1999.
http://local.wasp.uwa.edu.au/˜pbourke/stereographics.

[2] M. Hadwiger, C. Sigg, H. Scharsach, K. Büh-
ler, and M. Gross. Real-time ray-casting and ad-
vanced shading of discrete isosurfaces. InPro-
ceedings of EUROGRAPHICS, pages 303–312,
2005.

[3] S. Hargreaves and M. Harris. Deferred shading.
Technical report, http://download.nvidia.com/
developer/presentations/ 2004/6800_Leagues/
6800_Leagues_Deferred_Shading.pdf, 2004.

[4] J. Hladuvka. Derivatives and Eigensystems for
Volume-Data Analysis and Visualization. PhD
thesis, Institute of Computer Graphics, Vienna
University of Technology, Vienna, Austria, 2002.

[5] S.H. Kaplan. Theory of parallax barriers.Journal
of SMPTE, 59(7):11–21, 1952.

[6] G. Kindlmann, R. Whitaker, T. Tasdizen, and
T. Möller. Curvature-based transfer functions for
direct volume rendering: Methods and applica-
tions. InProceedings of IEEE Visualization, pages
513–520, 2003.

[7] M. Levoy. Efficient ray tracing of volume data.
ATG, 9(3):245–261, 1990.

[8] W. Matusik and H. Pfister. 3D TV: A scalable sys-
tem for real-time acquistion, transmission and au-
tostereoscopic display of dynamic scenes.ACM
Transactions on Graphics (TOG) SIGGRAPH,
23(3):814–824, 1993.

[9] T. Okoshi. Three Dimensional Imaging Tech-
niques. 1976.

[10] S. Pastoor and M. Wopking.3-D displays: A re-
view of current technologies. Displays 17, 1997.

[11] T. Theußl, O. Mattausch, T. Möller, and M. E.
Gröller. Reconstruction schemes for high qual-
ity raycasting of the body-centered cubic grid.
TR-186-2-02-11, Institute of Computer Graphics
and Algorithms, Vienna University of Technology,
2002.

[12] x3d Technologies.17" 3D-Display A3. Opticality,
2005.

Figure 7: The human head dataset rendered from the main view directions setting the isovalue to visualize the
bone

Figure 8: The beetle dataset rendered from the main view directions setting the isovalue to visualize the bone

Figure 9: 3D autostereoscopic images when rendered on a normal 2D screen

