
Silhouette Partitioning for Height Field Ray Tracing

Tomas Sakalauskas
Vilnius University
Naugarduko 24,

Lithuania,03225,Vilnius

tomas.sakalauskas@prewise.lt

ABSTRACT
This paper presents parallel algorithm to ray trace height fields that is suitable for recent GPUs. No data
preprocessing is needed, therefore this algorithm can render dynamic height fields. Partitioning binary tree for
screen space is calculated each frame. It takes silhouettes of height field regions as partitioning curves. Ray
tracing step uses binary search in this silhouette tree to find height field coordinates of pixel visible at given
screen coordinates.
Presented algorithm takes fixed amount of samples into consideration to produce value in each pass, therefore
worst-case scenario is deterministic. This enables the implementation for GPUs having limited dependent
texture lookups.

Keywords
View dependent partitioning, dynamic height field visualization, terrain rendering, ray tracing, parallel
rendering, GPU, silhouette detection.

1. INTRODUCTION
Recent developments in consumer level GPUs enable
bringing algorithms and strategies previously used
solely in offline rendering to real-time
implementations. Despite available fragment
processing power, GPU development focuses on
providing best triangle rendering performance
because this is de-facto standard for representing
geometry in most of today’s graphical applications.
Still number of triangles that modern GPUs can
handle is usually order of magnitude lower than
number of pixels same GPU can process. If we need
to render extremely detailed meshes, where most of
the triangles cover just one pixel or less, triangle
processing power is the bottleneck limiting
complexity of model we can render real time. Height

field visualization is one of the areas facing this
problem. One way to solve it is finding triangulation
that approximates original geometry with minimal
amount of triangles. Another option is avoiding
triangle based representation of height field by
implementing ray-tracing - launching a ray for each
screen pixel trying to find closest intersection with
height field.
This paper describes ray tracing method well suited
for GPU implementation. The main design goal was
to create algorithm that needs no preprocessing and
uses fixed number of reads to produce pixel as
opposed to “scanning” algorithms. Some GPUs are
very limited on dependent texture lookups some
cannot abort calculations once intersection is found.
Therefore GPU friendly algorithm should have
predictable behavior in worst-case scenario and be
fast enough even in cases when this worst-case
scenario has to be executed for every pixel.

The idea for the algorithm presented was born trying
to choose visualization method for simulating terrain
erosion. It requires detailed representation of
constantly changing height field.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

2. RELATED WORK
Triangulation Algorithms
One of the first methods generating triangulated-
irregular networks (TIN) from digital elevation maps
(DEM) was introduced in [Fow79a]. First, they
classify the points by automatically choosing some
"important" features of the terrain, such as ridges and
peaks. Then, they incrementally compute a
triangulation of the points; in their case, they chose
to use the Delaunay triangulation. At each step, a
new point is added to the triangulation until no points
are farther from the original surface than a certain
predefined threshold. Substantial research has been
conducted on creating hierarchical structures on top
of TINs [Flo89a, Sca92a, Ber95a]. These methods
calculate complete starting triangulation which is
either refined by adding or decimated by removing
redundant points. These algorithms require heavy
preprocessing and keeping complete triangulation
representation in memory. [Cla95a] considers input
DEM to be an instance of TIN with very high
resolution and simplifies this input TIN surface to
create new TIN that has a fewer triangles, but is still
within a specified error bound of the original surface.
Such algorithms calculate triangulation based on
original model minimizing number of triangles and
trying to keep error in object space as small as
possible. When active view is covering a small
region of terrain, few triangles are rendered not using
triangle processing potential of GPU.
Level of Detail (LOD) is another family of
algorithms. [Lin96a] performs coarse level of
simplification to select discrete levels of detail for
blocks of the surface mesh, followed by further
simplification through repolygonalization in which
individual mesh vertices are considered for removal.
[Sch06a] presents algorithm that tiles the domain in
preprocess, and computes for each tile a discrete set
of LODs using a nested mesh hierarchy. Any
triangulation recalculation in runtime is avoided.
[Sch06a] implementation is more GPU friendly.
LOD algorithms try to minimize error in screen space
by selecting correct LOD for region. In general LOD
algorithms perform quite well, but do not have
consistent triangulation resolution where two
segments are joined. Near the seam one segment is
over sampled and the other under sampled.
Adaptive algorithms are a mix of static and LOD
algorithms –usually trying to create complete optimal
triangulation (like static) using error in screen space
(like LOD). Theoretically this approach should give
smallest screen errors with same triangle number as
previous two types of algorithms. [Duc97a] presents
real time optimally adapting meshes (ROAM)

algorithm that uses regular adaptive triangulation in
real time.
Current GPU architecture does not allow changing
topology of geometry inside GPU; therefore adaptive
algorithms need not only calculate but also transfer
geometry in each frame. It is possible to use frame
coherence to transfer only the changes in geometry.
Frame coherence can also be used to minimize time
spent in recalculating triangulations. But such
algorithms face performance or quality problems
when there is minimal or no frame coherence.

Ray-tracing Algorithms
In its most basic form, height field ray tracing
involves traversing rays in steps across height field
cells. This procedure is called incremental ray tracing
[Mus88a].
Naive generation of one column of the image has a
time complexity of O(ml), where l is length of
column footprint and m is the number of pixels in
image column. [Coh96a] uses ray coherence to
achieve O(l) time to render single column of the
image. As elevation map structure cannot describe
cavities, simple fact is noted that pixel traces to same
or further position on elevation map than pixel
located directly below it. Therefore ray tracing the
next pixel can continue from grid position where
intersection was detected in pixel below, vertical
coordinate of ray can also be calculated using ray
coordinates of previous intersection and view plane.
Run-based ray traversal algorithm proposed in
[Hen04a] utilizes the fact that mapping ray to
discrete grid creates footprint that consists of clusters
of connected cells or runs. Analysis of this footprint
proves that run length at given ray distance can be
determined without a need to iterate runs from ray
start. Run-based algorithm performs ray intersection
tests on runs instead of individual cells, gaining
average 125% performance improvement.
Unfortunately these algorithms do not transfer well
to GPU implementation, because calculation results
in one pixel cannot be easily transferred to next pixel
unless many passes are used. It is also hard to adapt
these algorithms to GPUs that do not support loops –
worst case scenario for rendering one pixel can
require O(l) data reads.
Number of height field ray-tracing steps can be
dramatically reduced by traversing rays in steps
across inverted cones of empty space [Pag94a]. This
method, known as linear parametric ray tracing,
requires the empty space above the height field
surface to be represented with a set of inverted cones
of empty space. There is one inverted cone centered
above each height field cell, defined by values of the
apex height and opening angle parameters. Such
empty space representation is called the linear

parameter plane transform (PPT) and is generated
off-line prior to ray tracing. However, steps across
inverted cones of empty space along rays close to the
base of a steep ridge will be short, even if there are
no obstructions along the line of sight, because the
cones will be narrow. [Pag98a] describes how this
weakness can be virtually eliminated by
directionalizing the PPT, i.e., by allowing the
opening angles of the inverted cones of empty space
to vary between contiguous sectors in the xy plane
such that the inverted cones are wider within sectors
that are less obstructed. This requires even heavier
pre-processing steps thus making algorithm
inapplicable for dynamic height fields. It relies on
scanning height field so execution time is not stable.

3. HEIGHT FIELDS
Height field is defined for rectangular regularly
spaced grid UxV and associates an elevation h to
each position),(vu in the grid.

Figure 1. Height field representation.

Height field is a convenient structure to define
functions of two parameters, represent real or
artificial terrain. Such representation is used to
describe geographical data and is called digital
elevation maps (DEMs).

Dynamic Height Fields
Often height fields are used to represent static terrain
models. In such cases algorithms can move
significant amount of calculations to pre-processing
stage, where intermediate structures are created
optimizing run-time performance. If we use height
field for dynamic scenarios like fluid visualization,
or some other task requiring real-time animation of
the surface, algorithms relying on pre-processing are
difficult or impossible to apply.

4. SILHOUETTE PARTITIONING
Top silhouette of rendered height field is the
boundary line dividing the screen to area covered by
height field and area above the height field.
Silhouette line intersects all vertical screen lines

exactly once, therefore silhouette curve can be seen
as function yxS ≡)(where y is y coordinate of
silhouette intersection with vertical line at x.

Figure 2. Silhouette.

We can define silhouette for segment of the height
field. Fig. 2 shows silhouette)(xS av≤ for segment
having v coordinate less or equal to constant a.

)(xS av≤ has useful properties:

ayxvtraceyxS av >⇒>≤),(_)((1)

)()(:,, xSxSbaVvba bvav << ≤⇒<∈∀ (2)

Eq.1 comes from silhouette definition. Eq.2 states
that silhouette of segment is greater or equal to that
of sub-segment.

Figure 3. Height field segment.

Another interesting segmentation of height field is
range of v values bva ≤≤ (Fig.3). We shall mark
silhouette for this segment)(xS bva ≤< . The following
is true:

))(),(max()(
:,,,

xSxSxS
cbaVcba

cvbbvacva ≤≤≤≤≤≤ =
≤≤∈∀ (3)

Figure 4. Combining two silhouettes. (a) Source
silhouettes (b) Result shown in black.

Binary Segment Tree
We can organize the height field into a binary tree
slicing it by v coordinate. Root (l=0) node contains
the whole 10 ≤≤ v height field, marked as 0

]1,0[H .

Tree is defined recursively by splitting height field
l

caH],[at midpoint 2/)(cab += :

• Left node 1
],[

+l
baH ,

• Right node 1
],[

+l
cbH .

Figure 5. Binary tree.

There are V leaves in this binary tree and they
represent discrete v values covering exactly one row
in elevation map. Height of the tree therefore is

)(log2 V as can be seen in Fig. 5.

4.1.1 Silhouette Calculation
Each node 1

],[
+l

baH in the tree described above has

silhouette)(],[xS l
ba . We can use bottom-up approach

to build silhouettes for the segments in the tree by
using Eq.3. Having children nodes 1

],[
+l

baS and 1
],[

+l
cbS ,

we get parent node silhouette

))(),(max()(1
],[

1
],[],[xSxSxS l

cb
l

ba
l

ca
++= (4)

Fig. 6. illustrates construction of silhouettes. Left
column contains bottom level of the tree –
projections of discrete v rows. Pairs of bottom level
silhouettes are used to calculate parent silhouette by
taking maximum at every x coordinate (Eq.4) until
root silhouette is built representing the silhouette for
whole height field.

Figure 6. Constructing silhouettes for segment

tree.

4.1.2 Calculating Silhouettes for Bottom Nodes
of Segment Tree
Bottom level of segment tree contains discrete v
values. Silhouette for a line on a grid is equal to
projection of that line to screen space.
Rendering surface has discrete x values, therefore
sufficient approximation of silhouette is finding

)(xS for every x on the screen.
VnxSxS n

vv
n
v 2],[log),()(=≡ is calculated as

intersection of x vertical line with projection of
height field at fixed v . Deterministic way to find this
intersection is using binary search over row v of
elevation map. Intersect function accepts current
search position u and range that is being checked -
du . For given x and v , calling Intersect with

2/1=u and 1=du returns u and y coordinates of
an intersection.

Figure 7. Binary search state is expressed as

center of interval u and width of interval du. Red
line represents x coordinate being searched.

Pseudo-code for Intersect function implementing
such binary search is presented below.

// x,v – query coordinates
// u,du – recursion search range
Intersect(x,v,u,du)
 if(du==1/U)
 return InterpolateU(x,v,u,du/2);
 if(projected_x(map[u][v])<x)
 return Intersect(x,v,u-du/4,du/2);
 else
 return Intersect(x,v,u+du/4,du/2);

Intersect function terminates recursion when
Udu /1= – discrete cell in map is traced and u is

pointing to middle of that cell. Values of u and y at
specific x are calculated performing linear
interpolation.

Figure 8. Linear interpolation of u and y values,

based on x location in [x0, x1] interval.
InterpolateU(x,v,u,du)
 u0 = u – du/2; //segment start
 u1 = u + du/2; //segment end
 x0 = projected_x(map[u0][v]);
 x1 = projected_x(map[u1][v]);
 y0 = projected_y(map[u0][v]);
 y1 = projected_y(map[u1][v]);
 r = (x-x0)/(x1-x0); // mix ratio
 u_intersect = u0 + (u1-u0) * r;
 y_intersect = y0 + (y1-y0) * r;

4.1.3 Data Representation – Silhouette Map
We use algorithm described above to calculate the
bottom level for silhouette tree and store u and
y values in X x V texture: R channel holding y

value, G channel - u value.

We shall refer to this data structure as silhouette
map. Fig.9. illustrates silhouette map (c) for given
elevation map (b) when viewed from camera position
(f).

Silhouette Partitioning Tree
Silhouette partitioning tree is derived from segment
tree and is used as structure that allows binary search
in segment tree. Each node in silhouette partitioning
tree corresponds to segment in segment tree l

caH],[

and holds silhouette of closer child
2/)(,1

],[cabS l
ba +=+ – it is needed when performing

binary search. Therefore it has smaller depth than
trees described above as the bottom level would
represent discrete v values – no child silhouette is
available to assign to it.

We mark the silhouette of node at level l l
vS , where

2/)(cav += is the middle of range of segment
assigned to this node l

caH],[.

Figure 9. (a) height map (b) color map

(c) silhouette map (d) silhouette levels 6-7
(e) silhouette levels 2-3 (f) final render.

4.1.4 Silhouette Partitioning Tree
Representation
Bottom level of silhouette partitioning tree contains
segments covering two adjacent v rows of elevation
map. Silhouettes contained in this level represent
discrete v rows – these are calculated and stored in
silhouette map as described above.
Each pair of higher levels is packed to single texture:
• R – silhouette contained in closer child,
• G – silhouette contained in farther child,
• B – silhouette contained in parent node.
Calculating higher level silhouettes using Eq.4
requires having silhouettes of segments from level
below. Thus we add this information to available
texture channel:
• A – silhouette for segment in parent node.

4.1.5 Building Silhouette Partitioning Tree

Figure 10. Calculating two levels of silhouette

partitioning tree.
Algorithm for building next two levels of silhouette
partitioning three is as follows:
• Take 4 silhouettes from previous level as A,B,C
and D (A being closest).
• Assign A to closer child node -> R,
• Assign C to farther child node -> G,
• Assign max(A,B) to parent node -> B,
• Assign max(A,B,C,D) as silhouette for parent
segment used to calculate higher levels -> A.
Fig. 9. (d)-(e) shows some levels of silhouette
partitioning tree.

5. RAY-TRACING
Ray tracing is finding),(vu coordinates of height
field given screen position),(yx . Knowing how
silhouette tree is built we can do binary search to
determine v at given),(yx . The approach is similar
to one described in Calculating Silhouettes for
Bottom Nodes of Segment Tree (Sec. 4.1.2). We start
at 2/1=v and 1=dv range covering whole height
field; it represents the segment located at the root of
the silhouette partitioning tree and go down the tree
halving dv until it covers single row of elevation
map and v points to middle of that row.

To decide which side to choose when going down
the binary tree y is compared to value of silhouette
of current node)(xS l

v . Algorithm looks as follows:

// x,y – query coordinates
// l – recursion level
// v,dv – recursion search range
Trace(x,y,l,v,dv)
 if(dv==1/V)
 return InterpolateV(x,y,l,v,dv/2);
 if(sil_y[l][v][x]<x)
 return Trace(x,y,l+1,v-dv/4,dv/2);
 else
 return Trace(x,y,l+1,v+dv/4,dv/2);

Final values of u and v are calculated performing
linear interpolation by y coordinate.
InterpolateV(x,y,l,v,dv)
 v0 = v – dv/2; //segment start
 v1 = v + dv/2; //segment end

 y0 = sil_y[l][v0][x];
 y1 = sil_y[l][v1][x];
 u0 = sil_u[l][v0][x];
 u1 = sil_u[l][v1][x];
 r = (y-y0)/(y1-y0); //mix ratio
 u_intersect = u0 + (u1-u0) * r;
 v_intersect = v0 + (v1-v0) * r;

Having u and v for screen coordinate),(yx texture
lookup is done to determine color of pixel.

Figure 11. Trace function results

(a) l=1 (b) l=3 (c) l=5 (d) l=9.

Ray Tracing Implementation
On GPUs not limiting number of dependent texture
lookups ray tracing can be performed in a single
pass. If instruction count or texture lookups are
limited a separate pass can be used for every two
levels in silhouette partitioning tree rendering v
value, which is the read in next pass and refined
further. Fig. 11. shows refinement v after various
passes of tracing.

6. BALANCING GPU
Described algorithms fully rely on performance of
fragment shader, leaving vertex shader idle.
Calculating silhouettes for bottom level of segment
tree can be moved to vertex shader or balanced
between these two shaders.

6.1.1 Silhouettes in Vertex Shader
Every row in silhouette map corresponds to single
row in elevation map. Silhouette map width is equal
to screen width and line segments in original
geometry map to the same x range as in final
rendering. We can define view dependent projecting
transformation between height field coordinate space
and silhouette map, then render each row of elevation
map as list of line segments connecting discrete u
values contained in that row.

Vertex shader receives vertices with),(vu
coordinates projects them to),(yx using camera
projection. It ouputs),(vx as transformed
coordinates. This maps segment to correct location in
silhouette map. Vertex shader outputs u and y
values that are interpolated and passed to fragment
shader. Fragment shader simply writes these values
to target texture. This approach involves primitive
counts comparable to brute force rendering of full
height-field triangulation.

6.1.2 Splitting the Work
Similar idea can be used to render segments of row
covering more than one cell. U is split evenly into

nN 2= segments representing thn level of binary
search and these segments are rendered using same
vertex shader as described above.

Figure 12. Vertex shader replacing two levels of
binary search of Intersect function.
Fragment shader is given parameter du specifying
the length of such segments. Based on interpolated u
value it determines which segment is being rendered
at given pixel and calculates center u of that
segment. It can proceed as if Intersect(x,v,u,du) was
invoked. Number of segments to use per row is
determined by trial and error, optimizing load
balancing between vertex and fragment shaders.

7. RESULTS
The algorithm was tested with two data sets.
Artificial 2048x2048 terrain was generated using
Perlin noise functions and texture was modeled using
ecosystem approach. Another data is based on DEM
and LandSat5 data of Hawaii Island 2048x2048.
The tests were conducted on AMD Athlon 64 3500+,
1GB RAM, NVidia GeForce 7900 GTX.

Data Resolution Min Fps Max Fps
Art2K 512x512 84 135

Hawaii2K 512x512 84 135

Hawaii2K 1024x1024 37 55

8. CONCLUSIONS
Algorithm presented in this paper has well controlled
worst case scenario and very stable performance –
slowest frames are rendered only 33-38% slower
than frames where whole terrain is completely off-

screen. Variation comes from vertex shader – when
segment is not projected to visible area it is culled by
hardware. Algorithm is stable regarding input data as
well– it runs at constant speed for given camera
position independent of elevation map content.
Future research will focus on visualization of bigger
data sets, 6 degrees of freedom camera movement
and possible optimizations of the current method.

9. REFERENCES
[Ber95a] M. de Berg and K. Dobrindt. On levels of
detail in terrains. In Proc. 11th Annu. ACM
Sympos.Comput. Geom.:C26-C27, 1995.
[Cla95a] Claudio T. Silva, Joseph S. B.Mitchell, and
Arie E. Kaufman. Automatic generation of triangular
irregular networks using greedy cuts. In Proc.
Visualization ’95, 1995.
[Coh96a] Daniel Cohen-Or, Eran Rich, Uri Lerner,
Victor Shenkar. A real-time photo-realistic visual
flythrough. IEEE Transactions on Visualization and
Computer Graphics. 2(3):255–264, 1996.
[Duc97a] Mark Duchaineauy, Murray Wolinsky,
ROAMing Terrain: Real-time Optimally Adapting
Meshes, IEEE Visualization '97 Proceedings, 1997.
[Flo89a] L. De Floriani. A pyramidal data structure
for triangle-based surface representation. IEEE
Comput. Graph. Appl. 9:67-78, 1989.
[Fol91a] J. Folby, M.Zyda, D.Pratt, R. Mackey.
Npsnet: Hierarchical data structures for real-time
three dimensional visual simulation. Computers and
Graphics, 17(1): 437-446, 1991
[Fow79a] R. J. Fowler and J. J. Little. Automatic
extraction of irregular network digital terrain models.
Computer Graphics, 13(2):199-207, 1979.
[Hen04a] C.Henning, P.Stephenson. Accelerating the
Ray Tracing of Height Fields. Proceedings of the
2nd international conference on Computer graphics
and interactive techniques in Australasia and South
East Asia: 254-258, 2004.
[Lin96a] Peter Lindstrom, David Koller, William
Ribarsky, Larry F. Hodges, Nick Faust. Real-Time,
Continuous Level of Detail Rendering of Height
Fields. Proceedings of ACM SIGGRAPH 96: 109-
118, 1996.
[Mus88a] F. Kenton Musgrave. Grid Tracing: Fast
Ray Tracing For Height Fields. Research Report
YALEU/DCS/RR-639, 1988.
[Pag94a] Paglierioni, D., Petersen, S. Terrain
visualization by ray tracing a conical height field
transformation, U.S. Patent 5,355,442, issued Oct.
11, assignee: Loral Western Development
Laboratories, 1994.
[Pag98a] Paglieroni, D. The directional parameter
plane transform of a height field. In ACM
Transactions on Graphics. 17(1): 50-70, 1998.

[Sca92a] L. Scarlatos and T. Pavlidis. Hierarchical
triangulation using cartographics coherence. CVGIP:
Graph. Models Image Process. 54(2):147-161, 1992.

[Sch06a] J. Schneider, R. Westermann. GPU-
Friendly High-Quality Terrain Rendering. Journal of
WSCG, 2006

