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ABSTRACT 

This paper describes an alternative approach to extracting 3-D objects and volumes, from lists of given faces, 
edges, vertices, and the vertices' coordinates. Most graphics file formats store 3-D information for various 
purposes as a list of polygons, which does not provide a direct indication of structure or relationships between 
each object. This leads to the limitation of object identification within the list of data. The proposed algorithm 
was developed as part of a method for finding the Abstract Cellular Complex of an object. The volumes 
(whether closed or open) of an object are determined from the input set of faces. Each object is then extracted 
according to its manifold. This algorithm can identify every volume and extract them from the set of given data 
when the object(s) represented by the data have a genus of 0. 
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1. INTRODUCTION 
There are many types of file formats being used to 
store 3-D graphics for multimedia purposes. Many of 
these store the information as a list of polygons. 
Storing the information in this way does not 
explicitly explain how many objects are in a given 
file, and does not provide a direct indication of 
structure or relationships between each object, which 
leads to the limitation of object identification within 
the list of data. 

This algorithm was developed as part of research on 
converting a 3-D wireframe model into the Abstract 
Cellular Complex data structure described by 
Kovalevsky [Kov01]. Part of the conversion requires 
finding closed volumes from a set of given faces. 

The algorithm analyzes its inputs, namely, a list of 
faces (and the vertices and edges that form each 
face), a list of edges, and a list of the vertices' 
coordinates, to produce grouped set(s) of faces, 
edges, and vertices which indicate each volume in 
the given input.  

Currently, the algorithm is known to work on objects 
with genus 0 (i.e., with no holes). However, it can 
handle multiple objects in a single scene. 

2. PREVIOUS WORK 
In our research, we focus on finding individual 
closed volumes in an object represented by a given 
set of faces, which also involves determining the 
object’s outside surface. 

The problem described here is essentially a classic 
topological problem [Man88]. While simple traversal 
of the topology would be sufficient when the 
topology has already been determined, we have not 
completely organized the input topologically. For 
example, we have not radially sorted the faces 
incident around each edge. Because our input is not 
topologically complete, we have opted for an 
alternative approach utilizing geometric calculations. 

One example of previous research on constructing 
solids from faces is Higashi et al.’s method for 
unified geometric modeling [Hig93], an extension of 
Mantyla’s solid modeler [Man82]. It differs from our 
research in that Higashi’s work utilizes a modified 
version of Mantyla’s half-edge structure [Man88], 
while our research uses a simpler and more 
straightforward hierarchy: vertices, edges, and faces. 
Such a hierarchy is more intuitive to the way the 
average person views a solid, as consisting of these 
three kinds of elements. 
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Also, based on Baumgart’s winged-edge structure 
[Bau75], we will have edge adjacent to exactly two 
faces in any given closed volume. 

3. DEFINITIONS AND CONDITIONS 
In this paper, an “object” refers to a set of faces, 
edges, and vertices O such that each face in O is 
adjacent to another face in the set and not adjacent to 
any face outside the set, while each edge and vertex 
in O is adjacent to a face in the set.  
“Closed volume” refers to a set of faces, edges, and 
vertices V such that each edge is adjacent to exactly 
two faces; each vertex is adjacent to the same 
number of edges as faces; the numbers of faces, 
edges, and vertices satisfy Euler’s polyhedral 
equation (in its most simplified form, V-E+F=2, 
where V is the number of vertices, E the number of 
edges, and F the number of faces); and the volume 
enclosed is not split up by any set of faces. “Open 
volume” refers to such a set V each edge in V is 
adjacent to at most two faces, other than closed 
volumes. Objects need not be comprised of just one 
volume. For example, two cubes with one shared 
face are considered as one object, while each cube is 
considered a separate closed volume. Meanwhile, a 
cube with one face missing would be considered an 
open volume. This paper concentrates more on 
obtaining the closed volumes.  

The inputs for this algorithm are lists of faces, edges, 
and vertices, the relationships between faces and 
edges (i.e. which faces are adjacent to a given edge, 
and vice versa), and the relationships between edges 
and vertices (i.e. which edges are adjacent to a given 
vertex, and vice versa). The preconditions are that 
the object(s) represented by the input have a genus of 
0. 
The output from the algorithm are grouped set(s) of 
faces, edges, and vertices which describe each 
volume (closed or not). 

4. ALGORITHM 
The first step of the algorithm is to sort the vertices 
by their x, y, and z coordinates respectively (e.g., <0, 
0, 0> comes before <0, 0, 1>, <0, 1, 0>, and <1, 0, 
0>), and then transpose and/or reverse the order of 
the vertices in each face, so that the first vertex of the 
face is the one that is earliest in the list, and the 
second vertex is the earlier of the two vertices 
adjacent to that first vertex, with the new order still 
representing the face. For example, a face with 
vertices labeled 1-6-8-2 can be transposed to 6-8-2-1 
and then reversed into 1-2-8-6. The transposed faces 
are then ordered by their first few vertices. For 
example, a face with vertices 1-3-4-5 comes before 
1-4-5-6, but after 1-2-3-4. 

The next step is tracing each object out, by starting at 
a random edge and adding it to a list, adding faces 
adjacent to that edge, then the edges in each adjacent 
face, and then faces adjacent to those edges, 
repeatedly until no more new faces or edges are 
added. 
Each object may consist of several closed volumes. 
Therefore, closed volumes are traced in a different, 
and more complex, manner. First, the program finds 
the leftmost “available” face, with the following 
procedure: 
The program looks for the vertex with the “smallest” 
coordinates (i.e., least x, then least y, then least z) in 
the current object (A in Figure 1). After finding the 
vertex, the program checks its adjacent vertices (a, b, 
c). The program calculates the cosine of the angle 
between a vector parallel to the z-axis and the vectors 
between the vertex with the smallest coordinates and 
each of its adjacent vertices, and picks the edge that 
is part of the object and has the highest absolute 
value of cosine (i.e., the smallest angle with the z-
axis). After selecting the edge (Aa), the program 
calculates the vectors that are perpendicular with the 
edge and the normal vectors of its adjacent faces (f, 
g). The program then picks the face where the 
resulting vector has the least angle with the y-axis (f). 
 

 

 

 
Figure 1. Finding the leftmost available face.



After the leftmost “available” face is found, this face 
is put into a list of faces, with its edges and vertices 
also added to corresponding lists. For each edge 
adjacent to exactly two “available” faces, those two 
faces are added to the list of faces, with their edges 
and vertices added to their respective lists also. This 
repeats until no more faces are added. Figure 2 
shows the results at the various stages of this portion 
of the algorithm on a 2-D mesh of triangles. Starting 
at the center of the mesh, one triangle and its edges 
are selected (in green). The triangles that are adjacent 
to the selected edges (in yellow) are next to be added, 
along with their edges (while edges with two selected 
faces are removed from the list. This repeats until no 
new faces and edges are added. 

 

 
If the faces do not correspond to Euler's polyhedral 
equation, and there are faces remaining to be added, 
the program looks for edges which only have one 
selected face attached, and checks how many 
available faces are adjacent to each such edge 
(including the face already selected). If there is an 
edge adjacent to exactly two faces (i.e., there is one 
unselected face), it will simply add the unselected 
face, along with its edges and vertices. However, if 
all such edges are adjacent to at least three faces, the 
program needs to determine which face is part of the 
closed volume. To do this, the program calculates 
vectors which lie perpendicular to both the current 
edge being considered, and the normal of each of 
those faces. The program then traces edges with only 
one selected face attached, starting from the current 
edge and going in either direction, to find a series of 
such edges which form a continuous chain (see 
Figure 3, for an example), before finding the average 

coordinates of the vertices in said chain (the chain 
need not necessarily comprise a continuous loop as 
in Figure 3). This is to provide the program with a 
“general idea” of where the “inside” of the closed 
volume is. 

 

 

Figure 3. Edge chain (in light green). 

The program calculates the vector between the centre 
of the current edge (a) and the average coordinates of 
the vertices (b), and, if necessary, modifies the vector 
to be perpendicular to the edge while lying on the 
same plane as the original vector ((a × b) × a). This 
is used to determine the proper turn direction, and 
thus the face with the smallest dihedral angle in the 
proper direction, which is then added. 

 

Figure 2. Tracing faces. 

 

Figure 4. Face selection (explained below) 

As an example, consider Figure 4. Here, 4 faces 
(represented by the edges marked a, b, c, and d) are 
adjacent to an edge (represented with vertex A). Face 



a has already been selected. The program will either 
select face b or d, depending on the vector between 
the centre of edge A and the average of the vertices 
in a chain that starts with the same edge. Possible 
results are represented here with α and β. With α as 
the result, the program finds that the face with the 
smallest dihedral angle (in the direction of α) from α 
is d, and thus picks that face. However, with β as the 
result, the program will select b instead, since it is the 
face with the smallest dihedral angle in the same 
direction as β. Using the sample shape, the process is 
illustrated in Figure 5, using the same labels as 
Figure 4. Here, the turn direction is determined with 
the vector α, and the face with the least angle in that 
direction is b (ahead of c). 

 

 
This process is then repeated until the numbers of 
faces, vertices and edges correspond to Euler's 
polyhedral equation, thus comprising a closed 
volume, or until there are no more faces remaining in 
the object, in which case the selected faces represent 
an open (i.e., not closed) volume.  
To determine which faces to remove from 
consideration, the outside surface of the whole object 
has to be traced.  Tracing the outside surface uses the 
same algorithm as that used to find the closed 
volumes, except that when considering dihedral 
angles, the face with the largest dihedral angle is 
added instead (using Figure 4 as an example, α 
results in the program selecting b, and β results in the 
program selecting d). The list of faces in the closed 
volume is compared with the list of faces in on the 
surface. The faces in the closed volume that are not 
on the outside surface of the object are retained, 
along with the faces that have not been used so far. 
A potential flaw in both the closed volume and 
surface finding algorithms is that the algorithm calls 
for calculating a vector that is perpendicular to the 
currently selected edge and is planar with the edge's 
adjacent face, as well as calculating another vector 
between the centre of the selected edge and the 

centre of the chain of edges starting from that edge. 
There is a possibility of those two vectors being in 
the same direction (resulting in a zero vector as their 
cross product), which would create difficulties in 
properly tracing surfaces and closed volumes, since 
the program cannot determine the proper turn 
direction in this case. Currently, the program solves 
this issue by testing different edges instead, and if all 
the edges produce this same result (which is most 
likely when there is just one selected face, or when 
the selected faces form a single plane), the program 
modifies the vector from the centre of the edge to 
centre of the edge chain, by adding to the x (and y, if 
necessary) values of the actual vector.  The use of 
this special case solution is due to how both finding 
algorithms start at faces with the smallest 
coordinates. Figure 6 illustrates the special case 
solution, with a single-face edge chain: a marks the 
centre of one edge, while b marks the centre of the 
face / edge chain. Vector a is planar with the face 
and perpendicular to the edge, and vector b is the 
vector between the centre of the edge and the centre 
of the edge chain. Since vector a is parallel to vector 
b, vector b is modified into vector c, as if c were the 
centre of the edge chain. 
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identifying the nine faces in the middle as the split 
plane, and identifying the two boxes in the object 
(seen from different angles here for clarity). 

 

 

 Wedge box 

 

This box with wedges attached to its sides shows an 
example of a non-contiguous non split plane (note 
the second shape in the first row of Figure 10). The 
algorithm handles this correctly to produce the five 
closed volumes that comprise the wedge box. 

 

Triangle prism 
The triangle prism is split into three parts by walls 
that connect to the centre of the prism. The algorithm 
identifies these three parts correctly, as seen in 
Figure 8. 

 

 

 

 

 Nine boxes 
The algorithm correctly identifies the nine boxes that 
make up the larger box. The highlighted boxes in 
Figure 9 show the order in which each box is 
identified. 
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6. SUMMARY also identifies a few “leftover” faces as distinct 
“volumes” from the main body, and none of the 
volumes are closed. The areas where the “leftover” 
volumes are identified are circled in Figure 11. This 
may be due to the shortcomings of the model itself, 
however. 

As currently implemented, the algorithm correctly 
identifies the volumes of each object. This algorithm 
has potential applications where counting 3-D 
objects in given wireframe data is necessary. 
However, possible improvements to the algorithm 
include providing a less error-prone solution to the 
problem solved by the special case solution described 
in the main text, improving the algorithm to work 
with objects with genus 1+ (i.e., with holes), and 
possibly a more accurate (and foolproof) method for 
selecting the next face for each volume. 
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Figure 11. Fish results. 
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able 1. Results in numbers  


	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

