
3-D Object Extraction Using Volume Computation

Varakorn Ungvichian
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

ungvichian@thaimail.com

Pizzanu Kanongchaiyos
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

pizzanu@cp.eng.chula.ac.th

ABSTRACT

This paper describes an alternative approach to extracting 3-D objects and volumes, from lists of given faces,
edges, vertices, and the vertices' coordinates. Most graphics file formats store 3-D information for various
purposes as a list of polygons, which does not provide a direct indication of structure or relationships between
each object. This leads to the limitation of object identification within the list of data. The proposed algorithm
was developed as part of a method for finding the Abstract Cellular Complex of an object. The volumes
(whether closed or open) of an object are determined from the input set of faces. Each object is then extracted
according to its manifold. This algorithm can identify every volume and extract them from the set of given data
when the object(s) represented by the data have a genus of 0.

Keywords
Geometry, Modeling, 3-D Object Analysis, Surface Reconstruction

1. INTRODUCTION
There are many types of file formats being used to
store 3-D graphics for multimedia purposes. Many of
these store the information as a list of polygons.
Storing the information in this way does not
explicitly explain how many objects are in a given
file, and does not provide a direct indication of
structure or relationships between each object, which
leads to the limitation of object identification within
the list of data.

This algorithm was developed as part of research on
converting a 3-D wireframe model into the Abstract
Cellular Complex data structure described by
Kovalevsky [Kov01]. Part of the conversion requires
finding closed volumes from a set of given faces.

The algorithm analyzes its inputs, namely, a list of
faces (and the vertices and edges that form each
face), a list of edges, and a list of the vertices'
coordinates, to produce grouped set(s) of faces,
edges, and vertices which indicate each volume in
the given input.

Currently, the algorithm is known to work on objects
with genus 0 (i.e., with no holes). However, it can
handle multiple objects in a single scene.

2. PREVIOUS WORK
In our research, we focus on finding individual
closed volumes in an object represented by a given
set of faces, which also involves determining the
object’s outside surface.

The problem described here is essentially a classic
topological problem [Man88]. While simple traversal
of the topology would be sufficient when the
topology has already been determined, we have not
completely organized the input topologically. For
example, we have not radially sorted the faces
incident around each edge. Because our input is not
topologically complete, we have opted for an
alternative approach utilizing geometric calculations.

One example of previous research on constructing
solids from faces is Higashi et al.’s method for
unified geometric modeling [Hig93], an extension of
Mantyla’s solid modeler [Man82]. It differs from our
research in that Higashi’s work utilizes a modified
version of Mantyla’s half-edge structure [Man88],
while our research uses a simpler and more
straightforward hierarchy: vertices, edges, and faces.
Such a hierarchy is more intuitive to the way the
average person views a solid, as consisting of these
three kinds of elements.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Also, based on Baumgart’s winged-edge structure
[Bau75], we will have edge adjacent to exactly two
faces in any given closed volume.

3. DEFINITIONS AND CONDITIONS
In this paper, an “object” refers to a set of faces,
edges, and vertices O such that each face in O is
adjacent to another face in the set and not adjacent to
any face outside the set, while each edge and vertex
in O is adjacent to a face in the set.
“Closed volume” refers to a set of faces, edges, and
vertices V such that each edge is adjacent to exactly
two faces; each vertex is adjacent to the same
number of edges as faces; the numbers of faces,
edges, and vertices satisfy Euler’s polyhedral
equation (in its most simplified form, V-E+F=2,
where V is the number of vertices, E the number of
edges, and F the number of faces); and the volume
enclosed is not split up by any set of faces. “Open
volume” refers to such a set V each edge in V is
adjacent to at most two faces, other than closed
volumes. Objects need not be comprised of just one
volume. For example, two cubes with one shared
face are considered as one object, while each cube is
considered a separate closed volume. Meanwhile, a
cube with one face missing would be considered an
open volume. This paper concentrates more on
obtaining the closed volumes.

The inputs for this algorithm are lists of faces, edges,
and vertices, the relationships between faces and
edges (i.e. which faces are adjacent to a given edge,
and vice versa), and the relationships between edges
and vertices (i.e. which edges are adjacent to a given
vertex, and vice versa). The preconditions are that
the object(s) represented by the input have a genus of
0.
The output from the algorithm are grouped set(s) of
faces, edges, and vertices which describe each
volume (closed or not).

4. ALGORITHM
The first step of the algorithm is to sort the vertices
by their x, y, and z coordinates respectively (e.g., <0,
0, 0> comes before <0, 0, 1>, <0, 1, 0>, and <1, 0,
0>), and then transpose and/or reverse the order of
the vertices in each face, so that the first vertex of the
face is the one that is earliest in the list, and the
second vertex is the earlier of the two vertices
adjacent to that first vertex, with the new order still
representing the face. For example, a face with
vertices labeled 1-6-8-2 can be transposed to 6-8-2-1
and then reversed into 1-2-8-6. The transposed faces
are then ordered by their first few vertices. For
example, a face with vertices 1-3-4-5 comes before
1-4-5-6, but after 1-2-3-4.

The next step is tracing each object out, by starting at
a random edge and adding it to a list, adding faces
adjacent to that edge, then the edges in each adjacent
face, and then faces adjacent to those edges,
repeatedly until no more new faces or edges are
added.
Each object may consist of several closed volumes.
Therefore, closed volumes are traced in a different,
and more complex, manner. First, the program finds
the leftmost “available” face, with the following
procedure:
The program looks for the vertex with the “smallest”
coordinates (i.e., least x, then least y, then least z) in
the current object (A in Figure 1). After finding the
vertex, the program checks its adjacent vertices (a, b,
c). The program calculates the cosine of the angle
between a vector parallel to the z-axis and the vectors
between the vertex with the smallest coordinates and
each of its adjacent vertices, and picks the edge that
is part of the object and has the highest absolute
value of cosine (i.e., the smallest angle with the z-
axis). After selecting the edge (Aa), the program
calculates the vectors that are perpendicular with the
edge and the normal vectors of its adjacent faces (f,
g). The program then picks the face where the
resulting vector has the least angle with the y-axis (f).

Figure 1. Finding the leftmost available face.

After the leftmost “available” face is found, this face
is put into a list of faces, with its edges and vertices
also added to corresponding lists. For each edge
adjacent to exactly two “available” faces, those two
faces are added to the list of faces, with their edges
and vertices added to their respective lists also. This
repeats until no more faces are added. Figure 2
shows the results at the various stages of this portion
of the algorithm on a 2-D mesh of triangles. Starting
at the center of the mesh, one triangle and its edges
are selected (in green). The triangles that are adjacent
to the selected edges (in yellow) are next to be added,
along with their edges (while edges with two selected
faces are removed from the list. This repeats until no
new faces and edges are added.

If the faces do not correspond to Euler's polyhedral
equation, and there are faces remaining to be added,
the program looks for edges which only have one
selected face attached, and checks how many
available faces are adjacent to each such edge
(including the face already selected). If there is an
edge adjacent to exactly two faces (i.e., there is one
unselected face), it will simply add the unselected
face, along with its edges and vertices. However, if
all such edges are adjacent to at least three faces, the
program needs to determine which face is part of the
closed volume. To do this, the program calculates
vectors which lie perpendicular to both the current
edge being considered, and the normal of each of
those faces. The program then traces edges with only
one selected face attached, starting from the current
edge and going in either direction, to find a series of
such edges which form a continuous chain (see
Figure 3, for an example), before finding the average

coordinates of the vertices in said chain (the chain
need not necessarily comprise a continuous loop as
in Figure 3). This is to provide the program with a
“general idea” of where the “inside” of the closed
volume is.

Figure 3. Edge chain (in light green).

The program calculates the vector between the centre
of the current edge (a) and the average coordinates of
the vertices (b), and, if necessary, modifies the vector
to be perpendicular to the edge while lying on the
same plane as the original vector ((a × b) × a). This
is used to determine the proper turn direction, and
thus the face with the smallest dihedral angle in the
proper direction, which is then added.

Figure 2. Tracing faces.

Figure 4. Face selection (explained below)

As an example, consider Figure 4. Here, 4 faces
(represented by the edges marked a, b, c, and d) are
adjacent to an edge (represented with vertex A). Face

a has already been selected. The program will either
select face b or d, depending on the vector between
the centre of edge A and the average of the vertices
in a chain that starts with the same edge. Possible
results are represented here with α and β. With α as
the result, the program finds that the face with the
smallest dihedral angle (in the direction of α) from α
is d, and thus picks that face. However, with β as the
result, the program will select b instead, since it is the
face with the smallest dihedral angle in the same
direction as β. Using the sample shape, the process is
illustrated in Figure 5, using the same labels as
Figure 4. Here, the turn direction is determined with
the vector α, and the face with the least angle in that
direction is b (ahead of c).

This process is then repeated until the numbers of
faces, vertices and edges correspond to Euler's
polyhedral equation, thus comprising a closed
volume, or until there are no more faces remaining in
the object, in which case the selected faces represent
an open (i.e., not closed) volume.
To determine which faces to remove from
consideration, the outside surface of the whole object
has to be traced. Tracing the outside surface uses the
same algorithm as that used to find the closed
volumes, except that when considering dihedral
angles, the face with the largest dihedral angle is
added instead (using Figure 4 as an example, α
results in the program selecting b, and β results in the
program selecting d). The list of faces in the closed
volume is compared with the list of faces in on the
surface. The faces in the closed volume that are not
on the outside surface of the object are retained,
along with the faces that have not been used so far.
A potential flaw in both the closed volume and
surface finding algorithms is that the algorithm calls
for calculating a vector that is perpendicular to the
currently selected edge and is planar with the edge's
adjacent face, as well as calculating another vector
between the centre of the selected edge and the

centre of the chain of edges starting from that edge.
There is a possibility of those two vectors being in
the same direction (resulting in a zero vector as their
cross product), which would create difficulties in
properly tracing surfaces and closed volumes, since
the program cannot determine the proper turn
direction in this case. Currently, the program solves
this issue by testing different edges instead, and if all
the edges produce this same result (which is most
likely when there is just one selected face, or when
the selected faces form a single plane), the program
modifies the vector from the centre of the edge to
centre of the edge chain, by adding to the x (and y, if
necessary) values of the actual vector. The use of
this special case solution is due to how both finding
algorithms start at faces with the smallest
coordinates. Figure 6 illustrates the special case
solution, with a single-face edge chain: a marks the
centre of one edge, while b marks the centre of the
face / edge chain. Vector a is planar with the face
and perpendicular to the edge, and vector b is the
vector between the centre of the edge and the centre
of the edge chain. Since vector a is parallel to vector
b, vector b is modified into vector c, as if c were the
centre of the edge chain.

The faces
on the ob
list of fac
until the
program
open) in t

5. RES
The follo
using the

Sample
Figure 7
shape de
Figure 6. Special case solution.
Figure 5. Face selection on sample shape.
 that are not in the split plane list (i.e., are
ject's outside surface) are removed from the
es in the object. The process then repeats
face list is empty, and by this point, the

has identified all volumes (both closed and
he object.

ULTS
wing figures show select results obtained
algorithm.

 shape
shows the result obtained from the sample
scribed in the previous section, correctly

identifying the nine faces in the middle as the split
plane, and identifying the two boxes in the object
(seen from different angles here for clarity).

 Wedge box

This box with wedges attached to its sides shows an
example of a non-contiguous non split plane (note
the second shape in the first row of Figure 10). The
algorithm handles this correctly to produce the five
closed volumes that comprise the wedge box.

Triangle prism
The triangle prism is split into three parts by walls
that connect to the centre of the prism. The algorithm
identifies these three parts correctly, as seen in
Figure 8.

 Nine boxes
The algorithm correctly identifies the nine boxes that
make up the larger box. The highlighted boxes in
Figure 9 show the order in which each box is
identified.

Fish
To illust
structure,
as an exa
body of th
Figure 10. Wedge box results.
r
w

Figure 9. Nine boxes results.
Figure 8. Triangle prism results.
Figure 7. Sample shape results.
ate the algorithm's use on a complex
e use the wireframe of a fish and its faces

mple. The algorithm identifies the main
e fish as a single open volume. However, it

6. SUMMARY also identifies a few “leftover” faces as distinct
“volumes” from the main body, and none of the
volumes are closed. The areas where the “leftover”
volumes are identified are circled in Figure 11. This
may be due to the shortcomings of the model itself,
however.

As currently implemented, the algorithm correctly
identifies the volumes of each object. This algorithm
has potential applications where counting 3-D
objects in given wireframe data is necessary.
However, possible improvements to the algorithm
include providing a less error-prone solution to the
problem solved by the special case solution described
in the main text, improving the algorithm to work
with objects with genus 1+ (i.e., with holes), and
possibly a more accurate (and foolproof) method for
selecting the next face for each volume.

7. REFERENCES
[Bau75] Baumgart, B.G., Winged-edge polyhedron

representation for computer vision, 1975.
[Hig93] Higashi, M., Yatomi, H., Mizutani, Y., and

Murabata, S. Unified Geometric Modeling by
Non-Manifold Shell Operation. SMA '93:
Proceedings on the second ACM symposium on
Solid modeling and applications, pp. 75-84, 1993.

[Man82] Mantyla, M. and Sulonen, R. GWB: A solid

Results
The results o
shape in the
described in
detailed in the

Shape

Faces
Edges
Vols.
Vol. analys
time (s)
Total pro
time (s)

Shape

Faces
Edges
Vols.
Vol. analys
time (s)
Total pro
time (s)

T

Figure 11. Fish results.

modeler with Euler operators. IEEE Computer
Graphics and Applications, Vol. 2, No. 7, pp. 17-
31, 1982. f testing the algorithm using the sample

main text, and then the three shapes
 the previous three subsections, are
 following table.

[Man88] Mantyla, M., Introduction to solid
modeling, 1988.

[Kov01] Kovalevsky, V., Algorithms and data
structures for computer topology. Digital and
image geometry: advanced lectures, pp. 38-58,
2001. Sample

shape
Triangle
prism

Nine
boxes

19 12 42
40 16 64
2 3 9

is 1.219 0.924 5.132

c. 11.804 6.664 26.698

Wedge
box Fish

26 2204
44 3316
5 6

is 2.253 49.826

c. 16.398 510.229

able 1. Results in numbers

	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

