Efficient and Accurate Rendering of
Vector Data on Large Virtual Landscapes
M. Schneider and R. Klein

University of Bonn
Computer Graphics Group
www.cg.cs.uni-bonn.de



Motivation

= ever-higher sampled aerial photography and
elevation data available

= efficient methods to render them at real-time
framerates exist

= But: for most
disciplines solely
visualising the terrain
IS not enough

* need a way to define
regions of interest and
connect metadata with
it




Motivation

= in the GIS domain so called vector data is used
= ordered set of georeferenced 2d points

REEAN 2
o
points lines polygons

= vector data has important applications in the
analysis and management of virtual landscapes
in many disciplines (geography, geology,
archaeology, ...)

Question: How to render vector data on the
terrain surface?



Previous work

Two kinds of methods

= geometry-based
= create 3d geometric primitives from the data

= render vector geometry on top of terrain
geometry

= texture-based
= rasterize vector data into texture
= project texture onto terrain surface



Geometry based approach

Problem:
= view-dependent LOD

LOD switch

Possible solution:

= adapt vector data to current level-of-detail
= at run-time for continuous LODs

= as preprocessing for static LODs
= create vector data geometry for each level-of-detail
= incorporate vector data in quadtree



Geometry based approach

properties

+ high quality

- z-buffer stitching artifacts

- has to be adapted to the used rendering
engine

- complexity of vector data visualization
coupled with terrain complexity




Texture-based approach

naive texture-based approach

= rasterize vector data into texture in a
preprocessing step

= use texture mapping to project texture onto
terrain

properties
+ fast
+independent of underlying geometry

- high texture memory requirements, in particular
for multiple layers

- accuracy limited by texture resolution



Texture-based approach

Improvements:

= create texture on-the-fly in each frame
+ texture is only used for visible area

= associate textures with quadtree nodes
+ improved quality
- many context switches required
= apply perspective reparametrization taking

into account the current viewpoint (similar to
perspective shadow maps)

+ reduces aliasing artifacts



Problem Formulation

» rendering of vector data requires
determination of projection onto terrain

surface

= problem of determining the projection area
can be interpreted as point-in-polyhedra
problem




Point-In-Polyhedra Test

= choose point O outside all polyhedra

= for a point P in question count the intersections
between the line segment OP and the polyhedra

= increment on enter,
decrement on exit

= final count corresponds

O

to number of polyhedra _———| ™.

containing P

\ polyhedron

terrain
surface

\/—\

énadirl



Point-In-Polyhedra Test

= notice the relation to shadow determination
problem (shadow volumes) that can also
be interpreted as a point-in-polyhedra-
problem

= perform hardware accelerated point-in-
polyhedra test with stencil buffer
= each pixel Is interpreted as a point P

= count intersections by rasterizing front- and
back-faces into stencil buffer



Point-In-Polyhedra Test

Two possible choices for point O:

O, .. at the intersection of the Oy, at infinity at the far end of
ray and the near clipping plane the ray

= count only fragments that pass = count only fragments that fail
the depth test the depth test

= increment/decrement for

front/back-faces
onear g ;
z-pass\J Polyhedron

= decrement/increment for
front/back-faces

direction} . terrain
\/\ .. P surface
‘-

-, \/\
z-fail

;\«direction
nadirl

oinf
‘®



Point-In-Polyhedra Test

Z-pass z-fail

" needs to render sides and " needs to render sides,
top cap top and bottom cap

= does not work correctly = avoids far plane clipping
when near clipping plane by moving the far plane
Intersects polyhedron to infinity

If near clipping plane A =

intersects view frustum \-pmdm-

=» use z-pass direction R surfage

else = T ™. T

Oim

9 USG Z'fall : d.l '-\kd.i..rection



Our Method

Outline of the algorithm:
= vector data extrusion

= create polyhedra from the vector data
= mask creation

= render polyhedra into the stencil buffer

= apply mask to the scene

» render geometry that covers at least the
previously created mask



Vector data extrusion

» duplicate each vertex in vector data

= move towards geocenter and in opposite
direction

= reduce rasterization workload by reducing the
size of the polyhedra

= use minimum/maximum height of quadtree
bounding boxes as lower/upper bound

vector data
point

)

= tesselate with consistent —
winding order and store N
In vertex buffer object

\ extruded vector
geometry



Vector data extrusion

= P __— Q

\ \ 9

= ﬁ

- \/A

point linestrip polygon



Mask generation

clear color,
depth and
stencil buffer

increment stencil
for back-faces and

decrement for front-
faces on z-fail

render vector data
volume with top and
bottom cap

p
render terrain ]

disable color and
depth writes

vector data
bounding box intersects
near clipping plane?

Y

incremen!l stencil for
front-faces and

decrement for back-
faces on z-pass

render vector data
volume with top cap
only




Mask generation

= simple triangle fan can be used to draw top and
bottom caps

= triangle fan itself may be convex but produces
the correct concave shape in the stencil buffer

= similar to computing
signed area of a

polygon by
constructing a fan

= N0 heed to
triangulate Iin
advance




Mask application

clear color,
depth and increment stencil

stencil buffer for back-faces and
decrement for front-

« configure culling to
draw only back-faces

render vector data
volume with top and

* disable depth test

bottom cap

I faces on z-fail

render terrain

disable color and

depth writes

« activate additive blending

vector data

« activate color buffer render bounding

bounding box intersects

! near clipping plane? * pass stencil teston #0 box
and setto 0
A
A
increment{ stencil for e vEEhss Gl « configure culling to |

front-faces and
decrement for back-
faces on z-pass

draw only front-faces
* enable depth test

volume with top cap
only

<
<

for all vector data objects



Results

Roads and trails in the
Wettersteingebirge



Results

.

= Geomorhological mapping in
Turtmann valley (Switzerland)

= ~100,000 vertices

= Glacier, lake and different
soil types

= ~650,000 vertices



Conclusions

+quality superior to texture-based methods
and comparable to geometry based
methods

+independent of underlying terrain engine

= allows easy integration in any terrain
visualisation engine

+independent of terrain complexity

= can be used with upcoming ever-higher
resolution data sets

- needs to render more primitives than
texture based methods



Future Work

= LOD schemes
= distortions in steep slopes
= texturing and lighting



Thanks for your
attention!

Any questions?



	Motivation
	Motivation
	Previous work
	Geometry based approach
	Geometry based approach
	Texture-based approach
	Texture-based approach
	Problem Formulation
	Point-In-Polyhedra Test
	Point-In-Polyhedra Test
	Point-In-Polyhedra Test
	Point-In-Polyhedra Test
	Our Method
	Vector data extrusion
	Vector data extrusion
	Mask generation
	Mask generation
	Mask application
	Results
	Conclusions
	Future Work

