
Normal Mapping for Surfel-Based Rendering

Mathias Holst
University of Rostock
Albert-Einstein-Str. 21

18059 Rostock, Germany
mholst@informatik.uni-rostock.de

Heidrun Schumann
University of Rostock
Albert-Einstein-Str. 21

18059 Rostock, Germany
schumann@informatik.uni-rostock.de

ABSTRACT
On the one hand normal mapping is a common technique to improve normal interpolation of low tesselated tri-
angle meshes for a realistic lighting. On the other hand today’s graphics hardware allows texturing of view plane
aligned point primitives. In this paper we illustrate how to use textured points together with normal mapping to
increase surfel splatting quality, especially when using larger splats on lower level of detail. In combination with
a silhouette refinement this results in a significant decimation of needed surfels with small visual disadvantages
only. Furthermore, we explain how to create a normal map for points within a point hierarchy.

Keywords
Normal Mapping, Surfel Splatting, Point-Based Rendering, GPU-Programming.

1 INTRODUCTION
In recent years point-based rendering has been proven
to be effective and efficient for rendering highly de-
tailed complex geometric models. Point-based ren-
dering bases on the idea, that polygonal representa-
tions get less efficient with increasing polygon number,
because in this case each polygon covers only a few
pixels in image space [LW85]. Additionally triangle
meshes, or polygonal meshes in general, are not easy
to handle and to simplify because of their connectivity.
Points on the other side do not have any connectivity
and can be stored and merged very easily using simple
subdivision schemes [PGK02].

Since points only have a position but no dimension,
they are parameterized with other attributes that de-
scribes their look. Usually these are a normal and a
radius to represent circular disks in 3D (see fig. 1),
known as surfels (from surface elements). With surfels
a dense, opaque and smooth surface approximation can
be described.

To get a high quality rendering result small and many
surfels have to be used. However, the number of ver-
tices (e.g. points) that is processed by the GPU is a
framerate limiting factor. Thus, it is useful to render
fewer but larger surfels instead. To attenuate the loss of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

P

n

r

Figure 1: Surfel geometry.

surface features we propose to apply normal mapping.
This is possible, because today’s graphics hardware al-
lows texturing point primitives. This texturing is given
for image space only. Therefore we show in this paper
how object-space texture coordinates can be obtained
by adding only a 2D texture coordinate and a scaling
factor as additional surfel attributes. Of course, normal
mapping does not decimate the total number of pix-
els/fragments to shade but in the case of non-parallel
vertex-fragment processing this results in a significant
framerate increase.

When working with normal mapping normal maps
have to be associated to the lower levels of detail of
the original object. In this paper an algorithm is pre-
sented to get normal maps for surfels of point hierar-
chies. In past several point hierarchies has been devel-
oped. Therefore, we take the two most popular hierar-
chies into account: point and hybrid bounding-sphere
hierarchies.

Since normal mapping only affects the shading of
pixels, but not the shape of the underlying geometry,
the silhouette looks very coarse when using low tesse-
lated polygonal or point-based models. Therefore, it
is useful to enhance the rendering process by silhou-
ette refinement using more primitives at these surface
parts. In contrast to polygonal-based approaches sil-
houette refinement can be easily done using point hier-

(a) (b) (c)
255k Surfels 32k Surfels (b) + normal mapping

Figure 2: Rendering of the Igea model with 255k surfels (a). Same model rendered with only 32k surfels
and silhouette refinement (b). Same LOD rendered using normal mapping (c).

archies, because no connectivity has to be considered.
We use normal cones for this purpose, which results in
a high-quality rendering as it can be seen in fig. 2(c).

2 Previous Works
Relevant works that inspired this paper can be catego-
rized into three groups: surfel-based rendering, point
hierarchies and point-based silhouette refinement.

Surfel-Based Rendering In general a surfel is
an oriented (n-1)-dimensional oriented object in n-
dimensional space [Her92]. Using surfels as rendering
primitives was first proposed by [PZvBG00]. Here,
objects are rendered by a two pass approach: First
all visible surfels have to be estimated using z-buffer
and secondly, these surfels have to be rendered, called
splatting. This splatting was improved in [ZPvBG01]
by applying a gaussian elliptical kernel as alpha mask
for each surfel in screen space to meet the Nyquist
criterion. In [RPZ02] an hardware supported version
is proposed.

We use a similar technique as proposed in [BK03],
which includes a complete hardware support for fil-
tering and splatting with a minimum CPU overhead.
Moreover we decrease the number of pixel that have
to be shaded by using a more sophisticated splat size
measure in screen space.

Point Hierarchies Continuous LOD is nearly al-
ways integrated in point-based rendering approaches.
This yields from the computational simplicity to cre-
ate point hierarchies using subdivision schemes. A
comparison of point cloud simplification can be found
in [PGK02].

Since point clouds are often generated by sam-
pling triangle meshes, these meshes can be used
as alternative surface representation on the highest
LOD. Such hybrid hierarchies are proposed in [CN01]
and [DVS03] for example. In [CAZ01] a triangle-
based multi-resolution hierarchy is used for higher
LOD and a point hierarchy on top for lower LOD.

In this paper we propose algorithms to generate nor-
mal maps for both kinds of point hierarchies, but in
our implementation we only use a pure point hierarchy
created from an octree-based space subdivision.
Silhouette Refinement In most point-based frame-
works the whole surface is approximated by nearly
equally sized points/surfels to guarantee feature preser-
vation also in the interior without a special silhouette
refinement. A first framework that realizes silhouette
refinement is the POP system [CN01]. In this hybrid
system triangles are used as highest available LOD. If
the normal of a surfel is nearly perpendicular to the
viewing vector, its triangle children will be rendered.
This seems to be too conservative, especially if the ob-
ject is very small in screen space. In this case triangles
cover a few pixels only. Therefore, this may results in
aliasing artifacts.

Another system that uses silhouette refined surface
approximations was proposed in [LH01]. Here the QS-
plat system [RL00] was extended to use normal cones
for silhouette detection and refinement. Using a so-
phisticated perceptual model, surfels lying on the sil-
houette are assumed to cause high frequency and con-
trast in the final image. Thus, they are skipped and
the hierarchy is further traversed top-down until the
expected rendering result is indistinguishable from the

original. This is an effective approach. Therefore, we
also use normal cones to detect surfels lying on the sil-
houette. We suggest a more simple (and faster) LOD
selection using two radii that limit surfel size for sil-
houette and interior surfels. However, without high ef-
fort this can be extended to use the perceptual model
of Luebke and Hallen.

3 Surfel Rendering
In this section we discuss, how surfels are splatted to
render the object surface and how we integrate normal
mapping into this procedure.

3.1 Splat Sizing
Using today’s graphics hardware points are rendered
as view-plane aligned squares (e.g. aliased OpenGL
points). Thus, for each surfel its bounding square size
has to be calculated either on the CPU or on the GPU
by a vertex shader. Assuming a perspective projection
this size depends basically on surfel eye-space z-value
zeye and orientation. However, most approaches only
consider zeye and assume a view-plane aligned surfel.
But when texturing surfels the size should be as ex-
act as possible to prevent an unrealistic texture scal-
ing. Therefore, also surfel orientation should be con-
sidered. Our method is similar to [ZRB+04] but math-
ematically easier. We approximate the surfel shape in
eye-space by a rotated ellipse function in 2D and cal-
culate its bounding-box. Then the largest dimension of
this box is projected to image space to get the bound-
ing square size in screen-space. In doing so, up to 50%
smaller splat area can be defined, as illustrated in fig.
3(a).

An ellipse curve with x-axis radius a and y-axis ra-
dius b positioned at the origin can be described by:

f (x) = b ·
√

1− x2

a2 (1)

To get the bounding box of an ellipse which is rotated
by angle γ we have to calculate the maximum y and
x values. One way to get these values is to calculate
the points on f with derivation f ′(x1) = − tan(γ)
and f ′(x2) = cot(γ) and rotate them back by γ .
These points on f are defined by (x1, f (x1))T and
(x2,− f (x2))T , with

x1 =
−a2 tan(γ)√

a2 tan(γ)2 +b2

x2 =
a2 cot(γ)√

a2 cot(γ)2 +b2
. (2)

After rotating these points by γ we get the maximum x
and y-value by:

xmax = cos(γ)x2 + sin(γ) f (x2)
ymax = sin(γ)x1 + cos(γ) f (x1) (3)

r

nx

ny

rnz
xmax

ymax

γ

size win

size eye

zeyehα

n p

(a) (b)
Figure 3: Comparison of bounding squares of sur-
fel’s bounding sphere vs. ellipse approximation
(a). Projection of eye space square length to screen

space (b).

.
For an oriented surfel in 3D that is transformed to

eye-space with eye-space orientation n and radius r
you get a = r, b = rnz and γ is given by the adjacent
leg nx and opposite leg ny (fig. 3(a)). This yields to

xmax = r
√

1−n2
x , ymax = r

√
1−n2

y (4)

Using this we finally get the point-square dimension in
eye-space by:

sizeeye =2max(xmax,ymax)=2r
√

1−min(nx,ny)2. (5)

After approximating the eye-space square size, this
size is projected into image-space. Assuming that view
frustum’s aspect ratio equals viewport’s aspect ratio
this is done by

sizewin =
sizeeye

zeye
· h

2tan(α
2)

, (6)

where h is the viewport height in pixel and α the field-
of-view angle as illustrated in fig. 3. We totally com-
pute sizewin by a vertex shader, which only needs a few
instructions more than applying sizeeye = 2r.

3.2 Splat Shaping and Filtering
After resizing the surfel, it is rendered as a view-plane
aligned square. We use the rendering scheme proposed
in [BK03] to get a high quality anti-aliased rendering
result without the typical thickening effect of square
splats. In the following this procedure is briefly de-
scribed.

Today’s graphics cards are able to compute a texture
coordinate t ∈ [−1,1]2 for each splat pixel. Together
with the eye-space surfel normal n a depth offset tz for
every pixel can be computed:

tz = −nx

nz
tx− ny

nz
ty (7)

as illustrated in fig. 4(a). If ||t|| is less than one the
pixel belongs to the eye-space ellipse area. By using a

Gaussian kernel G for every surfel an alpha value for
this pixel can be computed by G (||t||). This forms an
ellipse with a smooth alpha value falloff at the border.

If several splats overlap in image-space they are
blended, but only if their z-value in eye-space is suf-
ficiently small. In this case they define a contiguous
surface part. Otherwise splats in front should overdraw
splats behind. Blended pixel values are summed up
weighted with their alpha values (also known as fuzzy
splatting). In the ideal case, these weights sum up to
one, forming an opaque surface. Because this is not
the general case additionally a per pixel normalization
is needed. Efficient algorithms for this purpose using
the possibilities of modern graphics hardware are de-
scribed in [BK03].

3.3 Normal Mapping for Surfels
Our goal is to increase surfel splatting quality by using
normal maps for pixel shading. Therefore, we need
texture coordinates for every pixel of the surfel square
(resp. on the surfel disk). For polygonal meshes tex-
ture coordinates are given for every vertex, and after
rasterization for every pixel its texture coordinate is
interpolated. When texturing surfel splats, for every
pixel such an interpolation is not possible, because sur-
fels are only described by one parameterized vertex.
Thus, we calculate this texture coordinate using the
given pixel parametrization t (see last section 3.2) par-
ticulary calculated by the graphics card together with
a texture coordinate ts and a scaling factor ws for the
normal map which are static for the whole surfel and
which are passed as vertex/fragment attribute. How
these values can be determined is explained in section
4.3.

Since for every surfel only its normal n is given to
describe its orientation, no exact mapping is possible
from t to the surfel plane. Instead there is a circle of
possible solutions. Thus, we need another orientation
normal o1, which is orthogonal to n and describes the
rotation angle around n. We suggest to compute o1 by
a simple scheme:

o1 =

(
nz√
1−n2

y
,0, −nx√

1−n2
y

)T

, if |ny|< 1

(0,0,1)T ,else.
(8)

In addition a third orthonormal vector o2 can be calcu-
lated by

o2 =
o1×n
||o1×n|| (9)

to define a local coordinate system on the surfel plane
with projection matrix S = [o1 o2 n], as illustrated in
fig. 5. Note, that o1 and o2 are generic and can also
be computed in a vertex shader from object-space sur-
fel normal n without additional attributes and memory
effort.

When projecting a surfel to eye-space using mod-
elview matrix M this local coordinate system is pro-
jected to eye-space, too, by S′ = SM. To get the texture
coordinate in surfel space, t has to be projected back by
t′ = S′−1t as it can be seen in fig. 4(b). Since t′ lies on
the surfel plane t′z = 0. Hence, only the first two rows
of S′−1 have to be computed, which can be done by:

1
|S′|

∣∣∣∣
o2y ny
o2z nz

∣∣∣∣
∣∣∣∣

nx o2x

nz o2z

∣∣∣∣
∣∣∣∣

o2x nx
o2y ny

∣∣∣∣
∣∣∣∣

ny o1y

nz o1z

∣∣∣∣
∣∣∣∣

o1x nx
o1z nz

∣∣∣∣
∣∣∣∣

nx o1x

ny o1y

∣∣∣∣

. (10)

If ||t|| < 1 then surfel base texture coordinate t′ is in
[−1,1]2. Thus, (t′x, t′y)T can be used easily to get the
final normal map texture coordinate tn of the shaded
pixel using a linear mapping:

tn =
ws−1

2
t′+ ts, (11)

where ws is the width (resp. height) of the area a sur-
fel disk covers in the normal map and ts is the surfel
texture coordinate in the center of this area (fig. 4(c)).

Finally, tn can be used to address the texel in the nor-
mal map, that contains the normal to use for shading
the surfel at this pixel, as illustrated in fig. 4(d).

4 Normal Map Estimation
After developing a rendering algorithm for surfel splats
using normal mapping now we explain how a normal
map for different surfel hierarchies can be generated.

Recent point-based level of detail approaches either
use a large point set [RL00] or a triangular mesh (e.g.
[CN01]) to describe the object on the highest LOD.
Based on this model a point tree is generated by a sub-
division scheme. In the next sections we give algo-
rithms for normal map creation for point and hybrid
point hierarchies.

4.1 Normal Map for Point Hierarchies
To create a normal map of a point hierarchy two steps
have to be performed for every surfel: Firstly, the surfel
has to be rasterized and secondly for every raster point
a ray has to be shot to obtain all surfels on the highest
LOD (called base surfels, Sbase) that affect the normal
of the raster point.

For rasterization of a surfel s the same orientation
vectors o1, o2 are applied as for normal mapping (see
section 3.3). If an area of ws×hs texel is preserved in
the normal texture for surfel s for every texel (x,y) ∈
[0,ws)× [0,hs) a position on the surfel disk is given by:

Px,y = Ps + rs

(
2x+1

ws
−1

)
o1 + rs

(
2y+1

hs
−1

)
o2(12)

where rs is the surfel radius, as illustrated in fig. 6.

Figure 4: Normal mapping steps: Original texture coordinate t with calculated depth value (a). Texture
coordinate t′ projected to surfel space (b). Mapping to normal map texture coordinate tn (c). Final result of

surfel shading (d).

P

n

r

o1

o2

Figure 5: Extended surfel geometry.

o1

o2

P s r s-r s

r s

-r s

P1,0

Figure 6: Rasterization of a surfel disk using a uni-
form raster.

To estimate the normal for every texel we choose a
simple raycasting approach. We estimate all surfels on
the highest LOD, which intersect the line l given by
position Px,y and surfel normal ns. Note that we do not
use a ray, because base surfels "behind" s have to be
considered, too. This is illustrated in fig. 7(a) in 2D
for a raster position P0,1 of surfel s1 for which line l
intersects base surfels s4,s7 and s8.

Base surfels that are far away from Px,y should not
be considered for the normal at this point, because they
do not belong to the surface part approximated by s. A
first attempt could only consider base surfels that are
also children of s (in fig. 7(a) this is only s4). But
this is not sufficient generally, because surfels over-
lap. Thus, we choose a top down approach. Starting
at the root surfel of the point hierarchy, surfels are de-
termined top down, whose bounding sphere intersects
with the bounding sphere of s (i.e. s1 in fig. 7(a)).
If a surfel is also a base surfel and it intersects line l
it will be considered for normal computation at point
Px,y. In fig. 7(a) these are s4 and s7. This algorithm is

s1

s2

s4

s7 s6

s8

l
P0,1

P'
P''

ns

ns

ns

d4

d7

s1

s2

s4

s3

s3

s5

s6

s7 s8

s5

...

...

...

(a) (b)

Figure 7: Geometry for line-surfel intersection
(here in 2D). Line l intersects base surfels s4,s7 and
s8 but only s4,s7 are used for normal estimation at
point P0,1 due to additional bounding sphere test

(a). The corresponding point hierarchy (b).

very fast, because for ray intersection the space subdi-
vision given by the point hierarchy is used (fig. 7(b)).
Thus, only a small number of surfels have to be tested
for bounding sphere intersection and line intersection,
respectively.

After a set of base surfels Sx,y ⊆Sbase is found for
a given pixel Px,y on surfel s, the normal nx,y at posi-
tion Px,y is estimated from this. Widely used for this
purpose is a weighted and normalized sum:

nx,y =
∑s′∈Sx,y ws′ns′

∑s′∈Sx,y ws′
, (13)

where ws′ weights the contribution of each base sur-
fel. Since splats are blended in image space using an
alpha mask defined by a Gaussian Gs for every surfel
s (see section 3.2), we choose this Gaussian to get the
weights ws′ . Therefore the distance ds′ of the base sur-
fel s′ center to the intersection point with line l is mea-

Algorithm 1 Algorithm to get the normal for a line by
intersection with base surfels.
SurfelLineIntersec(Line l, Surfel s1, Surfel s2, Normal n)

d := ||Ps1 −Ps2 ||;
if (d < rs1 + rs2)

// bounding spheres of s1 and s2 intersect
if (s2 ∈Sbase)

P := IntersectionPoint(l, s2);
d := ||P−Ps2 ||;
if (d < rs2)

// l intersects s2
n := n+Gs2(d) ·ns2 ;

end if
else

for each child surfel c of s2 do
SurfelLineIntersec(l, s1, c, n);

end for
end if

end if
end

NormalForLine(Line l, Surfel s, Normal n)
n := (0,0,0)T ;
SurfelLineIntersec(l, s, rootSur f el, n);
n := n/||n||;

end

sured (see d4 and d7 in fig. 7(a)). Then the weights ws′
are given by:

ws′ = Gs(ds′). (14)

The final procedure to get the normal nx,y of a raster
point Px,y that forms together with the surfel normal n
a line is summarized in algorithm 1. Finally the normal
nx,y is coded to RGB values and stored in the normal
map.

4.2 Normal Map for Hybrid Hierarchies
If the highest available LOD in the hierarchy is a trian-
gular mesh, then an algorithm similar to that for pure
point hierarchies will be used. Since triangles do not
overlap in well-formed triangular meshes only the tri-
angle that intersects the line l through raster point Px,y
have to be found, instead of a set of base surfels. If
this triangle t = (A,B,C) was found, the normal at the
intersection point is interpolated using barycentric co-
ordinates c = (u,v,w)T at this point:

nx,y = unA + vnB +wnC (15)

The pseudo-code for this procedure is shown in algo-
rithm 2.

4.3 Normal Map Size
To create a normal map for a point hierarchies a raster
size (ws,hs) has to be selected for every surfel s in ad-
dition to the algorithms described before. Since surfel

Algorithm 2 Algorithm to get the normal for a line by
intersection with a triangle that is a surfel child node.
PrimitiveIntersec(Line l, Surfel s, Primitive p, Normal n)

B := BoundingSphere(p);
d := ||Ps−MB||;
if (d < rs + rB)

// bounding spheres of s and p intersect
if (p is triangle)

if (l intersects p)
P := IntersectionPoint(l, p);
C := BarycentricCoordinates(P, p);
n := uCnpA + vCnpB +wCnpC ;

end if
else

for each child surfel c of p do
PrimitiveIntersec(l, s, c, n);

end for
end if

end if
end

NormalForLine(Line l, Surfel s, Normal n)
PrimitiveIntersec(l, s, rootSur f el, n);

end

2x2 4x4

8x8 16x16
Figure 8: Comparisons of images of a meteoroid
model allowing surfels up to a radius of 16 pixel in
the interior and using different normal map sizes.

disks are circular it is natural to choose hs = ws. For
base surfels of a pure point hierarchy we only need one
pixel (ws = 1), to store the surfel normal itself. For
every inner surfel of the point hierarchy the same ws
can be choosen, because surfel size in image space is
limited by a quality threshold (see section 5). As it can
be seen in fig. 8 this ws should exceed at least the half
of this threshold to preserve features.

(a) (b)
Figure 9: Bunny rendered using normal mapping
without silhouette refinement (a). Same rendering

with silhouette refinement (b).

Since today’s graphics cards allow non power-of-
two texture sizes, a proper normal map size wnm,hnm
can be determined by:

wnm =
⌈√

|S \Sbase|
⌉

ws (16)

hnm =
⌈ |Sbase|

wnm

⌉
+wnm. (17)

If hnm exceeds the maximum supported texture size,
the normal map will have to be split to multiple tex-
tures. In this case for every surfel a normal map index
is needed in addition.

After finding a proper normal map size, for every
surfel s, its texture coordinate ts can be assigned, that
is used for normal mapping as described in section 3.3.
The surfel size in normal map (ws,hs) can be assigned
as additional surfel attribute. But since it is static we
decide to pass it as constant to the fragment shader for
texturing.

5 Silhouette Refined LOD Selection
As known from multi-resolution techniques for polyg-
onal meshes even the best texturing does not prevent
a rough looking silhouette when choosing a low tesse-
lated model. The same problem appears in point-based
rendering using normal maps, as illustrated in fig. 9(a).
Thus, the silhouette has to be rendered using smaller
but more splats (fig. 9(b)).

Detecting the exact global silhouette is complex and
computational slow, therefore we apply a local silhou-
ette estimation using normal cones. This is very fast
but as expected in some case surface parts within the
object are wrongly specified to lie at the silhouette.

A normal cone is a spherical cap of the unit sphere
that can be described by a normal and an opening an-
gle. To get surfels on the silhouette every surfel s con-
tains a normal cone as additional attribute, which con-
tains its normal and the normal cones of all surfels be-
low s in the hierarchy. To get this normal cone, we use
the algorithm developed in [BE05]. In case of a per-
spective view with normalized viewing vector d and

Algorithm 3 Silhouette refined LOD selection using
radius rsil to limit size for silhouette surfels and rinner
for silhouette surfels, respectively.
TraverseHierarchy(Surfel s)

if normal cone of s contains front facing normals
if (s ∈Sbase)

DrawSplat(s);
else

r := size of s in viewport;
b f := n.c. of s contains back facing normals;
if (b f ∧ r ≤ rsil) ∨ (!b f ∧ r ≤ rinner)

DrawSplat(s);
else

for each child surfel c of s do
TraverseHierarchy(c);

end for
end if

end if
end if

end

field-of-view angle α a normal cone (n,β) contains
frontfacing normals if nd≤ sin(α +β) and backfacing
normals if nd >−sin(α +β), respectively. A surfel s
belongs to the silhouette if its normal cone contains
frontfacing and backfacing normals. We can also very
efficiently integrate backface culling by culling all sur-
fels, whose normal cone only contains backfacing nor-
mals.

Based on this, a top down LOD selection algorithm
can be constructed according to [RL00] using two
maximum sizes rsil ,rinner for surfels at and not at the
silhouette (see alg. 3). Note, that base surfels never lie
on the silhouette, because their normal cones only con-
tain one normal. However, this can be ignored apply-
ing top down traversal, because base surfels are always
drawn if they are reached.

6 Implementation and Results
We have implemented our framework on a Athlon64
system with a NVidia Geforce 6800 graphics card us-
ing OpenGL. For texturing we calculate the inverse
surfel base matrix S′−1 (see equ. 10) for every surfel
in the vertex shader and pass it as fragment attribute.
Note, that S′−1 is generic and we only need the surfel
normal for its calculation. The surfel texture coordi-
nate ts and the scaling factor ws are coded into one
additional 3D vector and passed as additional vertex
attribute to the vertex/fragment shader.

In table 10 you can see an exemplary framerate com-
parison for the Igea model that shows the number of
surfels in relation to the framerate with and without
normal mapping. If using no normal mapping also the
interior of the object has to be rendered by many sur-
fels. Thus, the same threshold radius to limit surfel size
as for the silhouette (alg. 3) has to be choosen. As you

ws size surfels fps
2 0 250k 20
2 0.34M 250k 17
4 1.1M 119k 37
8 4.1M 70k 59

16 16.2M 49k 85

Figure 10: Framerate results for using normal
mapping vs. no normal mapping (first row) when
rendering the Igea model in 1024x1024. The surfel
size is limited to rinner = ws (e.g. rsil = 2). The final
images for the first row is shown in 2(a) and for the

last row in 2(c).

can see we benefit from less surfels, which yields to a
significant increase in framerate especially when using
larger normal maps.

This table also shows the normal mapping over-
head caused by additional vertex/fragment shader op-
erations used for S′−1 and texturing (first and second
row). On the one hand calculating S′−1 needs many
operations in the vertex shader. On the other hand the
number of vertices is very decimated, which more than
compensates these overhead. On the other side in the
fragment stage not much more fragments have to be
shaded when using fewer large splats than many small.
In addition, texturing surfels only needs a few addi-
tional operations (see 3.3) in the fragment shader. This
is important, because fragment shading is still a bottle-
neck especially of point-based rendering. We can con-
clude that normal mapping only causes an appreciable
overhead by the required texture memory for the nor-
mal map.

7 Conclusion and Future Work
In this paper we proposed an approach to decrease the
number of surfels in the interior of the object surface
without visual disadvantages by using normal mapping
and silhouette refinement. This results in a significant
increases in framerate. We also shown how to cre-
ate normal maps for several types of point hierarchies
using a ray-casting approach. This is accelerated by
using the recursive space subdivision provided by the
point hierarchy.

Although our framework supports nearly all kind of
point-based surface descriptions there are opinions for
future works. When needing more than one normal
map (e.g. in the case of many surfels in the hierarchy)
an intelligent grouping of surfels to be rendered is nec-
essary to avoid many graphic library procedure calls to
select the proper map. Another working topic is to save
texture memory. One way to achieve this is to estimate
surfels with nearly the same normal map or with a nor-
mal map that can be tiled. Such surfels can mostly be
found on a surface part with no or low curvature.

REFERENCES
[BE05] G. Barequet and G. Elber. Optimal bound-

ing cones of vectors in three dimensions. Inf.
Process. Lett., 93(2):83–89, 2005.

[BK03] M. Botsch and L. Kobbelt. High-quality point-
based rendering on modern gpus. In PG’03
conf.proc., page 335. IEEE Computer Society,
2003.

[CAZ01] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hy-
brid simplification: combining multi-resolution
polygon and point rendering. In Vis’01
conf.proc., pages 37–44. IEEE Computer Soci-
ety, 2001.

[CN01] B. Chen and M. X. Nguyen. Pop: a hybrid
point and polygon rendering system for large
data. In Vis’01 conf.proc., pages 45–52. IEEE
Computer Society, 2001.

[DVS03] C. Dachsbacher, C. Vogelgsang, and M. Stam-
minger. Sequential point trees. ACM Trans.
Graph., 22(3):657–662, 2003.

[Her92] G.T. Herman. Discrete multidimensional jor-
dan surfaces. CVGIP: Graph. Models Image
Process., 54(6):507–515, 1992.

[LH01] D. Luebke and B. Hallen. Perceptually driven
interactive rendering. Technical Report #CS-
2001-01, University of Virginia, 2001.

[LW85] M. Levoy and T. Whitted. The use of points
as a display primitive. Technical Report 85-
022, Computer Science Department, University
of North Carolina at Chapel Hill, 1985.

[PGK02] M. Pauly, M. Gross, and L. P. Kobbelt. Effi-
cient simplification of point-sampled surfaces.
In VIS ’02 conf.proc., pages 163–170, Washing-
ton, DC, USA, 2002.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and
M. Gross. Surfels: surface elements as ren-
dering primitives. In SIGGRAPH’00 conf.proc.,
pages 335–342, New York, NY, USA, 2000.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: a mul-
tiresolution point rendering system for large
meshes. In SIGGRAPH’00 conf.proc., pages
343–352. ACM Press/Addison-Wesley Publish-
ing Co., 2000.

[RPZ02] L. Ren, H. Pfister, and M. Zwicker. Object
space ewa surface splatting: A hardware accel-
erated approach to high quality point rendering,
2002.

[ZPvBG01] M. Zwicker, H. Pfister, J. van Baar, and
M. Gross. Surface splatting. In SIGGRAPH’01
conf.proc., pages 371–378. ACM Press, 2001.

[ZRB+04] M. Zwicker, J. Räsänen, M. Botsch, C. Dachs-
bacher, and M. Pauly. Perspective accurate
splatting. In GI’04 conf.proc., pages 247–254,
University of Waterloo, 2004.

