
Instant Animated Grass

Ralf Habel Michael Wimmer Stefan Jeschke
Institute of Computer Graphics and Algorithms

Vienna University of Technology, Austria
{habel,wimmer,jeschke}@cg.tuwien.ac.at

ABSTRACT
This paper introduces a technique for rendering animated grass in real time. The technique uses front-to-back
compositing of implicitly defined grass slices in a fragment shader and therefore significantly reduces the overhead
associated with common vegetation rendering systems. We also introduce a texture-based animation scheme that
combines global wind movements with local turbulences. Since the technique is confined to a fragment shader, it
can be easily integrated into any rendering system and used as a material in existing scenes.

Keywords
Real-time Rendering, Natural Phenomena, Natural Scene Rendering, GPU Programming

1. INTRODUCTION
Interactive rendering of vegetation in natural scenes
plays an important role in virtual reality and computer
games where grass is an essential part of most natu-
ral scenes. Unfortunately, grass is also very complex:
modeling each individual blade of grass would require
a huge amount of geometry, making it impossible to
render in real time. Common acceleration techniques
represent grass using billboards [Pel04]. However,
even these simplified billboards lead to massive over-
draw in realistically modeled scenes. Furthermore,
placing grass into a scene using geometry requires a
significant storage and modeling effort.
In this paper, we present a new method to render ani-
mated grass in real time that exhibits all important vi-
sual characteristics of grass, namely parallax and oc-
clusion effects when the viewpoint moves, as well as
animation due to wind. It is efficient to render and
easy to incorporate into existing rendering systems.
The main target are video games with a first person
viewpoint where grass is mostly seen at grazing an-
gles. Grass is represented using implicitly defined tex-
tured billboards perpendicular to the terrain geometry
which are ray traced in a fragment shader and is there-
fore suited for short and dense grass such as lawns

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a
fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

or meadows. While the billboards could also be de-
fined using conventional geometry, the advantage of
an implicit definition is that no extra geometry has to
be generated, only the terrain geometry and its asso-
ciated tangent space is required as input. This makes
it easy to apply the grass to different scenes and the
output speed merely depends on the number of pix-
els covered by grass rather than on the density of the
grass or the extent of the terrain. Standard lighting
techniques such as dynamic lighting and shadowing,
including light maps or precomputed radiance transfer
can be used without modification. Furthermore, we
animate grass using a texture based approach that in-
corporates both low-frequency phenomena like gusts
of wind and high-frequency phenomena like small tur-
bulences, leading to a very realistic appearance of the
rendered grass.

Figure 1: A terrain textured with animated grass with
moderate grass density and height.



2. RELATED WORK
In order to display complex volumetric effects such
as fur and short hair, Kajiya and Kay [KK89] intro-
duced volumetric textures, called “texels”. In this con-
text, texels are representations of a three-dimensional
material by a cubic reference volume that is mapped
onto a surface repeatedly. A texel itself is a three-
dimensional array approximating the visual proper-
ties of a micro-surface. They were created to solve
the problem of spatial aliasing of ray-traced com-
plex geometries. Rendering a texel involves front-
to-back compositing along a ray, which is also used
in our method. An extension and application to nat-
ural scenes of volumetric textures was presented by
Neyret [Ney98]. The typical real-time implementa-
tion of texels uses stacks of polygons, mapped with
semi-transparent textures [BH02] [Len00] [LPFH01]
[MN98] . However, slices that are parallel to a terrain
geometry are not optimal for viewing positions typical
for walkthroughs, with objectionable artifacts at graz-
ing angles.
The most common way to represent grass (also used
in many current games) are billboards mapped with a
texture of several grass blades [Pel04]. The billboard
vertices are usually animated analytically. However,
a massive amount of polygons is required to densely
cover a terrain, and analytical animation looks very
uniform.
Perbet and Cani [PC01] combine different grass repre-
sentations at different distances to render and animate
prairies in real time. In the nearest level of detail, grass
blades are modeled individually, which makes it diffi-
cult to combine various types of grass and flowers.
The proposed algorithm is closely related to real-time
relief mapping [POaLDC05] [OP05] [WWT+03]. In
contrast to those methods, which are based on ray trac-
ing a height field within a shell on the surface of an
object, the presented method ray traces a regular grid.

3. RENDERING GRASS
Motivation
We model grass as a collection of textured billboards,
and arrange them in a regular grid.
Typically, a grass texture is fully transparent between
the individual grass blades and fully opaque within the
blades. However, partial opacity arises at the edges of
the grass blades if the grass texture is a filtered version
of a higher resolution texture, or if it has been gener-
ated using an anti-aliased renderer in the first place.
Therefore, the colors and opacities of billboards over-
lapping in screen space need to be correctly compos-
ited. Just as in volume rendering, this can be done ei-
ther in back-to-front or front-to-back fashion [LL94].
Back-to-front compositing corresponds to standard
transparency alpha blending used when rendering the

billboards as geometry. However, back-to-front com-
positing can be very inefficient because all slices have
to be traversed in order to get a correct result. Further-
more, if the billboards intersect each other, a consistent
back-to-front order does not exist. The popular alter-
native of using alpha testing instead of alpha blending
leads to noticeable aliasing artifacts especially at the
edges of the grass blades.
Front-to-back compositing, on the other hand, is typ-
ically used with ray tracing and allows for early ray
termination when the accumulated opacity is suffi-
ciently high. We exploit this fact for grass render-
ing in the following way: Instead of rendering the
textured grass billboards using polygons, we define
them implicitly on a “carrier polygon” and ray trace
these “virtual billboards”’ in the fragment shader using
front-to-back compositing (also known as the “over”-
operator [PD84]). This allows exiting the fragment
shader when the opacity reaches a user-defined thresh-
old. Furthermore, intersecting billboards are handled
automatically, always giving correct compositing re-
sults. We have found that the illusion of grass can be
perfectly maintained even when doing a small, fixed
number of iterations, which is more amenable to cur-
rent graphics hardware.
The setup of the ray tracing step is very similar to re-
lief mapping [POaLDC05], where a height map, de-
fined in a shell carried by polygons is ray traced in the
fragment shader. As with relief mapping, the regular
grid of grass billboards therefore seem to reside inside
the carrier polygon (see Figure 2).

Figure 2: A quad patch (wireframe overlay) rendered
with fully opaque textures. The grid structure is gen-
erated in the fragment shader.

The most significant advantage of rendering grass in
the fragment shader may be the ease of modeling and



integration into existing rendering systems. Grass can
be defined as a material and does not require any other
change in the scene definition (whereas in polygonal
rendering, each grass billboard has to be placed either
by hand or automatically). Furthermore, we will show
how to animate the ray traced grass in high quality.

Grass Ray Tracer
This section describes the grass ray tracer in more de-
tail. A basic grass patch consists of the ground texture
and a texture containing one subtexture for each vir-
tual billboard (or slice) in the patch. We currently use
the same set of billboard textures for both axes of the
regular grid. For current graphics hardware, we allow
the raytacing loop to exit before full opacity has been
reached. The remaining opacity can be filled using
a constant color or an additional, fully opaque grass
slice (Figure 4). The fragment shader casts rays into
a shell defined by the carrier polygon at the top, and
a virtual ground polygon at the bottom that is offset
by a user-defined distance along the negative tangent-
space w axes at the vertices (i.e., the inverted normal
vectors).

Figure 3: A ray is cast from the viewing point through
grass slices.

Grass can be applied to any mesh in a scene that has a
tangent space (u,v,w) defined. A basic grass patch is
tiled onto the whole mesh. Note that this leads to sim-
ilar restrictions as with relief mapping, where silhou-
ettes are difficult to define. Additionally, analogous
to relief mapping, the viewpoint cannot move into the
grass.
The fragment shader takes as input the interpolated
tangent space vectors, the view vector ~v in tangent
space (interpolated from ~p−~s at each vertex ~p and
viewpoint ~s), and the interpolated texture coordinates
(which give the ray entry point ~e see Figure 3). The
user also has to provide the parameters du,v for the dis-
tance between the slices in tangent space and the depth
of the ground plane h. The shader executes the follow-
ing steps:

1. Calculate for both u and v a texture offset to select
the initial grass slices.

Figure 4: A grass data set consisting of grass blades
(left), a ground texture (right) and a fully opaque grass
slice (bottom). Note that as in any texture packing
method, a one-texel border needs to be observed be-
tween grass slices.

2. Adjust this offset depending on the sign of the
view vector so the same slice is seen from both
sides.

3. Calculate the positions pu,v of the first planes to
be ray traced in both u and v directions according
to du,v using a floor() operator.

4. Enter the raytacing loop.

The inner ray tracing loop consists of the following
steps:

1. Calculate the intersections with the next slice in u
and v direction. Since the slices are axis aligned,
the ray-plane intersection

~x =~e+~v ·
~np · (~p−~e)

~np ·~v
, (1)

where~np is the normal vector and ~p is an arbitrary
point on the plane, simplifies to

~x =~e+~v ·
pu,v,w− eu,v,w

vu,v,w
, (2)

depending on which axis is used.

2. Choose the closer intersection point and incre-
ment (or decrement, depending on the sign of v)
the corresponding slice by du,v.

3. Test intersection point against the virtual ground
polygon. If the intersection is outside the shell,
intersect the ray with the ground polygon using
equation 2.

4. Composit the current color ~c with the color of
the slice ~ci (with associated alpha values α and
αi) using the standard “over” blending function,



which assumes that colors are premultiplied with
their corresponding opacity values:

~c = ~c+(1−α) ·~ci

α = α +(1−α) ·αi (3)

After the raytracing loop, the remaining transparency
is filled with a texture lookup from the fully opaque
grass slice or the average color of the grass data set. A
single grass patch rendered with the data set of Figure
4 using 16 slices for both u and v axes can be seen
in Figure 5. We have found that a very low number (4
was used in the images shown) of ray casting iterations
is sufficient for high image quality. This helps to keep
the number of required texture reads low.

Figure 5: A quad patch rendered with the data set of
Figure 4. The grid structure is apparent at perpendicu-
lar angles but vanishes at more grazing angles.

Especially for higher grass, if the grass patch is ex-
pected to be viewed at perpendicular angles, the grid
structure becomes apparent. This can be mostly
avoided by adding a horizontal grass slice (in the mid-
dle of the shell) which is ray cast just like the vertical
slices (Figure 6).

Visibility Interactions
If the grass is to interact with the rest of the scene,
visibility with scene objects has to be resolved. Other-
wise, the objects will be clipped against the top of the
grass (Figure 7). The correct solution would be to ren-
der the opaque objects first and generate an offscreen
buffer with the corresponding depth information (for
example using the multiple render target functionality
found in current graphics hardware). When rendering
the grass, the depth value at which to terminate a ray
can be read from this buffer.
However, this method requires a non-trivial modifica-
tion of the rendering pipeline, and therefore we opted
for a simpler solution. Instead of testing the ray against
the current depth buffer, we generate a depth value di-
rectly in the fragment shader by calculating the depth

Figure 6: A quad patch with the same data set as in
Figure 5 but with an additional horizontal plane at half
the ground depth. The grid structure is not dominant
even at perpendicular angles.

Figure 7: A grass patch with (left) and without (right)
correct visibility.

when a threshold opacity has been reached. Depend-
ing on the hardware used, it may prove to be effi-
cient to terminate the ray casting loop through an early
out if the threshold opacity is reached. The fragment
shader then outputs a depth value determined from the
slice distance. This does not require any modifica-
tion of the rendering pipeline and gives correct occlu-
sion for the fully opaque parts of grass blades. The
semi-transparent parts of grass blades are not handled
exactly, but the introduced errors are unnoticeable in
practice.

4. ANIMATING GRASS
The perceived realism of rendered grass depends
greatly on whether it is animated or not. Previous
methods to animate grass relied on analytic functions
(usually combinations of sines and random perturba-
tions) applied to billboard vertices, which results in
fairly simple grass blade movement. A realistic simu-
lation of grass movement has to take two components
into account. On the one hand, gusts of wind cause
relatively large areas of grass to bend in the same di-



rection. On the other hand, high frequency wind turbu-
lences near the ground cause smaller, but more random
movements of grass blades.
In this paper we propose a texture-based animation
scheme for grass billboards. Instead of animating the
billboard vertices, we distort the texture lookups of the
grass billboard horizontally in u or v direction, depend-
ing on the billboard orientation. This offset is looked
up in a separate noise map that covers the whole mesh
and not only an individual grass patch. The offset is
scaled with the height above the ground plane of the
grass so that at the bottom of the grass billboards stay
fixed. The noise map is translated each frame to define
the overall wind direction. Although this is a shear
operation, with sufficiently small pertubations the im-
pression of moving grass can be maintained. Note
that this animation technique works both for standard
polygonal billboards as well as for our raytraced vir-
tual billboards.
The advantage of texture-based animation is that any
procedural or hand-crafted texture can be used, while
the animation over the whole mesh will always remain
consistent. The noise texture map used in this paper is
a combination of two Perlin noise functions [Per85].
A low-frequency noise function with higher ampli-
tudes simulates gusts of wind, and a high-frequency
noise map with lower amplitudes introduces more er-
ratic movements to the grass blades.

5. RESULTS
The proposed method was implemented on a 3.2 GHz
Pentium 4 and a GeForce 7900 GT, using DirectX
HLSL Shader Model 3.0 and the OGRE [OGR] open
source graphics engine. To generate grass slices, the
commercial 3D software Maya and its PaintFX fea-
tures were used (Figure 4). The accompanying video
shows a scene with 8× 8 grass patches, where each
patch contains 16 slices in u and v direction (Figure
1) and a second, denser and shorter grass data set with
32× 32 slices in u and v (Figure 8). The grass is an-
imated using the noise map described in the previous
section, and visibility with shown polygonal objects is
resolved correctly.
The performance of the algorithm depends on the
number of pixels covered and on the ray-casting it-
eration depth. The camera path shown in the video,
rendered at a resolution of 1024× 768 and an itera-
tion depth of 4, results in an average frame rate of 140
frames per second.
For comparison, we generated a simple scene with
grass billboards represented by hand-placed billboard
polygons using standard alpha blending. With 32× 2
slices per grass patch and 8 × 8 patches, an aver-
age frame rate of 90 frames per second can be ob-
tained. Compared to the billboard implementation,

our method incorporates correct alpha blending, tex-
ture based animation and does not require the geome-
try to be modeled by hand. The much higher perfor-
mance of our method can be explained by the reduced
overdraw and the fact that current hardware is fill-rate
optimized.
A HLSL implementation of the grass shader and the
textures used in this paper can be found at [Hab].

Figure 8: A terrain textured with short, dense grass.

6. CONCLUSION AND FUTURE
WORK

This paper has introduced a new method to render ani-
mated grass in real time. Instead of rendering polygo-
nal billboards, the technique uses front-to-back com-
positing of implicitly defined grass slices in a frag-
ment shader and therefore significantly reduces the
overhead associated with rendering dense vegetation
scenes. One of the main advantages of the method
is its ease of integration: as all operations are refined
to a single fragment shader, grass can simply be in-
corporated as a material into any existing scene and
renderer that supports hardware shading, thus avoiding
the tedious modeling effort and storage costs of geo-
metric grass billboards. Furthermore, we have shown a
texture-based animation technique that combines con-
sistent global wind motion with small, high-frequency
perturbation, leading to a much more natural impres-
sion than previous analytic methods.
The performance of the shader is independent of the
density of the grass, so a massive amount of slices can
be rendered. Standard filtering techniques and levels
of detail can be used with the proposed method. We
are currently investigating methods to display silhou-
ettes of grass by adapting higher order surface approx-
imations to the presented algorithm and ways to move
the camera into the grass consistently. Furthermore, it
should be easy to break up the regularity of the grass
patches using Wang tiling [CSHD03]. Finally, we are



investigating ways to incorporate advanced lighting
techniques like self shadowing to even further increase
realism.

7. ACKNOWLEDGEMENTS
This research was funded by the Austrian Science
Fund (FWF) under contract no. P17261-N04. The au-
thors would like to thank Oliver Mattausch for very
helpful discussions and comments.

REFERENCES
[BH02] Brook Bakay and Wolfgang Heidrich. Real-

time animated grass. In Proceedings of Euro-
graphics (short paper), 2002.

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan
Hiller, and Oliver Deussen. Wang tiles for im-
age and texture generation. ACM Transactions
on Graphics, 22(3):287–294, 2003.

[Hab] www.cg.tuwien.ac.at/research/publications/
2007/Habel_2007_IAG/.

[KK89] James T. Kajiya and Timothy L. Kay. Render-
ing fur with three dimensional textures. In SIG-
GRAPH ’89: Proceedings of the 16th annual
conference on Computer graphics and inter-
active techniques, pages 271–280, New York,
NY, USA, 1989. ACM Press.

[Len00] Jerome Edward Lengyel. Real-time hair. In
Proceedings of the Eurographics Workshop on
Rendering Techniques 2000, pages 243–256,
London, UK, 2000. Springer-Verlag.

[LL94] Philippe Lacroute and Marc Levoy. Fast vol-
ume rendering using a shear-warp factoriza-
tion of the viewing transformation. In SIG-
GRAPH ’94: Proceedings of the 21st annual
conference on Computer graphics and inter-
active techniques, pages 451–458, New York,
NY, USA, 1994. ACM Press.

[LPFH01] Jerome E. Lengyel, Emil Praun, Adam Finkel-
stein, and Hugues Hoppe. Real-time fur over
arbitrary surfaces. In 2001 ACM Symposium
on Interactive 3D Graphics, pages 227–232,
March 2001.

[MN98] Alexandre Meyer and Fabrice Neyret. Inter-
active volumetric textures. In George Dret-
takis and Nelson Max, editors, Eurograph-
ics Rendering Workshop 1998, pages 157–168,
New York City, NY, July 1998. Eurographics,
Springer Wien. ISBN 3-211-83213-0.

[Ney98] Fabrice Neyret. Modeling, animating, and ren-
dering complex scenes using volumetric tex-
tures. IEEE Transactions on Visualization and
Computer Graphics, 4(1):55–70, 1998.

[OGR] OGRE Graphics Engine
www.ogre3d.org.

[OP05] Manuel M. Oliveira and Fabio Policarpo.
An efficient representation for surface details.
UFRGS Technical Report RP-351, 2005.

[PC01] Frank Perbet and Maric-Paule Cani. Animat-
ing prairies in real-time. In SI3D ’01: Pro-
ceedings of the 2001 symposium on Interactive
3D graphics, pages 103–110, New York, NY,
USA, 2001. ACM Press.

[PD84] Thomas Porter and Tom Duff. Composit-
ing digital images. In SIGGRAPH ’84: Pro-
ceedings of the 11th annual conference on
Computer graphics and interactive techniques,
pages 253–259, New York, NY, USA, 1984.
ACM Press.

[Pel04] Kurt Pelzer. GPUGems: Programming Tech-
niques, Tips, and Tricks for Real-Time Graph-
ics, chapter 7 Rendering Countless Blades
of Waving Grass, pages 107–121. Addison-
Wesley, 2004.

[Per85] Ken Perlin. An image synthesizer. In SIG-
GRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and inter-
active techniques, pages 287–296, New York,
NY, USA, 1985. ACM Press.

[POaLDC05] Fábio Policarpo, Manuel M. Oliveira, and Jo
ao L. D. Comba. Real-time relief mapping
on arbitrary polygonal surfaces. ACM Trans.
Graph., 24(3):935–935, 2005.

[WWT+03] Lifeng Wang, Xi Wang, Xin Tong, Stephen
Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. View-dependent displacement
mapping. ACM Trans. Graph., 22(3):334–339,
2003.


