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ABSTRACT

This paper presents an approach to extracting the separation surfaces from periodic 2D time-dependent vector fields based on a
recently introduced path line oriented topology. This topology is based on critical path lines which repeat the same spatial cycle
per time period. Around those path lines there are areas of similar asymptotic flow behavior (basins) which are captured by a
2D Poincaré map as a discrete dynamical system. Due to pseudo discontinuities in this map and the discrete integration scheme,
separatrices between the basins can’t be obtained as integral curves. Instead we choose a point-wise approach to segment the
Poincaré map and apply image analysis algorithms to extract the 2D separation curves. Starting from those curves we integrate
separation surfaces which partition the periodic 2D time-dependent vector field into areas of similar path line behavior. We
apply our approach to a number of data sets to demonstrate its utility.

Keywords: Flow Visualization, Time-dependent vector fields, Topological methods.

1 INTRODUCTION

Over the last decade, topological methods have be-
come standard in vector field visualization. Initially
introduced as a visualization tool in [6], topological
methods have been extended to higher order critical
points [12], boundary switch points [1], and closed tra-
jectories [30]. In addition, methods have been proposed
to simplify flow topology [1, 2, 21, 22, 28]. Also topo-
logical methods have been presented to smooth [29],
compress [8, 17] and construct [16, 26] vector fields.
The topology of 3D vector fields has also been used for
visualization [4, 9, 11, 19, 25].

The main idea behind topological methods is to seg-
ment a vector field into areas of similar asymptotic be-
havior. This means classifying each point x in the do-
main with respect to the asymptotic behavior of the flow
trajectory through it, i.e., a forward and backward inte-
gration starting from x with an integration time con-
verging to infinity is considered. Usually, this integra-
tion does not have to be carried out for every point but
only for a certain number of starting points of separatri-
ces.
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
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For time-dependent vector fields there exists a num-
ber of relevant integration curves, such as stream lines,
path lines, streak lines and time lines. Among them,
stream lines, and path lines have the uniqueness prop-
erty: through each point in the space-time domain there
is exactly one stream line and exactly one path line.
This means that two different kinds of topologies can be
considered: a stream line oriented topology segmenting
areas of similar stream line behavior, and a path line
oriented topology which does so for path lines. Extract-
ing a stream line oriented topology ends up in track-
ing critical points and considering certain bifurcations
[23, 31, 18, 3, 20].

Path lines are important structures in time-dependent
vector fields because they describe the paths of mass-
less particles in the flow. Hence, a path line oriented
segmentation gives a different kind of insight into the
vector field data than the stream lines oriented variants.
One can even argue that a path line oriented flow topol-
ogy is more truthful to intrinsic characteristics of the
flow. Theisel et al. consider the local topological be-
havior by segmenting the domain into regions of lo-
cally attracting, repelling, or saddle-like path lines [20].
As the practical experience, many real or simulated
time-dependent vector fields are periodic or quasi pe-
riodic. Shi et al. present a point based approach to ex-
tract the asymptotic path line behavior of periodic 2D
time-dependent vector fields [13]. This approach uses
a Poincaré map as a discrete dynamical system to de-
tect critical path lines as well as basins from which path
lines converge to the critical cycles. However, within



this approach basins can only be computed for a given
time slice. A segmentation of the whole 3D space-time
domain is missing. This is due to the fact that separatri-
ces between the basins can not be obtained as integral
curves, because of the discrete integration scheme and
certain pseudo discontinuities in the Poincaré map.

This paper extends this work [13] by presenting an
approach to extract the separatrices of the Poincaré map
using algorithms from the field of image analysis. Once
those 2D separation curves are extracted, the segmen-
tation of the whole 3D space-time domain can be ob-
tained by a stream surface integration starting at the
separatrices of the Poincaré map.

The rest of the paper is organized as follows: Sec-
tion 2 recalls the concepts of path line oriented topol-
ogy for periodic time-dependent vector fields. Sec-
tion 3 analyzes the difficulties in calculating the separa-
tion surfaces using classical topological methods. Sec-
tion 4 describes how to extract the separation curves of
the Poincaré map for a given time step and presents a
stream surface integration algorithm with error correc-
tion to obtain the separation surfaces for the whole 3D
space-time domain. Section 5 outlines our algorithm
for extracting the topological skeleton. Section 6 shows
a number of applications of our approach, while con-
clusions are drawn in section 7.

2 PATH LINE ORIENTED TOPOLOGY
FOR PERIODIC VECTOR FIELD

Given a 2D time-dependent vector field v(x, t)
in the space-time domain D × [tmin,tmax] with
D = [xmin,xmax] × [ymin,ymax], then x describes a
point in the spatial domain and t is the respective
temporal component.

A path line oriented topological segmentation of v
can’t be made by applying conventional topological
methods of 3D vector fields because an integration of
a path line until infinity is impossible due to the finite
temporal domain. This restriction is no longer valid
when considering periodic vector fields. And periodic
or quasi periodic vector fields is one of the main cate-
gories of time-dependent vector fields in scientific visu-
alization. So it is reasonable to focus our consideration
on periodic time-dependent vector fields.

Assume that v describes one period, with v(x, tmin) =
v(x, tmax). Then it is sufficient to consider this period
which can be repeated as often as necessary. We can
assume v to be defined in the whole domain D× IR by
setting

v(x,t) = v(x, t + k ∆ t),

where ∆ t = (tmax− tmin) and k is an integer chosen such
that tmin ≤ t + k ∆ t < tmax.

In order to integrate a path line in the periodic field v
, two equivalent strategies can be applied:
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Figure 1: Two equivalent approaches of a stream line
integration in a periodic field v: (a) In the unbounded
time-domain; (b) Periodically continued in the time-
domain [tmin, tmax].

• The integration is done over the unbounded time-
domain as illustrated in figure 1a.

• If the integration approaches a point (x, tmax), it is
mapped to (x, tmin). From there, the integration is
continued until tmax is reached again. Figure 1b il-
lustrates this.

Instead of integrating path lines directly, the point
based approach of topological path line segmenta-
tion [13] constructs two 2D Poincaré maps to analyze
the asymptotic behavior of those path lines starting at
certain times.

2.1 2D Poincaré maps
Picking a certain reference time τ with tmin ≤ τ < tmax,
two 2D maps mτ (x) and m̄τ (x) are constructed for the
segmentation of the asymptotic behavior of all path
lines starting at the time τ . For mτ(x), a forward in-
tegration of v from (x,τ) is carried out until one of the
following cases occurs:

1. The integration reaches the time level τ + ∆ t, i.e. it
comes to a certain point (x f ,τ +∆ t). Then mτ(x) is
set to x f .

2. The integration leaves D before reaching the level
τ + ∆ t. In this case mτ(x) is marked as undefined.

In a similar way, m̄τ(x) is defined by starting a back-
ward integration of v from (x,τ) until the time level
τ −∆ t is reached at a point (xb,τ −∆ t), or until the in-
tegration leaves D. Figure 2a illustrates the definitions
of mτ(x) and m̄τ (x).

Instead of the definition of the maps mτ (x) and
m̄τ(x) as described above, a vector-oriented, relative
description of the map can also be used:

qτ (x) = mτ (x)−x

q̄τ (x) = m̄τ (x)−x (1)
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Figure 2: (a) The definition of mτ(x) and m̄τ (x); (b)
A continuous forward integration of v corresponds to a
discrete integration of mτ (x).

mτ(x) and qτ(x) and all of the related considerations in
the remainder of this paper can be easily transformed
into each other.

The maps mτ and m̄τ can be interpreted as 2D
Poincaré maps [10]. In order to analyze the asymptotic
behavior of a path line starting from (x,τ) in forward
direction, we do not have to integrate v any more but
can restrict ourselves to a sequence of maps of mτ(x):

x0 = x

xi+1 = mτ (xi) (2)

and considering the asymptotic behavior for i→∞. Fig-
ure 2b illustrates this relation. A similar statement holds
for the backward integration of v and a sequence of
maps of m̄τ .

2.2 Point based topological segmentation
of 2D Poincaré map

The segmentation of areas of similar path line behav-
ior corresponds to the topological segmentation of the
2D Poincaré maps mτ and m̄τ , respectively. Critical
path lines in v correspond to fixed points in mτ and
m̄τ . They may act as sources, sinks, or saddle path lines
building α- and ω-basins in D.

The point-wise approach is applied as follows: for
every point x in D, an integration of mτ is carried out
using (2) until one of the following conditions is ful-
filled:

• xi comes close to a fixed point of mτ ,

• xi leaves the domain D,

• i exceeds a certain maximal threshold.

In the first case, x is assumed to be part of the basin of
the fixed point. This means that the path line starting
at (x,τ) converges to a critical path line under forward
integration. In the second case, the path line is known
to leave the domain under forward integration. In the
last case, x is marked as unknown. A similar procedure
is applied for the segmentation of backward Poincaré
map m̄τ .
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Figure 3: Pseudo discontinuities in mτ : (a) If x1 and
x2 are close but at different sides of a separatrix of
v(x) = v(x, t), mτ has too large changes that it is im-
possible for discrete numerical method to deal with it
though it is still continuous; (b) The pseudo discontinu-
ity in corresponding Poincaré map.

3 DIFFICULTIES WITH SEPARATION
SURFACE EXTRACTION

In the point based approach [13], the topological seg-
mentation of path lines starting at a certain time is suc-
cessfully computed. However, this is still not the clas-
sical topological structure of the whole data set. The
computation for every considered time is time consum-
ing, so the separation surfaces are needed to present the
general path line oriented topological structure.

However it is difficult to generate the separation sur-
faces. The discrete integration and the pseudo disconti-
nuity of a Poincaré map are two key problems for classi-
cal topological method when extracting separation sur-
faces.

3.1 Discrete dynamic systems
Both Poincaré maps mτ and m̄τ can be considered as
discrete invertible dynamical systems. As shown in
equation (2), the integration of Poincaré maps is equiv-
alent to a numerical Euler integration of qτ with step
size 1: xi+1 = xi +1 qτ(xi).

For discrete dynamical systems, classical topological
vector field approaches fail to give the correct segmen-
tation because they reflect continuous dynamical sys-
tems. For continuous dynamical systems, the different
basins are separated by stream lines starting from sad-
dle points. However, such a stream line integration does
not exist for the discrete systems mτ and m̄τ .

Note that the topology of discrete dynamical systems
can get a lot more complicated, even for lower dimen-
sions, when compared to the continuous case.

3.2 Pseudo discontinuity
Although v is continuous, both mτ and m̄τ may have
pseudo discontinuities, which means that mτ and m̄τ
are still continuous mathematically, but they may have
areas with tremendous large gradient, which appear as
discontinuities for discrete treatment. To see this point,
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Figure 4: The relation between the basin edges and
the separation surfaces for asymptotical path line be-
havior.

we consider the example of a steady 2D vector field
v(x) = v(x, t) which can also be considered as as peri-
odic time-depending vector field. Setting a certain time
∆ t as period, mτ(x) is obtained by a stream line inte-
gration of v at x over a time ∆ t. If v consists of saddles,
its separatrices may induce tremendous changes in mτ
so that it appears as discontinuities for normal discrete
numerical programs. Figure 3 illustrates this.

4 TOPOLOGICAL SEPARATION SUR-
FACE EXTRACTION

If we integrate the edges of the segmentation basins ob-
tained from point based method (section 2.2) either in
forward or backward directions, we could get the sep-
aration surfaces for the asymptotic behavior of corre-
sponding path lines.

For a given periodic 2D time-dependent vector field
v, suppose we have extracted the separation surface S
and at time τ , we have obtained the basin segmentation
using point based method. λτ is the intersection curve
of S and plane t = τ . It is obvious that λτ exactly coin-
cides with the edges of the segmentation basins in τ and
λτ exactly coincides with λτ+∆t . For any point x in λτ ,
if we integrate a path line P(x), we can conclude that
P(x) coincides in S within the domain and mτ(x) coin-
cides λτ+∆t after a period at time τ + ∆t if mτ(x) does
not leave the domain. Thus, the integration surface of
λτ coincides with S. Otherwise, mτ(x) would end up
either in basin1 or basin2, then x must also be classi-
fied either basin1 or basin2 since it asymptotically con-
verges to critical path lines either in basin1 or basin2,
which results in a contradiction. Note that mτ(x) does
not necessary equal x, though it must falls in λτ . Figure
4 illustrates this relation.

Here the problem of extraction of separation surface
turns to the detection of basin edges as seeding curves
and the integration of these seeding curves to surfaces.
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Figure 5: Sobel Operator.

4.1 Seeding curve detection

We apply an image analysis approach to detect the basin
edges.

The basin edges are step discontinuities where the
image intensity abruptly changes from one value to an-
other. Many algorithms have been developed to detect
such edges [5, 7]. Wallisch applied an extended march-
ing cube approach to extracting the basin boundaries of
3D dynamical systems [24]. Since we aim at a special
problem, we apply one simple algorithm here.

Suppose the basin image is f (x,y) in domain D =
[xmin,xmax]× [ymin,ymax], where f (x,y) is the id values
for different basins. The gradient at location (x,y) is
defined as follows:

∇ f =
(

Gx

Gy

)
=

(
∂ f
∂x
∂ f
∂y

)
(3)

the magnitude of the gradient vector is denoted g(x,y)
where

g(x,y) = |∇ f | =
√

Gx
2 +Gy

2 (4)

Let α(x,y) represent the direction angle of the gradient
vector with respect to the x−axis.

α(x,y) = arctan(
Gy

Gx
) (5)

The direction of an edge at (x,y) is perpendicular to the
direction of the gradient vector.

Here, for the discrete case, we use Sobel operator to
calculate the gradient vector as shown in figure 5 [5].

We analyze the characteristics of pixels in a small
neighborhood (say, 3× 3 or 5× 5) about every point
(x,y) in the basin image. Thus an edge pixel with coor-
dinates (x0,y0) in the predefined neighborhood of (x,y)
is similar in magnitude to the pixel at (x,y) if

|g(x,y)−g(x0,y0)| ≤ E (6)

where E is a nonnegative threshold. Similarly (x0,y0)
has similar direction as (x,y) if

|α(x,y)−α(x0,y0)| ≤ A (7)

where A is a nonnegative threshold.
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Figure 6: (a) The integration of seeding curves with
super sampling in both forward and backward direc-
tion until they meet each other; (b) The polar stratified
super sampling: n×n subdivide the circular neighbor-
hood in both radius and angle direction, for each sub-
divided grid, randomly select a point as sample point.

A point in the predefined neighborhood of (x,y) is
linked to the pixel at (x,y) if both magnitude and di-
rection similarity criteria are satisfied. This process is
repeated at every location in the basin image and finally
we obtain the edges of the basins.

4.2 Step advancing integration with super
sampling adjustment

With the detected seeding curve, the classical stream
surface integration method is applied to generate the
separation surface. However the pseudo discontinuity
(section 3.2) makes the integration quite unstable: a
small error in the seeding curve may cause large error
in the integration.

Here we apply step advancing integration in both for-
ward and backward direction until they meet each other.
In each integration step we use super sampling to ad-
just the result position. Figure 6 illustrates this. We
divide period ∆t into small steps δ t, and integrate the
surface step by step. For a seeding point x in the seed-
ing curve λ , we consider a small circular neighborhood
around it and use polar stratified sampling (as shown in
Figure 6b) to select the sample points, we integrate all
these sample points for δ t, and compare the end posi-
tions of them to collect the adjusted sampling result x1.
Two strategies can be used to collect the adjusted result:
(1) closest point to the neighbor adjusted result; (2) the
average of sample end points in the most frequent area.
In practice we haven’t found significant differences be-
tween these two sample collection strategies. With the
adjusted sampling result, we can integrate step by step
further until the final surface is obtained.

5 THE ALGORITHM

In this section we formulate our algorithm to extract the
path line oriented topological segmentation surface of a
periodic 2D vector field v(x,t):

1. Pick a time τ with tmin ≤ τ < tmax for which we com-
pute the topological segmentation.

2. Compute the Poincaré maps mτ and m̄τ , or equiva-
lently, the vector fields qτ and q̄τ [13].

3. Extract the fix points of mτ and m̄τ and classify
them [13].

4. Generate the topological segmentation at time τ in
both forward and backward direction using point
based method [13].

5. Extract the edges of both the forward and backward
segmentation basins as seeding curves.

6. Integrate the forward seeding curves in both forward
and backward direction until the separation surfaces
of forward asymptotic path line behavior for a whole
period is obtained.

7. Similar to 6 for separation surfaces of backward as-
ymptotic path line behavior.

Note that the extracted edges may have small jags,
before integrating the separation surfaces, we must
smooth them. Here we apply the Gaussian filter to
smooth the edges.

6 APPLICATIONS
In this section we apply our technique to a number of
test data sets.

Figure 7 and figure 9a-c illustrate our technique at a
random vector field. We use random fields as a proof-
of-concept because they contain a maximal amount of
topological information. The vector field is piecewise
trilinear over a 7×7×7 grid where the time i-th and the
(6− i)th time slices coincide for i = 0, ..,2. Figure 9a
shows the visualization of v using LIC planes at three
different time slices as well as a number of illuminated
stream lines. Figure 7a-7b show the 2D vector fields
qτ and q̄τ which correspond to the Poincaré maps mτ
and m̄τ for τ = tmin. The LIC images reveal the pseudo
discontinuities in the Poincaré maps. However, the LIC
images also present information about the stream lines
of qτ and q̄τ . Since only a discrete integration is carried
out, stream lines of qτ and q̄τ do not have a physical
interpretation. Figure 7c shows the basins of the sinks
of mτ and figure 7d does so for the basins of m̄τ .

Figure 9b shows the detected 7 sink behavior critical
path lines and their corresponding extracted separation
surfaces. These critical path lines are sinks in forward
integration of v (marked with blue points), and all the
path lines in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line when integrated forward.
Figure 9c shows the detected 4 source behavior critical
path lines and their corresponding extracted separation



(a) (b)

(c) (d)

Figure 7: The random data set: (a) qτ at τ = tmin; (b)
q̄τ at τ = tmin; (c) Basins of qτ at τ = tmin; (d) Basins
of q̄τ at τ = tmin.

surfaces. These critical path lines are sinks in backward
integration of v (marked with red points), and all the
path lines in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line when integrate backward.
The computing time for this data set was 10 minutes for
the basin generation, several seconds for seeding curve
extraction and 30 minutes for the separation surface in-
tegration with 50 integration steps and 8×8 polar strat-
ified super sampling on a Pentium 4 with 3.40 GHz.

Figure 8 and figure 9d-f visualize the path line ori-
ented topology of the electrostatic field around a ben-
zene molecule. This data set was calculated on a 1013

regular grid using the fractional charges method de-
scribed in [14]. Originally this is a 3D steady gradient
field describing the force of the electrostatic potential
upon a positive point charge given in a certain location.
If such a point charge is situated very close to the mole-
cule, the closest atom will exert the highest force on it,
i.e., attract or repel it. The influence of a single atom
decreases the farther the point charge is located from
the whole molecule. Instead, all atoms have nearly the
same influence. One might say that the molecule as a
whole is exerting force on a somewhat far located point
charge. Thus, it is possible to distinguish between a
near and a far field.

Since the behavior of this field is rather complex
[19, 27], we applied our method to find a simplified vi-
sual representation by neglecting the w-component of
the field and interpreting the z-axis as time. This yields

(a) (b)

Figure 8: The periodic benzene data set: (a) Basins of
qτ at τ = tmin; (b) Basins of q̄τ at τ = tmin.

inside into the forces induced by the distribution of the
atoms in the main plane of the molecule: as one moves
away from the molecule, the influence of a single atom
decreases and therefore the influence of the atom dis-
tribution decreases as well. The field can now be inter-
preted as a 2D periodic vector field, since the 2D forces
are the same on both sides of the molecule.

Figure 9d elucidates the influence of atom distribu-
tion: the trajectories change radically close to the mole-
cule (high influence in near field) while in other areas
they are nearly straight (low influence in far field). To
get insight into the attracting and repelling behavior,
we computed the basins for forward and backward inte-
gration (figure 8) as well as their corresponding critical
path lines (figures 9e-f).

Figure 9e shows the 18 sink behavior critical path
lines and their corresponding extracted separation sur-
faces for periodic benzene force field. All the point
charges in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line as time goes. Similarly fig-
ure 9f shows the 13 sink behavior critical path lines and
their corresponding extracted separation surfaces. All
the point charges in the area between the critical path
line and the surrounding separation surface asymptoti-
cally converge to the critical path line for backward in-
tegration. The computing time for benzene data set was
15 minutes for the basin generation, several seconds for
seeding curve extraction and 100 minutes for the sepa-
ration surface integration with 80 integration steps and
8×8 polar stratified super sampling.

7 CONCLUSIONS

In this paper we introduced an approach to extracting
the separation surfaces for asymptotic behavior of path
lines in periodic time-dependent vector fields. We apply
an image analysis method to extract the seeding curves
and integrate these seeding curves with step advancing
super sampling adjustment to generate the final separa-
tion surfaces. The main limitation of our separation sur-
face extraction approach is that the basin shape must be
contiguous enough. If they are quite irregular and dis-
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Figure 9: (a) The visualization of a random periodic vector field and the corresponding path lines; (b) The forward
converge separation surfaces and the corresponding sink critical path lines for the random data set; (c) The
backward converge separation surfaces and the corresponding source critical path lines for the random data
set; (d) The visualization of the periodic benzene force field, the benzene molecule and the corresponding path
lines; (e) The forward converge separation surfaces and the corresponding sink critical path lines for the benzene
data set; (f) The backward converge separation surfaces and the corresponding source critical path lines for the
benzene data set.

continuous, the seeding curve extraction will fail. How-
ever the basins of many applications are regular enough
to extract the separation surfaces.
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