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ABSTRACT 
 
Finding correspondent feature points represents a challenge for many decades and has involved a lot of 
preoccupation in computer vision. In this paper we introduce a new method for matching images. Our detection 
algorithm is based on the local energy model, a concept that emulates human vision system. For true scale 
invariance we extend this detector using automatic scale selection principle. Thus, at every scale level we 
identify points where Fourier components of the image are maximally in phase and then we extract only feature 
points that maximize a normalized derivatives function through scale space. To find correspondent points a new 
method based on the Normalized Sum of Squared Differences (NSSD) is introduced. NSSD is a classical 
matching measure but is limited to only the small baseline case. Our descriptor is adapted to characteristic scale 
and also is rotation invariant. Finally, experimental results demonstrate that our algorithm is reliable for 
significant modification of scale, rotation and variation of image illumination.  
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1. INTRODUCTION 
Analyzing a scene, as human beings, our view is 
focused more on certain points. Human vision is a 
selective process and some points attract more 
attention than the others. In computer vision these 
points are referred as interest or feature points.  
Many applications like stereo matching, motion 
tracking, 3D reconstruction and camera calibration 
rely on the correct feature detection and their results 
are influenced directly by the accuracy of this 
operation. Until now a wide variety of image feature 
detectors have been developed being addressed under 
different names: corner, interest point, keypoint, 2D 
feature, junction. In general all these terms describe 
points that have significant change of the signal in at 
least two directions. 
Apparently, the most representative basic detector 

was introduced by Harris [Har88a]. This detector use 
an autocorrelation matrix and Gaussian kernel to 
weight derivatives inside a considered window. 
Despite of its well known potency Harris detector 
has a series of disadvantages. One important 
drawback of the Harris detector is its variation to 
image contrast (aperture of the camera). When the 
sequence of images is large and the illumination 
conditions vary, setting up the threshold can be very 
difficult. Another problem of this operator is caused 
by the Gaussian smoothing which represents an 
important part of its mechanism. Blurring operation 
that, mainly performed to eliminate image noise, can 
easily corrupt useful locations and therefore some 
potential feature points are completely lost. 
As was shown in [Kov03a] a trustworthy alternative 
for intensity based detectors is the local energy 
model. This important class of detectors, introduced 
firstly in [Mor87a], is inspired by the human 
neurophysiological mechanism and filters merely 
points with considerable phase congruency of image 
Fourier components. In other words, extracted key 
points are only those points where important 
congruency of the phase signal occurs.  
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Even though the reported results were incentive, this 
detector fails for important modification of image 
scale. 
The principal contribution of this paper is a new 
scale invariant detector based on the local energy 
model. Invariance property of detectors is essential in 
computer vision applications like images matching. 
For a correct matching an important number of 
detected feature points should be classified in inliers. 
Robust fitting methods, such as RANSAC or Least 
Median of Squares, perform poorly when the percent 
of inliers falls much below 50%. 
In our approach, using results of [Koe84a] and 
[Lin98a] ,we explore images at large range of scales 
applying Gaussian smoothing that was proved to be 
the only optimal kernel for multi scale representation.  
To validate our detector, the classical image 
matching application is considered. In order to 
identify correspondences from images, every feature 
point should be represented in a convenient way.  
The second contribution of this paper is represented 
by the new matching method based on the 
Normalized Sum of Squared Differences (NSSD) 
which was used in general only as a matching 
measure for the small baseline case. For our problem, 
where important rotation and scale modification alter 
images, classical NSSD fails. We extended NSSD to 
scale space using characteristic scale properties. For 
rotation invariance a dominant orientation is assigned 
to every keypoint after a gradient orientation 
histogram is computed in its neighborhood. 
Experimental results demonstrate that this new 
algorithm is reliable for matching images with 
significant modification of scale, rotation and 
variation of image illumination. 
 
Related work: In the last decades a lot of research 
effort was focused to find more optimal detectors. 
One of the oldest detectors was proposed in 
[Bea78a]. His detector uses the Hessian matrix 
computed with Gaussian filter. Moravec [Mor77a] 
was the first one who used the intensity of the signal 
in processing the feature points and his detector is 
based on the autocorrelation function which 
measures the difference between a considered 
window and its shifted value in several directions. 
[Tom91a] was focused on tracking, considering that 
interest points are determined only by those points 
that has a significant magnitude of eigenvalues of the 
autocorrelation matrix. More recently in [Smi97a] 
was developed SUSAN detector that thresholds 
pixels in the neighborhood and computes ratio of 
areas.  

As was presented before, important work was 
directed to emulate human vision mechanism for 
detecting special points in images. The local energy 
model was pioneered [Mor87a],[Mor88b],[Ven90a], 
[Rob97a],[Kov03a] and represents a reliable 
technique based on how physical stimuli are 
perceived by human minds. But all these operators 
can be seen as basic detectors and are not invariant to 
scale space.  
Scale invariance was intensively studied by 
Lindeberg [Lin99b]. His automatic scale detection 
principle forms the base for the majority scale 
invariant detectors. Feature points are found 
searching for maxima in 3D scale space of 
normalized derivatives. Lindeberg used normalized 
Laplacian of Gaussian for blob detection. Lowe 
[Low04a] based his detection on multi resolution 
approach constructing a pyramidal 3D space using 
DoG where features are determined in local extrema. 
More recently [Mik04b] introduced the Harris 
Laplacian operator which has been proven to have 
excellent results. As its name disclosed, this operator 
is based on Harris detector used for 2D localization 
of features and then using the multi scale 
representation for extraction scale invariant feature 
points.  
The new detector introduced in this paper is based 
also on the automatic scale selection principle but the 
main difference consists in using local energy model 
to find keypoints in scale space images. 
Descriptors, seen also as filters, received a lot of 
attention in computer vision. A large variety of 
descriptors have been introduced till now. In 
[Ran99a]   filters were compared in the context of 
texture classification. More recently local descriptor 
performances were analyzed in [Mik03a]. But the 
best known one was introduced in [Low04a]. In the 
last years a lot of work was directed to improve SIFT 
descriptor. For our problem we adapt NSSD to scale 
space and in order to have rotation invariance we use 
a similar approach like in [Thu96a] and [Low04a], 
assigning a prominent orientation to every keypoint. 
Overview. This paper is organized as follows. In 
Sections 2 and 3 we briefly review local energy 
model and scale space theory. Implementation of our 
scale invariant detector is presented in Section 4. 
Section 5 shows how we use NSSD for filtering 
feature points and finally experimental results and 
conclusions are given in Section 6 and 7. 

2. LOCAL ENERGY MODEL 
Local energy model was introduced in by Morrone 
[Mor87a]. His operator searched points where 
maximal phase congruency is reached and observed 
that these locations present a kind of “order”.   A 



common method for computing local energy is to 
convolve image with a quadrature pair of filters in 
the spatial domain. The quadrature pair of filters is 
composed of one even and one odd-symmetric filter 
that have zero mean and identical norms and are 
orthogonal. A general expression of local energy is:  
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Where Oeven and Oodd are the image convolved with 
an even-symmetric filter and with an odd-symmetric 
filter for a considered point, respectively. 
Extension of local energy expression for images is 
almost straightforward. It necessitates a separate 
computation for two different directions. Finally, the 
results are combined in order to express 2D local 
energy. Following previous steps, points with 
significant locally maximal variation in at least one 
orientation are identified. To detect reliably image 
feature points computation of oriented energy is 
necessary. This can be imagined as a total energy 
which takes into consideration several values of local 
energy computed in different direction: 
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Using this expression the results are satisfactory but 
due to the fact that local energy is a dimensional 
quantity that depends on the image contrast, setting 
of the threshold to find the proportion of the energy 
that corresponds to a feature can become a difficult 
task.  
An alternative is to substitute local energy expression 
by the phase congruency information of the signal. 
The proportionality between phase congruency and 
local energy of a signal was proven in [Ven90a]. 
Therefore, a local maximum of local energy 
corresponds to a local maximum of phase 
congruency: 
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where E is the energy and An represents the 
amplitude of the nth Fourier component. In contrast 
with local energy, phase congruency is a 
dimensionless measure that has values between 0 and 
1. The lower is the computed value of the phase 
congruency for a selected point, the higher is the 
potential of that location to be treated as an interest 
point. In consequence, points with values of phase 
congruency close to 1 are classified as ordinary 
points and points with values of phase congruency 
close to 0 are filtered as keypoints. 
Recently in [Kov03a] was introduced an improved 
extension of equation (3) that provides better 

localization of features and also reduces the 
sensitivity to noise. Our approach of identifying 
feature points in every image scale is inspired by his 
expression: 
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W(x) is a frequency weight factor (as significant as 
many frequency congruency are recorded), ε 
represents a small constant that avoids division by 
zero andφ is the phase angle.  

 

            
Figure 1. a. initial image b. minimum moment      
c. maximum moment. 
Only the energy values that exceed threshold T, the 
estimated noise influence, are counted in the final 
result. In practice the computation of local frequency 
values is not performed with Fourier transformation 
but is preferred to be used banks of Gabor wavelets 
tuned to different spatial frequency. To extract 
feature points the covariance matrix of phase 
congruency is computed. Next, performing the 
singular value decomposition the eigenvalues are 
extracted. When both of the eigenvalues are larger 
than a threshold, a point is classified as a keypoint. 
The eigenvalues of the covariance matrix 
corresponds to the minimum and maximum moments 
computed using the classical moment analysis 
equation. Interest points are considered only if the 
magnitude of the minimum moment is larger. 
Expressing local energy in this way has also an 
attractive characteristic: from the same expression 
can be extracted feature points and edges, embedded 
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by the eigenvalues of the phase congruency 
covariance matrix (see Fig.1).  

3. SCALE SPACE 
The concept of scale space was introduced in 
[Lin98a]. Real world objects appear in different ways 
depending of the selected observation scale. Scale 
space representation is defined as a solution to the 
diffusion equation which is equivalent with the 
convolution of the signal with Gaussian kernel: 

),(),,(),,( yxIyxGyxL ∗= σσ   

The symbol * represents the convolution operator for 
x and y directions and G(x,y,σ) is the Gaussian kernel 
with σ standard deviation. In the previous work of 
[Koe84a] [Bab86a] [Lin99b] was proved that under a 
variety of reasonable assumptions Gaussian is the 
unique kernel for generating a scale-space. This 
uniqueness of the Gaussian kernel is emphasized also 
by the neurophysiologic studies in [You87a] that  
have shown that mammalian retina and visual cortex 
present sensitive fields of which the response can be 
properly modeled by Gaussian derivatives up to 
order four. 
Different levels of resolution of scale space are 
obtained by convolving the initial image with 
Gaussian kernels that has different values of the 
standard deviation. Features are extracted by 
applying combinations of derivative functions at 
different scales. A similar method is to use a 
pyramidal representation of space, where the 3D 
space is composed by a set of successively smoothed 
and sub-sampled representation of the original 
image. This can be performed using difference of 
Gaussian (DoG) which is a close approximation of 
Laplacian of Gaussian (LoG). The main difference 
between these methods is the first one (after 
smoothing operations) maintains the same number of 
grid points at all scale levels, while the second one 
reduces the number of grid points at every next level 
by subsampling. 
One important feature of the spatial derivatives is 
their amplitude values in general decrease with scale. 
This can be intuitively understood because the 
smoothing operation can only decrease the value of 
the processed signal. This behavior is known as the 
non-enhancement property of local extrema, which 
states that values of local maxima cannot increase 
and respective values of local minima cannot 
decrease. Therefore, the amplitude values of the 
signals always decrease with scale. In order to 
maintain the scale invariance derivative functions are 
normalized with respect to scale:               
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where L(m) and G(m) represent the mth order derivative 
of the blurred image level L and Gaussian kernel G.  
Automatic scale selection principle is built on the 
relation between images at different resolution levels. 
Its applicability is extremely important due to the fact 
that in general, images contain sharp and diffuse 
features and is almost impossible to identify all kinds 
of features at the same scale level.  Lindeberg 
[Lin98a] postulates that in absence of other evidence, 
the selected scale (characteristic scale) is the scale 
where a function of some combination of normalized 
derivatives attains a local maximum. The idea behind 
characteristic scale is borrowed from physics and 
estimates the characteristic length of corresponding 
image structures. The characteristic scale is 
independent of the image scale and the ratio between 
selected scales of two extrema that represent the 
same image feature is the same as the ratio between 
image scales. 

(5) 

4. INVARIANT SCALE DETECTOR  
Even if the local energy model based detector proved 
good results it is not scale invariant. For ratio scales 
larger than 1.5 this detector cannot be reliable 
anymore in application like feature matching or 
object recognition where repeatability rate should be 
greater than 50%. In order to achieve scale 
invariance in this paper images are represented at 
different scales. Our detector is based on the local 
energy model extended to scale space using the 
automatic scale selection principle. Combining these 
two concepts, features are searched in 3D space 
created by the local energy computed at every 
resolution level. 
The scale space is constructed by successively 
blurring initial images with a Gaussian kernel with a 
standard deviation that increase exponentially. After 
scale space is built our detection algorithm consists 
of two main steps.  
First, using expression (4) at each scale level, 
locations where the energy has a local maximum are 
identified and eigenvalues of the phase congruency 
covariance matrix are computed. As was presented in 
Section 2, keypoints are localized where the 
magnitude of the minimum moment is larger. To 
extract interest points a non maximal suppression of 
the minimum moment is performed. Due to the fact 
that standard non maximal suppression can cluster 
features a better solution is to use adaptive non 
maxima suppression [Bro05a] which has the 
advantage to distribute more uniformly detected 
points.  
In the second stage every candidate feature point is 
verified. Based to the automatic scale selection 
principle the normalized derivatives are computed at (6) 



every scale level and the keypoints are identified 
only in the locations where a maximum over scales is 
attained. In order to identify which normalized 
derivative expressions give best results, we have 
analyzed several combinations of derivatives. 
Theoretically can be used derivatives till the 4th 
order. In our experiments we analyzed only the 
derivative till 2nd order (see Fig. 2).  

 
 
Figure 2. Derivative of Gaussian kernels. 
Similar with results reported in [Mik04b] our detector 
gave best results for Laplacian of Gaussian (LoG) 
expression which has previously been used for blob 
feature extraction in [Lin98a] and approximated as 
DoG in [Low04a] to detect keypoints. To conclude, 
our detection algorithm can be resumed in three main 
steps: 
1. For a given image, successive levels of resolution 

are computed. Each k resolution level Ik of image 
is obtained by smoothing the original image with a 
Gaussian kernel with a standard deviation (σ) 
increasing monotonically over the scales (σk= σ0

k). 
The ratio of sigma between successive scales is 
considered to be in the range (1.1 to 1.4). Our 
experimental results were obtained considering a 
value of the standard deviation of 1.15 with 15 
levels of the scale space and σ0=1.25.  

2. Each level is searched for locations that attain a 
local maximum. Adaptive non maxima suppression 
of minimum moment of the phase congruency 
correlation matrix is used for filtering the feature 
points.  

3. Iteratively every candidate point is verified and are 
withhold only those points that reach a local 
maximum of the normalized LoG over the scale 
space.  

 

5. THE NSSD BASED MATCHING 
Feature matching problem is a classical problem in 
computer vision. Even if this task is straightforward 
for humans, machines still have problems when 

substantially change of viewing conditions like scale, 
rotation, variation of illumination degrade the initial 
information. A correct matching between images 
corresponds to a reliable extraction of the epipolar 
geometry, one of the basic steps in 3D 
reconstruction. A sufficient amount of 
correspondences between detected keypoints is 
necessary but still does not need to be perfect since 
robust estimation algorithms of the geometric 
transformation between images such RANdom 
SAmple Consensus will reject eventually 
mismatches. 

     
In this paper, to identify correspondent detected 
feature points a new matching method is introduced 
which can be seen as an extension of the Sum of 
Squared Differences Normalized (NSSD). This is a 
classical measure to determine putative 
correspondences for small baseline images. For our 
case we introduce an improved version of this 
measure. Considering two images I1 and I2 and the 
correlation windows W1 and W2 of dimension 
(2r+1)x(2r+1)  centered on two points p1 and p2  the 
NSSD expression  is: 
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with  and  represent the means of the selected 
windows. 

_

1W
_

2W

We adapt NSSD expression to scale space using the 
characteristic scale extracted from every detected 
feature point. Thus, the size of windows W1 and W2 
should be proportional with the characteristic scale of 
considered points, having dimensions  
(2r1+1)x(2r1+1) and (2r2+1)x(2r2+1) respectively; 
where the radiuses r1 and r2 should be  proportional 
with the characteristic scales s1 and s2 and also with 
image dimension(e.g. 1.5% of image size). Without 
losing generality presuming that r1<r2 for computing 
NSSD we need to interpolate values of W2 to 
dimension of the window W1. As is expected, correct 
results are obtained only if the ratio of image scales 
and the ratio between characteristic scales of 
considered feature points are approximately equal. 
The next step is to solve the rotation problem. This 
part of our approach is inspired by [Thu96a] and was 
also used with success in [Low04a]. In order to 
determine a prominent orientation for every keypoint 
the gradient magnitude and orientation is 
precomputed at every level of scale using pixel 
differences. Let δx and δy be the finite differences 
across x and y directions for a considered pixel. 

                          
 

yx
LLb xy ∂∂

∂
=

2

.
2.

2

x
La xx ∂

∂
=L

 

      
                            2

2

2

2

.
y

L
x

LLd xxyy ∂
∂

∂
∂

=

(7) 

yyxx LLoG. Lc +=



Figure 3. Orientation computed using pixels 
differences; a. initial image with selected window; 
b. magnitude image; c. pixel orientation for 
considered window; d. image with dominant 
orientation.  
The magnitude m and orientation φ can be calculated 
using the following expressions: 

         22 ),(),(),( yxyxyxm yx δδ +=     

             ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(
),(

arctan),(
yx
yx

yx
x

y

δ
δ

ϕ  

The gradient orientation histogram is computed in 
the neighborhood of every keypoint (see Fig. 3). In 
our experiments, the histogram is composed by 36 
bins with every bin covering a 10 degree range of 
orientations. 
The number of bins represents a tradeoff between 
computation time and accuracy of the final results. 
The contribution of each neighbor pixel is weighed 
by the gradient magnitude and a Gaussian window 
with σ that is 1.5 times of the respective 
characteristic scale. Dominant orientation of 
keypoints is determined by the highest peak of the 
histogram. 
In summary, extracted feature points are described 
by their centered window proportional with their 
characteristic scale and rotated according to the 
computed dominant orientation. 

6. RESULTS AND DISCUSSION 
Evaluation of our detector is done using the 
repeatability criterion that was introduced in [Sch00a]. 
This criterion takes into account locations as well as 
detected scales of points. The score of repeatability 
for a pair of images represents the ratio between the 
number of point-to-point correspondences and the 

minimum number of points detected in images. Note 
that only points located in the scene part visible in 
both of the images are considered.  To measure the 
repeatability rate a unique relation between points 
from two images has to be known. In this paper we 
limit the analysis only to planar scenes. Supposing 
that x1 and x2 represent the projected points of a 3D 
space point the relation between them is given by the 
homography expression: 

 a. 

c. d. 

b. 

                            1122 xHx =    (10) 
Whether the homography matrix is known the 
criterion identifies corresponding points if the error 
of the relative locations is less than 1.5 pixels and the 
error in the image surface covered by the 
neighborhoods is less than 40%. 
We compare our detector with some representative 
scale invariant detectors and also with standard local 
energy detector. Our detector gives very good results 
(see Fig.4) having a better repeatability value than 
DoG(SIFT) operator and similar values like Harris 
Laplacian detector. Due to the fact that a reliable 
detector should have a repeatability score greater 
than 50% our operator can be considered creditable 
approximately till a scale ratio of 3. As expected 
basic local energy detector is not invariant to scale 
and thus it can not be used in applications where 
important variation of scale occurs.  

(8) 

(9) 

 
Figure 4. Comparative repeatability scores for 
considered detectors. 
We validate our method by considering the feature 
matching application is considered in the following. 
Therefore, several images and obtained results are 
shown in the next figures. 
The first pair of images presented in this paper is 
taken from INRIA data base. Beside of the scale and 
rotation (see Fig. 5) a small view angle difference 
altered images. For this example 53 corresponding 
feature points were found using our algorithm. Even 
if visually more points seem to be correct assigned, 
after applying RANSAC, only 32 correct 
corresponding features remain.  



  

Figure 5.   a.  initial    corresponding   points ;              
b. correspondences after applying RANSAC. 
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Next, another set of images with obtained results is 
illustrated (see Fig. 6). These images were processed 
synthetically having a scale ratio of 2 and different 
levels of contrast. As can be observed even if the 
image foreground contains structures that are 
repeated (tables, chairs and umbrellas), 
corresponding feature points are correct identified. 
For the first pair (+30 units difference of contrast 
level) 54 correspondent points are identified. If the 

contrast is increased (+50 units difference of contrast 
level) 31 matches are filtered in the final. 

a. 

b. 

During our experiments the new detector combined 
with extended NSSD based matching method gave 
very promising results when important modification 
of scale, rotation and illumination affect images. 
Neither the less important, our method gives correct 
results if small affine transformation between images 
is presented.  

7. CONCLUSIONS 
In this paper a new algorithm for matching images 
was presented. Our detection of invariant feature 
points is based on local energy model extended to 
scale space. Because both of the used principles are 
based on human neurophysiological mechanism we 
deem that our detector filters information in a similar 
way as human vision system perceives reality. The 
invariance to the scale of our detector was 
demonstrated by means of the image matching 
application where correspondences were filtered 
using NSSD measure adapted to scale and rotation 
invariant.  
Experimental results prove that local energy model 
can be extended to scale space and based on 
registered repeatability score our detector can be 
used in applications where important scale ratio 
between images occurs. 
In future work increasing computation efficiency and 
more precise feature point localization represent 
important challenges. Also, extension of our detector 
in context of the affine transformation will be 
considered. 
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