
Splat-based Ray Tracing of Point Clouds

Lars Linsen∗ Karsten M̈uller† Paul Rosenthal∗

∗ School of Enginieering and Science † Department of Mathematics and Computer Science
International University Bremen‡ Ernst-Moritz-Arndt-Universiẗat Greifswald

Bremen, Germany Greifswald, Germany

ABSTRACT
Point-based surface representations have gained increasing interest in the computer graphics community within the
last decade. Surface splatting established as one of the main rendering techniques for point clouds. We present a
ray-tracing approach for objects whose surfaces are represented by point clouds. Our approach is based on casting
rays and intersecting them with splats. Since ray-tracing methods require smoothly changing surface normals for
producing the desired photorealistic results, splat generation must include the derivation of such normals. We
determine a neighborhood around each point of the point cloud, estimate the surface normal at each of the points,
compute splats with varying radii that cover the surface, and use the normals of all points that are covered by each
splat to generate a smoothly varying normal field for each splat. This part of the computation is view-independent
and, thus, can be precomputed. During the rendering step, ray-splat intersections are performed, where the normal
at the intersection point is interpolated using local coordinates of the splat’s normal field. Care has to be taken
where splats overlap. We speed up the computations of the ray-splat intersections using an octree data structure.

Keywords: Point-based rendering, ray tracing, splatting, photo-realistic rendering.

1 Introduction
Ray tracing is a well-known and widely used tech-
nique in computer graphics for photo-realistic render-
ing of three-dimensional scenes with multiple objects
and light sources. It allows for precise shadow compu-
tations and modeling of light reflection and refraction.
The objects are typically described by their boundary
surfaces, which can be given in implicit or explicit
form. Often implicit representations of the boundary
surfaces are unknown. Therefore, explicit representa-
tions in form of triangular (or polygonal) meshes are
most commonly used to describe the surfaces. Ray
tracing of scenes using triangular mesh representations
has a long tradition in photo-realistic rendering. The
main approach [App68, Whi80] is described in any
computer graphics textbook, e. g. [Wat00].
With the upcoming of precise high-resolution 3D laser
scanning techniques about a decade ago, point-based
explicit surface representations have gained major in-
terest in the computer graphics society. Surfaces of real
objects are sampled leading to a large number of typi-
cally unstructured points lying on the surface. This set
of points is often referred to as a point cloud. A pioneer
project describing such efforts was the Michelangelo
project [LPC+00].

∗{l.linsen, p.rosenthal}@iu-bremen.de
†km021722@uni-greifswald.de
‡Jacobs University Bremen as of Spring 2007.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation onthe first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

Instead of converting point clouds to polygonal repre-
sentations, several efforts have been made to directly
render surfaces using point clouds for surface repre-
sentation [Lin01, PZvBG00, RL00]. For an overview
over current directions in the field of point-based com-
puter graphics, we refer to the tutorial by Gross et
al. [AGP+04].
Two main streams of point-based rendering meth-
ods have emerged, namely the surface splatting ap-
proach [ZPvBG01] and the point set surface ap-
proach [ABCO+01]. The surface splatting approach
is based on computing a surface normal at each sam-
ple’s surface point and a radial or elliptical expansion
tangential to the surface. The generated discs are the
so-called splats. They are supposed to overlap in order
to cover the entire surface of the scanned object. The
point set surface approach, on the other hand, is based
on the moving least-squares surface definition [Lev03].
The surface is locally reconstructed by fitting a poly-
nomial to the sample points within a small neighbor-
hood surrounding a given point. The given point is pro-
jected onto an implicitely defined polynomial surface.
The point set surface is defined as the set of points that
project onto themselves.
The splatting approach is much simpler in its math-
ematical formulation, but the point-set-surface ap-
proach generates continuous surface representations,
which makes it amenable to photo-realisitic render-
ing [AA03]. However, when looking into computation
complexity, the algorithms of splat-based approaches
are, in general, much less computationally intense. We
exploited the simplicity of splat-based surface repre-
sentations to develop an efficient ray-tracing approach
for point clouds.
Splats in their general form define a piece-wise con-



stant surface. In particular, each splat has exactly
one surface normal assigned to it. Assuming that the
point cloud was obtained by scanning a smooth sur-
face, the application of our rendering technique should
result in the display of a smoothly varying surface.
Since ray tracing is based on casting rays, whose di-
rections depend on the surface normals, we need to de-
fine smoothly varying normals over the entire surface,
i. e. also within each splat. To do so, we consider the
estimated normals at each point of the point cloud and
compute splat radii depending on local curvature prop-
erties. The generated splats should cover several points
of the point cloud. The normals at the covered points
of each splat are used to determine a smoothly varying
normal field defined over a local parameter space of the
splat. It can be beneficial to consider further surround-
ing points and their normals for the normal field com-
putations. Details on the splat and normal field genera-
tion are described in Section 3.
The actual ray-tracing procedure is executed by send-
ing out rays that intersect the splats, potentially being
reflected or refracted. Surface normals are interpolated
from the normal fields. Care has to be taklen where
splats overlap. The ray-splat intersection and the over-
all image generation is described in Section 4. Pri-
mary and secondary rays are treated equally. We use
an octree-based approach to improve the performance
of our approach in terms of computation time.
Since our splat-based surface generation is view-
independent, the computation of the splats and the nor-
mal field can be executed in a preprocessing step. Thus,
during an animation, only the ray-splat intersections
have to be computed for each frame, which signifi-
cantly reduces the computation times. We achieved to
efficiently produce photo-realistic images including re-
flective and transmittive surfaces similar to the images
generated by mesh-based ray-tracing methods. Our
results are shown and discussed in Sections 5 and 6.
Moreover, our approach is general enough to allow for
the combination with any further improvements known
from mesh-based ray tracing.

2 Related Work
Schaufler and Jensen [SJ00] were the first to propose
a ray-tracing technique for point clouds. Their idea is
based on sending out rays with a certain width which
can geometrically be described as cylinders. The in-
tersection detection is performed by determining the
points of the point cloud that lie within such a cylin-
der followed by calculating the ray-surface intersection
point as distance-weighted average of the locations of
these points. The normal information at the intersec-
tion point is determined using the same weighted av-
eraging. This approach does not handle varying point
density within the point cloud. Moreover, the surface
generation is view-dependent, which may lead to arti-
facts during animations.
Wand and Straßer [WS03] introduce a similar concept
by replacing the cylinders with cones. By using Gaus-
sian weighting of the points within the cone they ob-
tain anti-aliased images. To speed up their method they
used a multi-resolution approach. Starting with a set of

triangles and based on their multi-resolution hierarchy
and a Gaussian filter, they precompute a uniformly dis-
tributed representative point cloud from the triangles
with average surface properties. Thus, the generated
point cloud has certain known properties and the sur-
face properties are fixed. Hence, when changing mate-
rial properties etc., the rather expensive preprocessing
steps have to be recomputed.
Adamson and Alexa [AA03] proposed a method for
ray tracing point set surfaces. For the intersection of
the rays with the locally reconstructed surfaces, points
on the ray are iteratively projected onto the surface un-
til the procedure converges. Obviously, this is a com-
putationally intense approach. The authors state that
the computation times for all their presented examples
were in the range of several hours.
An interactive ray tracing algorithm of point-based
models was introduced by Wald and Seidel [WS05].
They experimented with implicite surface and splat-
based approaches. The former turned out to be too
computationally expensive for interacive ray tracing.
However, the method proposed by Wald and Seidel
only used ray tracing for shadow computation, the ac-
tual shading is performed using local shading models.
Thus, transparency and mirroring reflections are not
modeled. Our method instead allows for the generation
of such ray tracing-specific properties up to any given
ray trace depth. Nevertheless, the ray tracing-step in-
troduced by Wald and Seidel can be adopted to generate
such images, as well. We incorporated their approach
into our frame work to compare them in terms of qual-
ity and speed. It turned out that our ray tracing-step is
favorable in both categories, see Section 6.

3 Splat Generation
Let P be a point cloud consisting ofn points
p1, . . . ,pn ∈ ℜ3. We generatem splatsS1, . . . ,Sm that
cover the entire surface represented by point cloudP.
For each of these splats we are computing its radiusr i ∈
ℜ, i = 1, . . . ,m, and a normal fieldni(u,v), i = 1, . . . ,m,
where (u,v) ∈ [−1,1]× [−1,1] with u2 + v2 ≤ 1 de-
scribes a local parameterization of the splat.

3.1 Splat Radius
The radii of them splatsS1, . . . ,Sm should vary with
respect to the curvature of the surface covered by the
splat. In regions of high curvature, a piece-wise con-
stant surface representation via splats requires us to use
many splats with small radii to stay within a predefined
error bound. In regions of low curvature, some few
large splats may suffice to represent the surface well.
For the definition of the error bound we choose the
maximum distance of points ofP covered by the splat
to their closest point on the splat, cf. [WK03].
Let pi ∈ P be any of the points of point cloudP and let
ni be the respective surface normal of the surface de-
scribed byP at positionpi . If the normalni is unknown,
we determine the normal by computing thek nearest
neighborsq1, . . . ,qk ∈ P of pi , fit a plane throughpi
and its neighbors in the least-squares sense, and setni
to the normal of the fitting plane.



Let the neighbors ofpi be sorted in the order of in-
creasing distance topi . We initially define splatSj =
(c j ,n j , r j) with centerc j = pi , normaln j = ni , and ra-
dius r j = 0. Next, we iteratively grow the splat, until
the error bound condition is violated.
At each iteration step we increase the radius such that
the splat covers one additional neighbor ofpi . The
normal remains unchanged, but the centerc j is moved
along the surface normalni such that the splat position
minimizes its maximal distance to all covered points of
P. Figure 1(a) illustrates the optimal choice of center
c j . Thus, for each covered neighborql we compute its
signed distance

εl = nT
i (ql −pi)

to a plane throughpi with normalni . If the smallest
interval that covers all valuesεl is given by[ε −δε ,ε +
δε ], we can set the center of the splat to

c j = pi + εni ,

while δε denotes the approximation error. The radius
of the splat is set to

r j = ‖(ql − c j)−nT
i (ql − c j)ni‖2 ,

whereql is the neighbor with largest distance to cen-
ter c j when projected onto the splat. Radiusr j is this
projected distance.
The iteration stops when the approximation errorδε ex-
ceeds a predefined error bound.

3.2 Splat Density
The amount of splats that need to be generated to cover
the surface represented by point cloudP depends on
the chosen error bound. However, its numberm can be
clearly below the number of pointsn. Which splats to
generate and how many is not a trivial task. Wu and
Kobbelt [WK03] pointed out that generating a set of
splats that cover all points ofP does not suffice, as there
may still occur holes in areas between the points. They
proposed to first use a greedy approach to find a set of
splats that covers the surface and then relax their posi-
tions to generate redundant splats that can be removed.
The relaxation step is computationally rather intense.
Thus, we propose a simpler approach based on the rel-
ative distances to the splats’ centers.
Let Sj be the splat that covers the pointpi and itsk
nearest neighborsq1, . . . ,qk, again sorted by increas-
ing distance topi . To not generate holes in the surface,
thesek nearest neighbors should also include all natu-
ral neighbors ofpi , when computing natural neighbors
locally for points projected into a fitting plane. If the
natural neighbors of one of the pointsql , l ∈ {1, . . . ,k},
are also among thek nearest neighbors ofpi , no splat
needs to be generated starting fromql . Obviously, the
smaller the distance of a neighborql to pointpi is, the
higher are the chances that the natural neighbors are
already among the neighbors ofpi .
This motivation led to the following criterion: If splat
Sj is generated starting from pointpi , then no splats

need to be generated starting from neighbored points
within the projected distanceperc· r j from the splat’s
centerc j , whereperc∈ [0,1] is a factor that defines the
percentage of the splat’s radius used for the criterion,
see Figure 1(b). The factorperc is defined globally for
P, which is possible as it is multiplied with the locally
varying radiir j . The optimal choice forperc is a value
such that the generated splats cover the entire surface
and have minimal overlap. Obviously, such an optimal
choice is hard to determine, but it is quite simple to find
a value such that the generated splats cover the entire
surface with low overlap.

3.3 Normal Field
In order to generate a smooth-looking visualization of
a surface with a piece-wise constant representation, we
need to smoothly (e. g. linearly) interpolate the normals
over the surface before locally applying the light and
shading model. Since we do not have connectivity in-
formation for our splats, we cannot interpolate between
the normals of neighbored splats. Instead, we need to
generate a linearly changing normal field within each
splat, cf. [BSK04]. The normal fields of adjacent points
should approximately have the same interpolated nor-
mal where the splats meet or intersect.
Let Sj = (c j ,n j , r j) be one of the splats generated as
described above. In order to define a linearly changing
normal field over the splat, we use a local parameter-
ization on the splat. Letu j be a vector orthogonal to
the normal vectorn j andv j be defined asv j = n j ×u j .
Moreover, let‖u j‖ = ‖v j‖ = r j . The orthogonal vec-
torsu j andv j span the plane that contains splatSj . A
local parameterization of the splat is given by

(u,v) 7→ c j +u·u j +v·v j

with (u,v)∈ℜ2 andu2+v2 ≤ 1. The origin of the local
2D coordinate system is the center of the splatSj .
Using this local parameterization, we define a linearly
changing normal fieldn j(u,v) for splatSj by

n j(u,v) = n j +u·υ j ·u j +v·ω j ·v j .

The vectorn j describes the normal direction in the
splat’s center. It is tilted along the splat with respect to
the yet to be determined factorsυ j ,ω j ∈ ℜ. Figure 1(c)
illustrates the idea.
To determine the tilting factorsυ j andω j , we exploit
the fact that the normal directions are known at the
points of point cloudP that are covered by the splat.
Let pl be one of these points. We projectpl onto the
splat, determine its local coordinates(ul ,vl ), and de-
rive equation

nl = n j +ul ·υ j ·u j +vl ·ω j ·v j ,

wherenl denotes the surface normal inpl . Proceed-
ing analogously for all other points out ofP covered
by splatSj , we obtain an system of linear equations
with unknown variablesυ j andω j . Since the system is
overdetermined, it can only be solved approximately.
For a more flexible optimization,n j is also said to be
unknown. The system is solved forn j , υ j , andω j in



(a)

p

ni

i

ql

c j

δε
r j

S
r j δε

j

(b)

.

Sj

rj

c j

perc rj

(c)

0 1−1

ni

Sj

pi
cj

j

pl

nl

u

Figure 1:(a) Generation of splatSj starts with pointpi and grows the splat with radiusr j by iteratively including neighborsql
of pi until the approximation errorδε for the covered points exceeds a predefined error bound. (b) Splatdensity criterion: Points
whose distance from the splat’s centerc j when projected onto splatSj is smaller than a portionpercof the splat’s radiusr j are
not considered as starting points for splat generation. (c) Generation of linear normal field (green) over splatSj from normals
at points covered by the splat. Normal field is generated using local parameters(u,v) ∈ [−1,1]× [−1,1] over the splat’s plane
spanned by vectorsu j andv j orthogonal to normaln j=ni . The normal of the normal field at center pointc j may differ fromni .

the least-squares sense, cf. [BSK04]. Since we are also
optimizing overn j , the normaln j in the center of the
splat is, in general, not exactlyn j anymore (but approx-
imately).
For the generation of a good normal fieldn j(u,v) over
splat Sj , it is beneficial to haveSj covering a suffi-
ciently large number of points ofP. However, choos-
ing a large radiusr j may violate the error bound used
to generate the splats. Thus, the desires during splat
generation and normal field generation concerning the
splat sizes are contradictory. While the splat generation
should produce small splats with minimal overlap, dur-
ing normal field generation one would like to work with
large splats and overlap should lead to smooth transi-
tions between normal fields of adjacent splats.
We propose to use two different splat sizesr j,splat and
r j,normal with r j,splat ≤ r j,normal. We generate splats
with larger radiusr j,normal, but for splat rendering we
only use the part of the splat within radiusr j,splat. Thus,
the splat fulfills the predefined error bound. For deter-
mining the splat density we use a portion of the smaller
radius perc· r j,splat. Only during normal field com-
putation we make use of the splat with larger radius
r j,normal. This separation yields to good normal field
estimations even in regions with high curvature and low
point sampling density, where radiusr j,splat tends to be
small. Whenr j,splat covers a sufficiently large number
of points, we setr j,normal = r j,splat.
Splat and normal field generation are done in a prepro-
cessing step. We only store the splats of radiir j,splat
and the respective normal fields for these splats. They
are used for the ray-tracing procedure described in Sec-
tion 4. Any additional information including the posi-
tions and normals of the points of point cloudP or the
splats with radiir j,normal is not needed any further.

4 Ray Tracing
4.1 Main Approach
The input of the ray-tracing procedure are them splats
S1, . . . ,Sm generated from point cloudP. Each splat
Sj is given by its centerc j , its radiusr j , and its normal
field n j(u,v) using local parameters(u,v) over the local
coordinate system(u j ,v j).

For proof of concept, we use a plain ray-tracing tech-
nique without anti-aliasing methods, soft-shadow com-
putations, or other sophisticated enhancements. Since
we are not making any restricting assumptions nor are
we modifying the overall ray-tracing concept, we be-
lieve that our approach could be coupled with most im-
provements of the general ray-tracing method.
The standard ray-tracing method we are applying sends
out primary rays from the camera position through the
center of each pixel of the resulting image onto the
scene. We compute the intersection of the primary rays
with the objects of the scene using ray-splat intersec-
tions. From the intersection points we send out sec-
ondary rays, i. e. shadow rays towards all light sources,
reflection rays in case of reflective surfaces, and refrac-
tion rays in case of transmittive surfaces. In the lat-
ter two cases, we enter the recursion until we reach the
ray-trace depth. Primary and secondary rays are treated
equally. We put the results of the secondary ray com-
putations together using the Phong lighting model.

4.2 Octree Generation
In order to process computations of ray-splat intersec-
tions efficiently, we use an octree for storing the splats.
The generation of the octree and the insertion of the
splats is done in two steps.
The first step is the dynamic phase, where the octree
is generated. Starting with an empty octree represented
by the root that describes the bounding box of the entire
scene, we iteratively insert each splat into that leaf cell
that contains the center of the splat. As soon as one leaf
cell would contain more than a given small numbercs
of splat entries, the leaf cell gets subdivided into eight
equally-sized subcells. The splats that were stored in
the former leaf cell get adequately distributed among
its children, which are the new leaf cells. This first
phase is as simple as generating an octree for points.
The iteration stops once all splats have been inserted.
The second step is the static phase. Further splat in-
sertions are made, but the structure of the octree does
not change anymore, i. e. no further cell subdivisions
are executed. The additional splat insertions are neces-
sary, as splats have an expansion and may stretch over
various cells. Thus, in this second phase, we want to



(a)

cj

rj

jr

jS

(b)

Sj

E (c)

Sj

E

Figure 2:(a) Octree generation: In the first phase, the octree is generated while inserting splatsSj into the cells containing their
centersc j (red cell). In the second phase, splatSj is inserted into all additional cells it intersects (yellow cells). (b)(c) The second
test checks whether the edges of the bounding square of splatSj intersect the planesE that bound the octree leaf cell. (b)Sj is
inserted into the cell. (c)Sj is not inserted into the cell. This second test is only performed if the first test (bounding box test)
was positive.

insert the splats into all leaf cells they intersect, see Fig-
ure 2(a). Since such an exact cell-splat intersection is
computationally rather expensive, we insert the splats
into leaf cells that potentially intersect the splat.
For each splatSj we traverse the tree top-down apply-
ing a nested test for each traversed cell. The first test
checks for splatSj whether the axes-aligned box with
centerc j and side length 2· r j intersects the cell. If the
test fails, tree traversal for that branch stops. For all leaf
cells, for which the first test was positive, we perform a
second test. The second test uses the local parameteri-
zation of the splat. The local parameters(0,0), (0,1),
(1,0), and (1,1) define a 2D square that bounds the
splat. We check the position of these four points against
the leaf cell. If all four points lie on one side of one of
the six planes that bound the leaf cell, the splat cannot
intersect the leaf cell, see Figure 2(c). Otherwise, we
insert the splat into the leaf cell, see Figure 2(b).
This nested test is very simple and fast, yet produces
no false negatives and only few false positives. False
positives means that we store a splat more often than
necessary, which may impact the performance of the
ray tracing. False negatives, on the other hand, would
mean that we miss some splats, which would actually
impact the correctness.

4.3 Ray-splat Intersection
The intersection of rays with splats is computed using
the octree partitioning of the three-dimensional scene.
For primary rays starting from the camera position (or
eye point), we compute the intersection of the ray with
the bounding box of the octree, i. e. with the cell repre-
sented by the octree’s root. We determine the leaf cell,
to which the intersection point belongs, and continue
from there. From then on, primary and secondary rays
can be treated equally.
If the rays hits a (leaf) cell of the octree, we check for
intersection of the ray with all splats stored within that
cell. If the ray does not intersect any of the splats stored
in that cell or if the cell is empty, we proceed with the
adjacent cell in the direction of the ray. If we end up
leaving the bounding box of the octree, we report back
the respective background color. If the ray intersects a
splat stored in the current cell, we compute the precise
intersection point and apply the shading, reflection, and
refraction model possibly using recursive calls to com-

pute the color, which is reported back. If the ray hits
multiple splats stored in the current cell, we compute
the intersection points and pick the most appropriate
one.
For the check whether a rayr(t) = s+ t ·r with origin s
and directionr hits a splatSj with local parameteriza-
tion (u,v) 7→ c j +u·u j +v·v j , we use simple algebraic
and geometric derivations. First, we compute the im-
plicit representation of the plane that containsSj and
insert r(t) into that equation to derive the valuetx of
the intersection pointx = s+ tx · r. Then, we solve

c j +u·u j +v·v j = x

for u andv. We can even picku j such that one of its
coordinates is zero and derive explicit equations for the
computation ofux, vx, and tx, where(ux,vx) denotes
the local parameterization of the position ofx on the
splat. If and only iftx > 0 andu2

x +v2
x ≤ 1 for the com-

puted values, the ray and the splat intersect at intersec-
tion pointx.
In case the ray intersects multiple splats, one is tempted
to pick the one intersection pointx with smallest pos-
itive valuetx. However, this intersection point may be
near the border of a splat, where the normals of the
normal field may not be interpolated very well. Thus,
it would be better to pick the intersection point, which
is located most closely to the center of a splat. Figure
3(a) illustrates the situation. In Figure 3(a), one would
preferx′ over x. Since splats have different sizes, we
should use relative instead of absolute distances for this
criterion. Thus, we choose that intersection pointx, for
whichu2

x +v2
x is smallest.

Since splat-based surface representations are notC0-
continuous and have overlapping splats, a reflected or
refracted ray may hit the same surface again. Figure
3(b) illustrates the problem. If rayr is reflected at the
intersection pointx of splatSj , the reflected rayr ′ may
hit a splat that overlaps withSj . In the figure,r ′ hits
the adjacent splatSj+1 at intersection pointx′. In this
case, the intersection pointx′ should be neglected and
not affect the reflected rayr ′. We achieve this behavior
by demanding that an intersection pointx′ of r ′ starting
from x should not be within anε-neighborhood of point
x, whereε > 0 is a small global constant that depends
on the dimensions of the data set.



(a)

x

r

x’
+1

j

jS

S (b)

r

r

’

+1

x’

x ε

j

jS

S (c)

+1

x +1
x

x

y

j

jS

S

j
j

Figure 3: (a) Rayr intersects overlapping splatsSj andSj+1 at pointsx′ andx, respectively. Althoughx is closer to the ray’s
origin, we usex′ instead ofx, since it is closer to the center of the splat it is located on. (b) Rayr intersects splatSj at pointx
and is reflected. The reflected rayr ′ intersects splatSj+1 at pointx′. SinceSj andSj+1 are overlapping,x′ should be neglected.
This behavior is achieved by not considering intersection points within anε-neighborhood ofx. (c) Discontinuity in the surface
normal when switching from splatSj to splatSj+1 in point y.

4.4 Ray-trace Normal
When a ray hits a splat, the Phong lighting model is
applied using the local normal. Also, the local normal
is used to compute the directions of the refracted or
reflected rays, in case their computations are required.
Where two splatsSj andSj+1 overlap, the ray-splat in-
tersection computations need to switch fromSj to Sj+1
at a certain pointy. The normal given by the normal
fields of splatsSj andSj+1 do not have to be identical
at y. Thus, we have a discontinuity in the normal field
at pointy.
Figure 3(c) shows an explanation for the discontinuity.
Let x be a point of the point cloud. For the computa-
tion of the normal fields over splatsSj andSj+1, point
x is projected ontoSj andSj+1 leading tox j andx j+1,
respectively. For the normal field computation, the nor-
mal in x is used inx j to compute the normal field over
Sj and inx j+1 to compute the normal field overSj+1.
In general, the normal at pointy defers from the nor-
mal atx j andx j+1, respectively. Hence, the normals at
pointy obtained from the normal field overSj andSj+1
are not identical.
To solve the discontinuity, we average the normals of
overlapping splats. LetS1, . . . ,Sp be all the splats that
are hit by a ray within a small environmentE around
the intersection point computed in Section 4.3. More-
over, let (u1,v1), . . . ,(up,vp) be the local coordinates
of the ray intersection points withS1, . . . ,Sp, respec-
tively, and letn1, . . . ,np be the normals at the inter-
section points Then, we compute the normaln at the
intersection point by weighted averaging over normals
n1, . . . ,np following the equation

n =
∑p

i=1(1−‖(ui ,vi)‖2)ni

∑p
i=1(1−‖(ui ,vi)‖2)

.

This averaging leads to continuously varying normals
on the surface. Note that the contribution of a normal
field vanishes at the splat’s border such that no new nor-
mal discontinuities are introduced.
Finally, we have to mention how environmentE is cho-
sen. A feasible choice it to use a spherical environ-
ment around the first intersection point found along the
considered ray. The radius of the spherical environ-
ment is given by the radius of the splat that is hit first.
When considering our spatial data structure for storing
all splats, the splatsS1, . . . ,Sp do not need to be stored

in the same octree cell. Thus, we may have to trace
our ray further beyond the cell of the first intersection
point. How far we go is bound by the environmentE .

5 Results
We have tested our splat-based ray-tracing approach
on two types of datasets. The first type of data has
been obtained by scanning surfaces of real objects. Fig-
ure 4(c) shows the well-known Happy Buddha dataset
(Dataset courtesy of the Stanford Computer Graph-
ics Laboratory.) and Figure 4(a) shows a Skeleton
Hand dataset (Dataset courtesy of the Large Geomet-
ric Model Archive of the Georgia Institute of Tech-
nology.). The second type of data has been obtained
by extracting points on isosurfaces of scalar volume
datasets. The isosurface extraction technique gener-
ates point clouds from scattered volume data [RL06].
The used scattered volume dataset (Figure 4(b)) is a
uniform random resampling of the Fuel dataset Dataset
courtesy of the SFB 382 of the German Research Coun-
cil (DFG).). In addition, a spherical distance field has
been used to generate point cloud representations of the
spheres in Figures 4(a) and 4(c).
All images have been generated using our splat-based
ray-tracing approach for an output resolution of 1200×
1200 pixel (Figure 4(a) has been cut on top and bot-
tom.)). We have used a ray-trace depth of 2 except for
the image shown in Figure 4(a), for which we used
a ray-trace depth of 4. The images exhibit all the
known properties of ray-traced images including shad-
ows, light reflectance, and light transmittance. All sur-
faces have a reflective component. The reflection of
an object with complicated geometry is shown in Fig-
ure 4(c). In addition, the sphere in Figure 4(a) is reflec-
tive and transmittive representing a solid crystal balls
with an index of refraction of 1.5. Thus, the upper
hemisphere shows the effect of light transmission and
refraction, while the lower hemisphere exhibits the ef-
fect of light reflection and mirroring. Shadows can be
observed in all images and particularly well in Fig-
ure 4(b) where three differently colored light sources
are used.
During splat generation, the number of splats gener-
ated from a given set of points varies significantly de-
pending on the “smoothness” of the surface and the
sampling rate. Intuitively, the sphere dataset leads to
the smoothest surface among the given examples and,



dataset # points # splats time
Buddha 543,652 384,007 85s
Fuel 34,665 28,379 4s
Sphere 113,682 703 5s
Skeleton Hand 327,323 286,911 47s

Table 1: Splat generation: Number of splats generated and
computation times for all given examples.

dataset resolution depth time
Figure 4(a) 1502 2 1s

3002 2 5s
6002 2 22s
12002 0 45s
12002 1 73s
12002 2 88s
12002 3 102s
12002 4 115s

Figure 4(b) 12002 2 84s
Figure 4(c) 12002 2 408s

Table 2: Computation times for ray-tracing step depending
on the resolution of the output image and the ray-trace depth.

thus, only 703 splats were generated out of the 113,682
points of the point cloud, which is a ratio of 0.6%.
The highest ratio was observed for the Skeleton Hand
dataset, where 286,911 splats were generated out of
327,323 points, which is a ratio of 87.7%. The Skele-
ton Hand surface does not exhibit larger planar regions,
and the used sampling rate did not introduce much re-
dundancy. Table 1 shows the number of points and
splats for all datasets.
The computation times for the splat generation (includ-
ing normal field computation) have an asymptotic com-
plexity of O(nlogn) with n being the number of points
of the point cloud. Nevertheless, the computation times
are governed by the normal field generation (at least
for the examples presented in this paper), even though
the normal field generation has complexityO(m) with
m< n being the number of generated splats. This be-
havior can be observed when looking at the computa-
tion times for the given examples shown in Table 1.
Table 2 lists the computation times for the ray-tracing
step. As expected, the ray-tracing times are linear in
the number of pixels and independent of the number
of splats. The numbers vary from dataset to dataset de-
pending on the number of primary rays hitting a surface
and the number of secondary rays that are traced. Cer-
tainly, increasing the ray-trace depth also increases the
computation times for the respective scenes.
All the given numbers have been computed on a PC
equipped with Intel Xeon 3.06GHz processor. The en-
tire computations are made on the CPU. A major speed-
up should be obtained by implementing the ray-tracing
approach on the GPU, as ray tracing is a highly parallel
process.

6 Discussion
We compare our approach to the state-of-the-art work
by Wald and Seidel [WS05]. We have incorporated

their approach into our frame work to generate ray-
traced images with tranparency and mirroring effects,
as the original work was not capable of producing
such results. Figures 4(d) and (e) show a zoomed-in
side-by-side comparison of our and their approach (us-
ing 10 interpolation steps as suggested in the paper).
The image generated using the approach by Wald and
Seidel produced some single incorrectly shaded pix-
els. Moreover, the computation of the entire image
(Skeleton Hand dataset, 286,911 splats, 3 light sources,
1200×1200 output resolution), part of which is shown
in Figures 4(d) and (e), took 120 or 170 seconds when
using their approach with ray-trace depth 0 or 2, re-
spectively, and only 97 or 128 seconds when using our
approach. Thus, our approach is favorable in quality
and speed.
We have dealt with the problem of overlapping splats.
When a ray intersects two overlapping splats, the in-
tersection point closer to the center of the respective
splat is taken. To take care of varying splat size, the
distance is computed proportionally to the splat’s size.
Ideally, the two splats intersect where the proportional
distances are equal. In this ideal case, the surface rep-
resentation is continuous and independent of the view-
ing direction. In practice, the ideal case is not always
given, but we are always close to it such that no visible
artifacts occurred in our examples.
We have introduced a few parameters, whose choice
still needs to be discussed. It turned out that our com-
putations were not particularly sensitive to the choice
of any parameter. We have used a factorpercof 20%
during splat generation, a tinyε-environment, and the
thresholdδε that bounds the local variation is set to 0.1.
This worked well for all our examples such that we did
not try to optimize the parameters.
One problem inherent to point-based approaches are
silhouettes and sharp features. Up to now, we have used
circular splats and were able to obtain high-quality re-
sults for the used datasets. However, even when using
elliptical splats the silhouettes will exhibits problems
when zooming into silhouette regions. Thus, objects
should be sampled with a sufficiently high sampling
rate.

7 Conclusions
We have presented a ray-tracing technique for surfaces
represented by point clouds using a splat-based ap-
proach. We generate splats with varying radii depend-
ing on the surface’s curvature. The splats overlap to
cover the entire surface and stretch over more than one
point of the point cloud. We generate a normal field
for each splat that describes the change of the surface
normal in the region covered by the splat. The gener-
ated geometry can be preprocessed and handed to a ray
tracer. We have implemented a simple ray-tracing tech-
nique as a proof of concept. The ray tracing is based on
ray-splat intersections which are computed with an oc-
tree data structure. We uniquely solve the problems that
are inherent to any splatting approach due to overlaps.
We applied our techniques to a range of data sets and
achieved good results in terms of quality and speed.



(a) (d)

(b) (c) (e)

Figure 4: (a) Splat-based ray tracing of the Skeleton Hand dataset combined with a sphere dataset. Shadows, reflection, and
refraction are incorporated in this image using ray-trace depth 4. Both surfaces are reflective. The sphere exhibits the effect of
refraction (upper hemisphere) and reflection (lower hemisphere). (b) Splat-based ray tracing of the Fuel dataset. Three differently
colored light sources generate particularly visible shadows. (c) Splat-based ray tracing of the Happy Buddha dataset in front of
a dark blue, highly reflective sphere. (d)(e) Zoomed-in side-by-side comparison of our approach (d) and the one by Wald and
Seidel (e): The approach by Wald and Seidel exhibits some single incorrectly shaded pixels.

References
[AA03] Anders Adamson and Marc Alexa. Ray tracing point set

surfaces. InSMI ’03: Proceedings of the Shape Modeling In-
ternational 2003, page 272, Washington, DC, USA, 2003. IEEE
Computer Society.

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or,
Shachar Fleishman, David Levin, and Claudio T. Silva. Point
set surfaces. InVIS ’01: Proceedings of the conference on Visu-
alization ’01, pages 21–28, Washington, DC, USA, 2001. IEEE
Computer Society.

[AGP+04] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfis-
ter, Marc Stamminger, and Matthias Zwicker. Point-based com-
puter graphics. InSIGGRAPH 2004 Course Notes. ACM SIG-
GRAPH, 2004.

[App68] A. Appel. Some techniques for shading mashine rendering
of solids. InProceedings of the Spring Joint Computer Confer-
ence, pages 37–45, 1968.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong
splatting. InEurographics Symposium on Point-Based Graphics,
pages 25–32, 2004.

[Lev03] David Levin. Mesh-independent surface interpolation. In
G. Brunnett, B. Hamann, H. M̈uller, and L. Linsen, editors,
Geometric Modeling for Scientific Visualization, pages 37–49.
Springer-Verlag, 2003.

[Lin01] Lars Linsen. Point cloud representation. Technical report,
Fakulẗat für Informatik, Universiẗat Karlsruhe, 2001.

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean
Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade, and
Duane Fulk. The digital michelangelo project: 3d scanning of
large statues. InSIGGRAPH ’00, pages 131–144, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar,
and Markus Gross. Surfels: surface elements as rendering prim-
itives. InSIGGRAPH ’00, pages 335–342, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multires-
olution point rendering system for large meshes. In Kurt Akeley,
editor,Siggraph 2000, pages 343–352. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, 2000.

[RL06] Paul Rosenthal and Lars Linsen. Direct isosurface extrac-
tion from scattered volume data. InEurographics / IEEE VGTC
Symposium on Visualization (EuroVis 2006), 2006.

[SJ00] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point
sampled geometry. InProceedings of the Eurographics Work-
shop on Rendering Techniques 2000, pages 319–328, London,
UK, 2000. Springer-Verlag.

[Wat00] Alan Watt. 3D Computer Graphics. Pearson - Addison
Wesley, 3 edition, 2000.

[Whi80] T. Whitted. An improve illumination model for shaded dis-
play. Communications of ACM, 23(6):343–349, 1980.

[WK03] Jianhua Wu and Leif Kobbelt. Optimized sub-sampling
of point sets for surface splatting. InComputer Graphics Fo-
rum (Proceedings of EUROGRAPHICS 2005), volume 23, pages
643–652, 2003.

[WS03] Michael Wand and Wolfgang Straßer. Multi-resolution
point-sample raytracing. InGraphics Interface, pages 139–148,
2003.

[WS05] Ingo Wald and Hans-Peter Seidel. Interactive Ray Tracing
of Point Based Models. InProceedings of 2005 Symposium on
Point Based Graphics, 2005.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
and Markus Gross. Surface splatting. InSIGGRAPH ’01, pages
371–378, New York, NY, USA, 2001. ACM Press.


