
Rapid Development of Virtual Environments
A systematic approach for interactive design of 3D graphics

Xuelei Qian

University of Derby
Kedleston Road

DE22 1GB, Derby, Derbyshire

x.qian@ieee.org

Zhengxu Zhao
University of Derby

Kedleston Road
DE22 1GB, Derby, Derbyshire

z.zhao@derby.ac.uk

Richard Thorn
University of Derby

Kedleston Road
DE22 1GB, Derby, Derbyshire

r.thorn@derby.ac.uk

ABSTRACT
It has long been a bottleneck for VE popularity that the development of VE normally acquires heavy time,
labour and monetary investment. Although so-called high-level, abstracted graphical libraries which have been
delivered by third parties based on industrial standard like OpenGL speed up the VE development to certain
extent, the involved engineering process which largely relies on the system computing approach is by all means
not developer-oriented but application-specific, thus it remains technically difficult and expensive to create VE
application from scratch. This research attempts to propose an ultimate solution for VE rapid development by
exploring the boundary between system programming, interpretative computing, interfaces wrapping, abstracted
scene-graph libraries, grouping and database technology. The convergence of ideas from these technological
fields has formed a systematic approach by which developers are encouraged to design and implement 3D
interactive graphics via making necessary reconfiguration to both graphical content and rendering context take
place at system runtime. The whole development cycle of VE application can be further accelerated by using
similar existing drawings from the database as reconfigurable VE templates. In this way, the developers can
avoid creating graphical application completely from scratch by making runtime changes to retrieved VE
template in terms of its rendered graphics, user interfaces and related functional modules.

Keywords
Virtual Environment, Rapid Development, 3D Interactive Graphics, Runtime Reconfiguration

1. INTRODUCTION
Although virtual reality (VR) technology has become
prevalent in modern 3D design, training, education
and media applications, construction of virtual reality
worlds or virtual environments (VEs) remains a
technically difficult and time consuming process
[Oli03a] [Ran95a] [Zha98a]. Therefore rapid
modeling of VEs is recently a much-researched area
[Gri96a] [Win95a]. Since Randy (1995) first
proposed to use scripting or interpreter-based
programming as a de facto design paradigm for rapid
prototyping large-scaled and complex VEs, little
similar research has been reported in the literature. In
this paper, we present the idea of “runtime evolution”
for construction of VEs. The approach behind this

idea is to find out similar drawings from VE database.
The expected VE is to be created by revising
different parts and reserving the uniform regions in
VE template. In traditional approaches, such
reconfiguration to VE is only possible with a so-
called “system reengineering process”, which means
both graphics and their control can only be changed
in off-line mode even though only a minor change to
VE is required. Intending to shift developers away
from such a source code reengineering process
imposed by compiled language driven environment, a
scripting, namely, Tcl/Tk [Ous98a] based
infrastructure was proposed with provision of “VE
rapid prototyping system”, which is dedicated to
simplify the VE design and implementation process
by realizing “interactive design”. Interactive design
kits free VE engineers from struggling with edit-
compilation-linking process via a straightforward
way of implementing runtime code interpretation. A
comprehensive library of graphical rendering
components bundled with the Tcl interpreter has been
adopted to develop variant approaches for
reconfiguring VE at system runtime. Further more,
one of the most attractive facts is that a well-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

developed VE database management system provides
the top-down administration for VE templates which
are clustered by VE coding and classification module.
Newly developed VE can be featured with predefined
dependencies and assigned with unique identification
code for VE query.

The proposed infrastructure is intended to integrate
the off-the-shelf computing and graphical rendering
technologies into a single platform, within which the
VE design, implementation and reconfiguration can
be done in an effortless way. Its software architecture
includes VRS [Döl02a] enabled 3D data visualization
unit, Tcl/Tk enabled VE reengineering process
component and a unified scripting interpreter. In this
paper, development of a demonstration system is also
reported to provide concrete details of proposed
infrastructure. The benefits of applying the scripting
based VE design approach is investigated with a
walkthrough use of the demonstration system.

2. AN SCRPTING BASED SOLUTION
The scripting based VE modeling system is in an
infrastructure which is able to accelerate the
procedures for constructing interactive 3D graphics
by adopting the modern graphical rendering systems
and interpretative computing technology. The script
binding of graphic libraries is an important part of
this infrastructure. The architecture of a scripting
oriented VE modeling system is shown in Fig.1.

Figure 1. Underlying computing infrastructure

In this system, the graphical library VRS built on top
of industrial specification OpenGL provides a
collection of rendering components which takes care
of real-time data visualization, while user
interactivity is designed and implemented though
Tcl/Tk. Although Tcl core and VRS are developed by
third parties with compiled language, the user
interface (UI) system and scene graphs involved in
VE software are to be implemented at scripting level.
This is because Tk is a scripting-oriented extension
package of Tcl core, while iVRS provides VE

developers with a full access to 3D features of the
VRS, which means VE developers can initiate VRS
objects and call their respective methods using Tcl or
Tk commands even at application runtime.

Abstracted Graphic Rendering Engine
Although the functionality of low-level graphical
application programming interfaces (APIs) covers 3D
rendering, scene modeling, interaction handling, 2D
imaging and animation, the development of 3D
graphics including VEs using, for example, OpenGL,
remains expensive since their implementation often
requires thousands of lines of code and this fact
counteracts the “rapid development of VEs”. The on
demand generation of high-level graphical rendering
libraries including VRS is based on the widely used
and successful scene graph [Fol97a] metaphor, which
can be seen as an object-oriented representation of
low-level graphics need to be rendered and displayed.
The design of high-level graphics rendering engines
aims to abstract the complexity of the low-level APIs
like OpenGL. This kind of API abstraction was
achieved by the design and implementation of a large
collection of reusable building blocks, each of which
provides users with programmable interfaces for
controlling low-level rendering details. Because the
scene graph supported by abstracted graphical
rendering systems has a full representation of the
whole scene, VE developers can easily take
advantage of built-in, ready-to-use algorithms and
data structures, which a graphic driver can hardly do.
As a main part of the proposed infrastructure, VRS is
expected to provide VE developers high-level design
options and isolate them from underlying graphical
rendering details, by which means complex visual
representation can be created with less engineering
efforts.

Applied Computing Tool
Our scripting based VE design approach is largely
relied on the scripting language which is a typeless
language. Unlike system programming languages
including C/C++, all scripting variables or data
blocks look and behaviour in the same way so that
they are interchangeable. Since all scripting variables
are changeable, the original code can produce new
programme and execute it at runtime. For those VE
engineers who can hardly foresee in the initial VE
design stage what kind of functionality will be
required in the application phase, this novel
computing paradigm enable them to implement the
VE system in a modular structure, that is, a micro
kernel that can load at runtime the function modules
of the system encapsulated as modular blocks
whether abide the already existing user interface or
not. For a typical VE which is driven by Tcl/Tk,

 (a) Original system looks-like (b) File Exporter/Importer: a plug-in programme in use

Figure 3. VE system functionality and its enhancement

(a) Automatically generated construction for widget (b) API information inquiring system (c) Control widget

Figure 4. Runtime code generation and interpretation using console system

the initialization of default functional modules, for
example, spatial navigation and scene management,
can be done at the starting of VE, while the rejection,
augmentation and override of modular blocks can be
achieved at runtime to meet the requirements for
specific application or simulation tasks.

VE Database and Its Connectivity
The design of VE database and its management
system is intended to provide a top-down
administration of VE templates and avoid building
new VE completely from scratch. The VE database is
set up with Microsoft® Access 2000 and utilizes its
advantages including data access control, distributed
access, different authoring types concurrency control,
retrieval performance and data consistency. The
developed VE database, see Fig.2, attempts to
formulate a uniform way for abstracting 3D graphic
contents and their dynamics by which each property
is represented by an entry in the database, describing
its format, path, spatial status, rendering details and
animation sequences.

Figure 2. A typical VE database

During the visualizing process, the VE database will
make meta information available and thus the
programme can deploy each constructive model
correctively while assembling them into integration.
TCLODBC [Tcl04a] which can provide the
scripting-oriented database connectivity is employed
for runtime data synchronization between VE and
database. Once the meaningful graphical
representation is created after the starting of VE,

developers may apply available multiple
reconfiguration utilities including 2D UI, plug-in
programmes and console to change VE content,
rendering context and control. Any event, for
example, relocating selected graphic node with a
drag-and-drop metaphor, will lead to consistent
redisplay for the entire graphics in the view port.
Before sending changed scene graph into the
rendering pipeline for the drawing of the next frame,
the copy of the meta information of new VE will be
hold by certain Tcl variables. By creating new VE
record with the information from those Tcl variables,
the VE design can be saved as reusable VE templates.

Human Machine Interface
Tk which is the extension package of Tcl is used to
implement human computer interactivity. By
summarizing frequently referred interaction between
human and desktop VE system, the practical human
computer interaction scheme has been developed
which cover multiple handlers, including 2D UI
system, runtime plug-ins and console, for dealing
with variant categories of developer requests on VE
level tasks. Development of a VE with the script-
enabled developing environment can reduce project
costs.

VE engineers can perform navigating and selecting
actions with the toolbar to communicate with already
existing VE. In Fig.3.a, developers can wander
through the 3D site in three different navigation
modes. The involved graph nodes can be selected,
relocated, rescaled, replaced or removed with default
functionalities which is an organic part of the
demonstrated UI system.

VE developers are enabled to extend current UI
system by providing it the functionality enhancement.
For example, if current VE needs to be saved in
binary format using custom export toolkit which is
not available, VE developers can package scripts
with certain utility panel and temporarily install the
scripts as buttons in the toolbar, as items in menus, or
designate them to hotkeys. See Fig.3.b. The updated
toolbar integrates custom import (button “B” and “C”)
and export (button “A”) toolkits using ASCII and
binary file input and output stream.

Given the fact that, for VE engineers, especially
those who may have solid background in graphic
computing, direct manipulation by editing and trying
new command input at system runtime tends to be
another advisable approach for both VE development
and improvement. The UI system comes with a
runtime console which is actually a fully interactive
Tcl/Tk interpreter for graphical language and works
similar to a DOS command prompt window. This

working environment integrates a 2D text editor with
which VE developers are able to retrieve and display
source files and then comprehend implementation
details of specific software components. It also
provides a scripting command input console which is
de facto a built in window listener embedded with an
internal scripting interpreter. An inquiring system is
already built up that can be used to send queries for
and then returns crucial API information for VE
developers.

In Fig.4, the command input console is used for
automatically instantiating new control widget by
taking advantages of collected API information. Fig.
4.b shows the tree view of the scene graph APIs.
Developers can quickly explore the hierarchical
structure of VRS classes when editing their own code
fragments. In this case, required “Sphere” class is
located from within the tree structure simply by
entering “Sphere” in the entry panel. To display the
API information, double-left-click the “Sphere” node
in the tree view and constructors of class “Sphere”
with their argument types and default values will be
displayed. Using this utility, developers can thus
design the widget within the console for sphere
object defined by radius, cutting planes in Y direction
and aperture angle. This control widget was
automatically initialized and applied instantly for
editing and adding experimental contents into
existing graphs for rapid prototyping. See Fig.4.c.

3. A VE RAPID PROTOTYPING(VERP)
DEMONSTRATION SYSTEM
In order to demonstrate the proposed VE developing
infrastructure, basic functional modular libraries have
been designed and implemented for a demonstration
system. The demonstration system supports fast VE
development with a novel systematic VE design
approach supported by its underlying computing
infrastructure, as is can be seen from Fig.5.

ID code
(User query) Coding scheme

VE database

VE datasets
VE

(Scene graph)

VE
(Scene graph)

Coding scheme+

ID code

+

Visualiser

Coding module
Controller

Coding module

Figure 5. A typical VE database

The main idea behind the illustrated approach is to
find out similar VE template from database according
to user query. The query is sent to “Coding Module”
which is actually a VE coder/decoder. The returned
results will be displayed with a suitable presentation
which provides a good overview of information
relations without an overload of information for VE
engineers. VE engineers can thus make decision for
selecting and visualising particular VE inside the
system according to the degree of relevance between
VE templates and their query. During the visualising
process, the datasets will be retrieved from VE
database and then translated by “Visualiser” at
system runtime for 3D scene reconstruction. The
“Controller” will make incremental changes to
current VE take place according to certain
application specification. New VE is to be
categorized before saving it in VE database.

VE Coding and Classification
The VE database has been designed to be a
hierarchically structured container. The maintained
VE library comprises several isolated VE families
and sub-VE-families each of whom consists of
numbers of VEs which differ from each other in
terms of, for example, scene graph composition,
physical layout of objects and their functions. Since
large numbers of designed VEs will increase the
complexity of the entire system and be not
convenient for developers to collect specific
environment, as well as the time that consumed on
seeking for proper or similar visual representation
among a pool of discrete candidates will counteract
the “rapid” of rapid prototyping, both conceptual and
visual coding and classification are employed in
order to provide a broad, top-down control to VEs
without plunging into the complexity of a fully
inordinate system.

During the process of classification, the physical
sceneries in the world have been roughly grouped
into different categories according to following
classification principles: (i) the environments should
be typically divided into two categories, that is,
outdoor sceneries and internal culture; (ii) the
environments are to be classified by both visual
appearance and function; (iii) the microcosm will be
ignored and only those environments over a certain
size, that is, human scale or larger, will be considered
for visual ontology.

VE coding is used for establishing symbols according
to the classification categories for meaningful
communication. A hybrid structure is adopted in
coding schemes, that is, the system employs
monocode where they can, and apply polycode for
other digits in such a way as to obtain a code

structure that captures the essential information about
a part shape.

Currently the demonstration system realizes a three-
levels coding scheme in which the first two levels
represent a hierarchical structure consisting of
exclusive attributes while the third is a simple chain
code composed of discrete, universal properties.
Once the VE query is received by the “Coding
Module”, a similarity coefficient calculation will be
automatically done, in which specific relevance value
has been designated as the threshold for deciding the
range of to be collected environments.

VE Database and Visualiser
Once VE engineers decide which VE template is to
be visualised, the database connection is to be set up
using TCLODBC. The pseudo code below shows
how to open database connection.

set driver “Microsoft Access Driver (*.mdb)”
set dbFile “Absolute path of the database file”
set dsn VUNITPRO
database adddsn $driver [“DSN=$dsn” DBQ=$dbfile]
database db $dsn
set table [db select from database where flag=1]

Once after the database connection is established, the
system will access proprietary conditions of to be
visualised VE, such as the spatial information of
involved models, their volume scale, rotation axis
and angle, material and colouring attributes and so on
in order for visualiser to decide the initial status of
reconstructed VE. Following pseudo code presents
how to relocate a VE model with the meta
information delivered by database.

set locx [select locX from table where ID=givenID]
set locy [select locY from table where ID=givenID]
set locz [select locZ from table where ID=givenID]
$target locate [new Location $locx $locy $locz]
$canvas postAllForRedisplay

After the VE template is built up, VE engineers have
to configure the VE from its original state and this
reconfiguration process can be carried out repeatedly
to get the system into the correct configuration.

VE Controller
UI system designed for VE reconfiguration makes it
possible to control a graphical scenery with a Tcl
programme and, conversely, to react in Tcl to input
(the events due to user interaction) from the scenery.
Any event, for example, relocating selected graphic
node with a drag-and-drop metaphor will lead to
consistent redisplay for the entire graphics in the
view port. Before sending changed scene graph into
the rendering pipeline for drawing of the next frame,
the copy of the meta information of current VE will

be updated. Take coordinates transformation for
example, VE engineers can change the spatial
location of involved VE models by dragging the right
mouse button. Once the mouse button is released, the
current state of the VE model will be maintained by
temporary Tcl variables, see following pseudo code.

proc setDynamicDataset {target} {
 global tempX tempY

set $target::locationX $tempX
set $target::locationY $tempY

}

For each involved VE object, the system
automatically generates a unique namespace at the
starting of the VE. The name of the VE model is used
to define homonymic namespace, there exist a set of
global variables under each namespace to maintain
the copy of meta information of VEs.

In order for VE engineers to save the VE design, the
VE controller is to create a new data table in VE
database. Particular dependencies will be defined by
which the current state of the VE can be held.

db “create table $renderingdata” (

object char (50)
path string
location_x double
… …
dynamics string)

After populating a empty data table, the rendering
data bits of each VE object are to be saved with this
data table.

db “insert into $renderingdata” (

object
path
location_x
… …
dynamics)

values (
 ‘object name’
 accessing path
 $objectName::locationX
 … …
 $objectName::dynamics)

The data table accepts only one VE model (its
rendering data bits) at a time. To save a VE that has
N objects, above process is to be repeated N times.
After that, the VE code is to be generated
automatically according to the VE coding scheme.

4. FUNCTIONALITIES OF THE
DEMONSTRATION SYSTEM: A
WALKTHROUGH USE
The demonstration system can be applied by, for
instance, upholstery to design the layout of furniture,

or construct the real scene with given information.
The difference between these two sample tasks is, the
later usually has a rigid frame of reference, while the
previous allows the artists and VE developers to
throw away violation and be free to utilize their
creativity. To evaluate the demonstration system,
certain real indoor scenery has been created with the
reference to a 2D blueprint used as background
mage. See Fig.6. i

Figure 6. The 2D layout of the site
Based on the information encapsulated in above
blueprint, user query for VE templates can be defined.
The VE rapid prototyping system adopts 2D
interaction metaphor to define the search for VEs,
and browse the query results with panel utilities in
order for VE engineers to get an impression of which
VE template is suitable for reconstruction. Fig.7
shows how users started the search, and then initiated
the query by shrinking the search range and inputting
equired values. r

From 1st to 2nd level

From 2nd to 3rd level

Figure 7. Define VE query

After calculating the input values by users, the
system automatically evaluated the results and
displayed the evaluation outcome with the utility
panel shown in Fig.8.

Figure 8. The matching result
Above presentation of query outcome provided a
good overview of information relations to help users
to recognise which VE matches best regarding all
properties; which property is fulfilled best; and
whether a VE is determined by the system to be one
of the candidates because it matches all properties
well, or because it matches one property extremely
well. At random, VBedroom06 was selected to
visualise. During the visualising process, the meta
information was retrieved from VE database and
used to deploy each model correctively while
assembling them into integration. The visualisation

utcome can be seen from Fig.9. o

Figure 9. The visualization of VE template

Once the selected VE template is visualised by the
system, the revision for progressively approximating
to certain blueprint can be done accordingly. Fig.10
illustrates the introduction and relocation of new 3D

bjects. o

F

igure 10. Merge new model into the environment

During the reconstruction process, the console was
used to change the distance of the wall to adjust the
length-to-width ratio of the room, and consequently
the location of the door which should, according to
the blueprint (Fig.6), stand at the center of the room
but veering more to the left. This was done simply by
typing following scripts into the console (Fig.4.a),
and then pressed the key “F5” to evaluate the scripts.

#move the walls
$leftwall prepend [new Translation 1.0 0.0 0.0]
$rightwall prepend [new Translation -1.0 0.0 0.0]
#relocate the door
$mainscene remove $door
$facetas_frtwal insertloop 0 $loop_4frtwal_hole
$normal
Set loop_4frtwal_hole [VectorItr

 {-0.86 0.0 -4.5} {-0.86 0.0 1.5}
 {-1.2 0.0 1.5} {-1.2 0.0 -4.5}

$facetas_frtwal insertloop 1 $loop_4frtwal_hole
$normal
$door prepend [new Translation -1.3 0.0 0.0]
$mainscene append $door
$canvas postAllForRedisplay

To save the reconstructed scene as a reusable VE
template, users can either feature the VE by filling
the entries in the utility panel (Fig.11) to save it as a
database file, or activate “File Exporter/Importer”,
the runtime plug-in (Fig.3.b) to save it as a binary

ata file. d

To feature and save VE

Figure 11. Describe the VE with given
dependencies

Compared with other popular VE modeling
applications, with the use of above demonstration
system, both time and labour cost were largely saved
due to the availability of user interface tools, which
were designed for realizing multi-functional and
multi-levels control over the whole VE during the
system runtime. The VE can be created either from
scratch or built up based on background image, while
the application itself (the hosting shell) is capable of
doing self-modification by, for example, introducing
a console for realizing functional extension at
runtime which is impossible in a compiled language
driven development environment. With the built-in
code interpreter, the VE control is enlarged to a
limitless scope, that is, each memory piece can be
manipulated for achieving each possible design task.

5. CONCLUSION
In our infrastructure, we apply interpretative
computing tool and its binding of an abstracted
graphic library to design, implement and redevelop
VE applications. This infrastructure has been further
developed into a VE rapid prototyping system, which
benefits from scripting as a fundamental tool for
runtime reconfiguration of VE graphics, rendering
context and their control, as well as from the concept
of “VE template” by which it is not necessary to
build the whole VE completely from scratch.

6. REFERENCES
[Döl02a] Döllner, J., and Hinrichs, K. A generic 3D
rendering system, IEEE Trans. on Visualization and
Computer Graphics, Vol.8, No.2, pp.99-118, 2002.
[Fol97a] Foley, J.D., Andries, V.D., Feiner, S.K., and
Hughes, J.F. Computer graphics: principles and
practice, 2nd edition in C. Addison-Wesley, 1997.
[Gri96a] Grinstein, G.G., and Southard, D.A. Rapid
modeling and design in virtual environments,
Presence: Teleoperators and Virtual Environments,
Vol.5, No.1, pp.146-158, 1996.
[Oli03a] Oliveria, M., and Crowcroft, J. An
innovative design approach to build virtual
environment systems, Computer Laboratory,
Cambridge University, 2003.
[Ous98a] Ousterhout, J.K. Scripting: higher level
programming for the 21st century, IEEE Computer,
Vol.31, No.3, pp.23-30, 1998.
[Ran95a] Randy, P. A brief architectural overview of
Alice: a rapid prototyping system for virtual reality,
IEEE Computer Graphics and Application, pp.8-11,
1995.
[Tcl04a] Tcl open database connectivity, available at
http://sourceforge.net/projects.tclodbc.
[Win95a] Wingfield, M.A. MITRE’s virtual model
shop, in SPIE’95 conf.proc., pp.147-154, 1995.
[Zha98a] Zhao, Z.X. Virtual Reality based robot
mission control, Technical White Paper Document,
Superscape Virtual Reality Software Ltd.,
Hampershire, UK/School of Engineering, University
of Derby, Derbyshire, UK, 1997.

http://sourceforge.net/projects.tclodbc

	INTRODUCTION
	AN SCRPTING BASED SOLUTION
	Abstracted Graphic Rendering Engine
	Applied Computing Tool
	VE Database and Its Connectivity
	Human Machine Interface

	A VE RAPID PROTOTYPING(VERP) DEMONSTRATION SYSTEM
	VE Coding and Classification
	VE Database and Visualiser
	VE Controller

	FUNCTIONALITIES OF THE DEMONSTRATION SYSTEM: A WALKTHROUGH U
	CONCLUSION
	REFERENCES

