
Painterly Rendering Framework from Composition

Chi Chu
Department of Computer Science
National Chiao Tung University
1001 Ta Hsueh Rd., Hsinchu,

Taiwan 300, R.O.C

maktub.cs94g@nctu.edu.tw

 Zen-Chung Shih
Department of Computer Science
National Chiao Tung University
1001 Ta Hsueh Rd., Hsinchu,

Taiwan 300, R.O.C

zcshih@cs.nctu.edu.tw

ABSTRACT
Painterly rendering has recently drawn considerable attention from graphics researchers. However, the state of
the art is neither systematic nor evaluative. This work presents a novel painterly rendering framework. The
painting process is decomposed into three stages to satisfy the needs of developers and users of painterly
rendering algorithms and programs. The framework comprises three systems, namely primitive mapping,
rendering and mark systems, and is inspired by John Willats’ perceptual decomposition of the painting process
presented by [Wil97]. Moreover, the rendering system is further decomposed into four independent modules,
namely initial point, path, cross-section and color. The independence of each module makes new styles easy to
generate by combining existing styles, or constructing complex styles from simple styles. The proposed
framework shows the power of painterly rendering algorithm, which can not only imitate existing styles, but also
generate new styles. Furthermore, parameters in rendering systems are specified hierarchically. Users only need
to specify the user parameters, which are then automatically converted into system parameters during rendering.
This approach is crucial to facilitating the use of the program by end-users.

Keywords
painterly rendering, non-photorealistic rendering, hierarchical composition

1. INTRODUCTION
Painterly rendering is of priority concern in non-
photorealistic rendering. The process takes an
ordinary image (probably captured by a digital
camera) as the input, and generates another image,
representing a particular painting style, as its output.
Although this problem has been addressed for
several years, the state-of-art is far from the original
aim. First, the algorithms are hard-wired to their
objective painting styles, and therefore are able to
generate only a few particular styles, but are neither
systematic nor evaluative. Thus, these algorithms
cannot be easily integrated to generate desired new
styles. Although painting involves creation, but the
current algorithms can not achieve this function,
these algorithms generate various painting styles by
changing the parameters. However, the parameters
are related to their implementation, rather than to the

painting style. Therefore, present systems are not
intuitive for end users. This work develops a general
framework for painterly rendering to alleviate these
limitations.

The proposed framework is inspired by the book
“Art and Representation” by John Willats [Wil97].
Willats divided the painting process into two systems,
the drawing and the denotation systems. Fr´edo
Durand [Dur02] recently extended Willats’
framework into four sub-systems, namely the spatial,
primitive, attribute and mark systems.

The proposed framework resembles that of Durand’s
work, except that the spatial system replaced by
perspective projection (projection in photograph).
The mark system is similar to that of Durand’s. His
primitive system and attribute systems are combined
into the proposed primitive system, along with the
rendering system, because assigning visual properties
to a picture primitive is different from depicting it.
The rendering system manages depicting a picture
primitive. Moreover, primitive mapping does not
simply choose from different primitives, but also
concerns the mapping of attributes in primitives. For
instance, an impressionist prefers high-tone pure
colors (for example: yellow, green, orange), so a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

primitive mapping system can map an ordinary color
in the primitive to a high-tone pure color.

Thus, the whole framework comprises three
components, namely primitive mapping, rendering
and mark systems. The primitive mapping system
relates to the mapping among various scene
primitives. The rendering system synthesizes
different painterly styles based on various scene
primitives. The mark system depicts the actual
physical implementation of strokes generated by the
rendering system.

The rendering system is further decomposed it into
four independent modules, determining stroke initial
point, path, color and cross-section, to introduce
creation. The independence of each module makes a
new style easy to generate by combining existing
styles or constructing complex style from simple
styles. This novel system shows the power of the
painterly rendering algorithm, which can not only
imitate existing styles, but also generating new styles.

The parameters in rendering system can be classified
hierarchically as user parameters, system-dependent
parameters and system-independent parameters. The
user only needs to specify the user parameters, which
are automatically converted into system parameters
in rendering. We believe that this parameter
classification is crucial to ensure that end-users can
easily run the program. Figure 1 illustrates the flow
of the proposed framework.

2. Related works
Painterly rendering algorithms have been studied for
several years [Chi06, Col02, Goo02, Hae90, Hay04,
Her98, Her03, Lit97, Mei96, Ols05, Sch05]. Haeberli
[Hae90] provides a paradigm for painterly rendering,
in which a painting is synthesized by an ordered
collection of brush strokes, each having its own color,
shape, size and orientation. Various painting effects
can be created by adapting these strokes. Many
painterly rendering algorithms follow this paradigm
and are designed to be automatic. However, these
algorithms are hard-wired to their codes, so do not
provide much variation on possible painting styles,
and cannot be used by artists to guide the
synthesizing process. On the contrary, the proposed
framework involves artist’s creation by module
composition.

Artificial intelligence is applied to painterly
rendering algorithm in [Col02, Sch05]. However,
because of the weak power of current computer
artificial intelligence, these algorithms do not differ
from automatic algorithms much. Besides, it is not
intuitive for user to design salience map [Sch05] or
agent behavior [Col02] because they are relative to
the underlying algorithm rather than artist’s view.

Figure 1. The flow of proposed framework.

Semi-interactive and interactive algorithm [Chi06,
Goo02, Hae90, Hal02, Ols05, Kal02] are those in
which an artist can become involved in the process of
synthesis. Interaction can be achieved by simply
modifying parameters or mimic artist’s painting
process [Gra04, Hal02, Kal02].

Halper [Hal02] present user a way to design
nonphotorealistic images based on series of
elementary operations. These elementary operations
include scene modifiers, stroke modifiers and image
modifiers. By linking these operations, image of
novel styles can be synthesized. Halper’s elementary
operations are similar to the independent modules in
rendering system of the proposed framework.
However, the independent module is more
fundamental because it is only a partial style rather
than a complete style represented by Halper’s
elementary operation.

Stéphane [Gra04] presented a programmable
interface for non-photorealistic line drawing, in
which the topology of a view map of lines is
extracted from a three-dimensional polygon mesh.
Three user definable modules, namely selecting,
chaining and splitting, are then applied. Each module
refines the lines, which are then drawn on the final
image. This framework is very flexible to synthesize
different line drawing styles. The primitive mapping

system of the proposed framework is similar to
Stéphane’s framework.

3. Overview
The proposed framework comprises three main
stages (Fig. 1): Image Processing Front End (IPFE),
Creative Style Selection (CSS) and Synthesizer Back
End (SBE). Each stage corresponds to painters’
actual painting process: determine what to paint
(IPFE), choose the painting style (CSS) and paint
(SBE). The first two stages (IPFE and CSS) involve
user interaction. The third stage (SBE) is automatic.

3.1 Image processing front end stage
As mentioned before, a painterly rendering algorithm
has many inputs, which have to be unified to
construct a framework, since the image itself (as a set
of pixels) is not intuitive for end-users or artistic who
want to give guidelines to a particular painterly
rendering algorithm. A unified input is also needed
to combine different algorithms.

The input of the proposed framework, Raw PR Input
in Fig. 1, comprises a hierarchy of objects and
primitives. Objects are a high-level concept, namely
what the end user wants to paint. The object
hierarchy denotes the way that painters view the
scene. For instance, a scene comprises a chair and an
apple, and the chair comprises four legs. Besides,
object relationship in the hierarchy provides
rendering system with necessary information, for
example, the “ImpMonet” rendering function in
Section 5.3. A primitive is a low-level concept that is
involved in the painting process, and denotes the
painter’s perception of a single object. For instance, a
painter may perceive a region with red color from the
apple.

The Image Processing Front End stage converts an
input image into a hierarchy of objects and primitives.
The interaction stage of IPFE stage requires a user to
use image segmentation tools to segment areas in an
input image of interest. Any commercial tool can be
used to finish this task. Figure 2 illustrate an example
of an object hierarchy.

3.2 Creative style selection stage
The Creation Style Selection (CSS) stage helps a user
to determine the painting style, and consists of two
parts: modification and selection of primitives, and
choosing the style for each selected primitive. These
two parts correspond respectively to the primitive
mapping and rendering systems [Dur02], and are
discussed in detail in Sections 4 and 5 respectively.

Figure 2. A hierarchy of objects and the
corresponding primitives: one base object and five
first layer sub-objects. Primitives are two-
dimensional images represented by masking images.

3.3 Synthesizer back end stage
The system paints automatically once the CSS stage
is finished. The mark system in the Synthesizer Back
End stage performs the painting process. The
proposed framework currently supports oil painting.
Section 6 discusses this part in detail.

4. Primitive system
A primitive system helps users to select the object to
be painted and the modification that should be
applied before painting. The modification is required
for two reasons. First, humans represent scene
objects in their own way, similar to the salience map
in previous approaches. Second, different artists
interpret scene objects differently. For instance, Van
Gogh would draw twisted contour lines, while
Renoir preferred draw smooth contour lines. This
modification must be separated from rendering
functions, since it simplifies the design of rendering
functions, and makes the whole painting process easy
to understand.

A primitive has two fundamental properties, namely
shape and color. Shape is represented as a two-
dimensional mask, and color is represented as a two-
dimensional color buffer in which pixels adopt the
RGB color model. Additionally, the concept of
extendedness [Wil97] is employed to represent
human perceptions of object shape.

4.1 Extendedness
Willat [Wil97] employed the concept of
extendedness to describe human perceptions of shape.
The extendedness specifies the relative extensions of
primitive in different directions of space. This work
extends Willat’s extendedness concept to synthesize
the quick drawing effect of Impressionism (Section
5.4). The extendedness in the proposed framework is
defined as a list of spans, each with a starting
direction, ending direction and intensity. These spans
are obtained by first threshold the length from pixel
position to object center and then merge pixels with
similar length. Extendedness is used in the

framework to generate a “shape direction” for each
point in primitive. The shape direction is then used to
derive stroke direction in a rendering system.

4.2 Elementary operators
Four selection operators are available, namely
selection, merging, subtraction and sorting. The
selection operator takes a primitive as input, and
decides whether to select it based on the information
included in the primitive. For instance, selection may
depend on the importance value or type of an object
where the primitive belongs. Users can implement
their own selection operators based on complex
functions. Several built-in selection operators are
available, including selection by object importance,
object id and object type.

The merge operator takes two primitives as input and
the merged result as output. Users can customize the
layering behavior by merging insignificant primitives.
For instance, far primitives can be merged together,
and near or important primitives should be treated
separately. The built-in merge operator is
implemented using set union, in which the shape
mask and color buffer of primitive are considered as
sets.

The subtraction operator can be employed in
rendering functions. The built-in subtraction operator
is implemented by set subtraction, in which the shape
mask and color buffer of primitive are considered as
sets.

The order of primitive drawing strongly influences
the result. The sorting operator is provided to
determine the order of primitives, and results in a
partial order of primitives in which primitives of the
same anti-chain are in the same painting layer.
Trivial build-in sorting operator is not available,
since this operation involves creativity, and depends
entirely on the user.

5. Rendering system
The rendering system comprises a set of rendering
functions, each taking a mapped primitive as input
and generating stroke definitions. A stroke definition
includes the path, cross-section at each control points,
initial bristle attributes and physical-effect
parameters. All these parameters are required in the
mark system. The rendering function can also access
global information, i.e. the input and Canvas object
used in mark system. The generation of stroke
definition comprises several steps. Stroke definitions
generated from each step are fed into the mark
system, whose results affect the next stroke
definition generation step.

5.1 Module composition
Most current painterly rendering algorithms are black
boxes that generate all stroke definitions. These
algorithms are hard to modify or combine, so cannot
be employed to create a new style. This problem is
solved herein using module composition. The basic
idea is that although artist’s creation can not be
realized by computer algorithm, common
fundamental painting techniques do exist among
these artists and these techniques can be achieved by
computer. Thus, partial styles are developed instead
of complete styles. Users can apply their creation to
the painting synthesizing process.

The rendering function is divided into four modules.
Each module is responsible for generating one kind
of stroke definitions, namely stroke initial point,
stroke path, stroke color and stroke cross-section.
The stroke initial point module determines the
distribution of strokes, and consists of a set of points
representing the initial point of the path of each
stroke. The stroke path module creates a path from a
given initial point, and consists of a set of control
points for each stroke definition. The stroke color
module determines the color of the stroke. The stroke
cross-section module determines the stroke cross-
section of the stroke path, and consists of a set of
cross-section definitions corresponding to each
control point. Figure 3 illustrates these four modules.

(a) (b) (c)

(d) (e)

Figure 3: Rendering modules and a basic style. (a)
stroke initial points; (b) stroke path formed by
control points (red dots); (c) stroke with cross-

sections and color defined; (d) first layer of painting
by applying four modules sequentially; (e) a basic

style resulting from three layers.

To combine different rendering functions, these four
modules are made independent to each other. A new
style is created by simply choosing these four
modules from existing rendering functions and
combining them. This novel approach shows the
power of the proposed painterly rendering algorithm,

which can not only imitate existing styles, but also
generate new styles. Existing rendering functions are
also easy to modify. Modification can be applied on
individual modules without affecting the other
modules.

5.2 Parameter hierarchy
Most painterly rendering algorithms adopt
parameters to control the variation of styles.
However, they derived parameters are typically
derived from the algorithm designing stage, making
them unintuitive for end-users. The proposed
algorithm solves this problem by providing a
hierarchical representation of parameters.
Conceptually, users who are unfamiliar with the
algorithm can simply specify high-level parameters,
which are automatically converted to low-level
parameters.

The parameters are classified into four levels, namely
the style, user, system-dependent and system-
independent parameters. The lowest level is system-
dependent parameters. Only these parameters are
adopted in the rendering process. Parameters in all
other levels are converted to the lowest level.
System-dependent parameters are parameters that
depend on the rendering target, for instance, the
“surrounding color” in “ImpMonet” rendering
function in Section 5.3. System-dependent
parameters can be determined by rendering function
or specified by user.

User and style parameters are high-level parameters.
User parameters have to be determined by users due
to algorithm’s limitations. Style parameters are
summaries system parameters. Different style
parameters in the same rendering function represent
minor variations of the same style. Figure 4
illustrates the concept of parameter hierarchy.

Several painting styles were implemented to show
the effeteness of our framework. The following sub-
sections discuss these styles in detail.

5.3 Style one: impressionism, Monet
The Monet rendering function was used to synthesize
a series of paintings by a series of paintings by
Monet during 1899~1901. The subjects in these
paintings are buildings, rivers and skies immersed in
the morning mist. To depict the mist, all objects are
painted casually and burred. However, the painting
style for each subject (building, river and sky) is
slightly different.

To synthesize these effects, three rendering functions
were implemented to synthesize the building, river
and sky. First, the “ImpBuilding” rendering function
would automatically find the two most distinct base

colors representing the surrounding color (obtained
from the “surrounding” object, i.e. the sky) and the
object’s instinct color (i.e. the diffuse color). These
two colors are blended to form the stroke color. The
direction of the stroke path is modified to follow the
shape of the object. The initial point is seeded
randomly to mimic casual painting effects. Figure 4
illustrates some results of this function.

Figure 4: Parameter hierarchy of rendering function
“Impressionist Building (ImpBuilding)”: Four style

parameters: “default”, “more impression”, “long
stroke” and “clear”; User parameters are empty; Two
system dependent parameter: surrounding color and

building color; Nineteen system independent
parameters.

After the “ImpBuilding” rendering function is
designed, the other two rendering functions,
“ImpWater” and “ImpSky”, were implemented as
extensions of “ImpBuilding”. Because of the
separation of modules and the concept of inheritance,
the similarities of these three styles could be
preserved, thus focusing only on the difference. For
instance, the “ImpSky” rendering function uses three
base colors: the surrounding color, the object’s
instinct color and the sun color. Thus, the “ImpSky”
was obtained by modifying the color module of
“ImpBuilding”.

5.4 Style two: impressionism, quick draw
The quick draw rendering function was used to
synthesize the quick drawing effect of Impressionist
paintings. The following objective must be achieved
to synthesize this effect. First, the number of strokes
representing the foreground object should be
minimized. These strokes should reveal the shape of
the object. The color distribution of the foreground
object should be much less noticeable than its shape
during synthesis. Second, neither the shape nor the
color of the background objects should be noticeable
during synthesis.

To attain the first aim, the stroke path did not follow
the normal direction of image gradient. The blending
“shape direction” and normal direction of image
gradient were used instead. The shape direction was
obtained from primitive extendedness, as explained
in Section 4.1. Additionally, the stencil buffer of
canvas was employed to avoid overlapped strokes.
To attain the second aim, the color buffer of the
primitive in the background object was blurred by
blending each pixel’s color value with the mean
color of the entire color buffer. Figure 6 illustrates
some results of this function.

5.6 Other styles
Pen-and-ink styles including half-toning, stippling
and mosaics [Str02] also have been developed. By
combining modules in pen-and-ink style with
modules in painterly rendering style, novel styles can
be synthesized. Corresponding results are displayed
in Figure 7.

6. Mark system
The list of stroke definitions generated by the
rendering system is fed into the mark system that
draws these strokes on canvas. The physical
implementation of stroke definition depends strongly
on the target painting media. For instance, the water
color mark system obviously should differ from oil
painting mark system a lot.

The proposed mark system has three components, a
brush model, a bristle canvas interaction system and
a random system. The brush model includes objects
such as pigment, canvas, stroke paths and stroke
cross sections (round and flat). In the bristle canvas
interaction system, the bristle location is determined
by the stroke path and stroke cross section. Each
bristle contains pigment, which is placed on canvas.
The interaction between bristle and canvas occurs on
every contact along the stroke path. This mark
system is extended from Way‘s [Way01] stroke
model.

7. Results
Results, including the individual styles and the
compositions of styles, are now presented in
Figure.5~7. The framework is implemented in C++
language on a laptop with a Pentium 1.5G CPU and
512 MB RAM. Running time ranges from thirty
seconds to twenty minutes. Full size images and
additional results are contained in the supplementary
files.

8. Conclusion and future work
This work has presented a flexible painterly
rendering framework. A developer can extend this
framework by customizing its components, enabling
different painterly algorithms to be placed within it.
The division of this framework is also based on the
actual process of painters, which means that the
generated results can be evaluated esthetically.
Several painting styles were synthesized to indicate
the effectiveness of the proposed framework. Several
results are presented in each style, requiring
extension or modification of each component of this
framework. The extension and modification
processes are clear and intuitive.

Future work will attempt to improve the proposed
framework in the following ways. A spatial system
will be added to the framework. Such a system is
especially important in oriental painting styles. We
will attempt to discover how to establish a
complicated projection system in painting processes.
The mark system will also be improved. Only simple
effects of oil painting have been synthesized so far.
Further synthesis experiments will be performed in
the near future.

9. REFERENCES
[Bom91] Bomford, D., J. Leighton, J. Kirby, and A.

Roy, Art in the Making Impressionism, Yale
University Press, New Haven, CT, USA, 1991.

[Chi06] Chi, M.T. and T.Y. Lee, “Stylized and
Abstract Painterly Rendering System Using a
Multiscale Segmented Sphere Hierarchy”, In
IEEE Transactions on Visualization and
Computer Graphics, Volume 12, Issue 1, IEEE
Computer Society, Los Alamitos, CA, USA,
2006, pp. 61-72.

[Col02] Collomosse, J.P. and P.M. Hall, “Painterly
Rendering using Image Salience”, In Proceedings
of the 20th Eurographics UK Conference (June
2002, Leicester, UK), IEEE Computer Society,
Los Alamitos, CA, USA, 2002, pp. 122-128.

[Dur02] Durand, F., “An invitation to discuss
computer depiction”, In Proceedings of the 2nd
international symposium on Non-photorealistic
animation and rendering (June 3-5, 2002,

Annecy, France), ACM Press, New York, USA,
2002, pp. 111-124.

[Goo02] Gooch, B., G. Coombe, and P. Shirley,
“Artistic Vision: Painterly Rendering Using
Computer Vision Techniques”, In Proceedings of
the 2nd international symposium on Non-
photorealistic animation and rendering (June 3-5,
2002, Annecy, France), ACM Press, New York,
USA, 2002, pp. 83-90.

[Gra04] Grabli, S., E. Turquin, F. Durand, and F.X.
Sillion, “Programmable Style for NPR Line
Drawing”, In Rendering Techniques 2004:
Eurographics Symposium on Rendering (June
21-23, 2004, Norrköping, Sweden), Eurographics
Association, Switzerland, 2004, pp. 33-44.

[Hae90] Haeberli, P., “Paint by numbers: abstract
image representations”, In Proc. 17th Intl.
Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
Volume 4, ACM Press, New York, USA, 1990,
pp. 207-214.

[Hal02] Halper, N., S. Schlechtweg, and T.
Strothotte, “Creating Non-Photorealistic Images
the Designer's Way”, In Proceedings of the 2nd
international symposium on Non-photorealistic
animation and rendering (June 3-5, 2002,
Annecy, France), ACM Press, New York, USA,
2002, pp. 97-104.

[Hay04] Hays, J. and I. Essa, “Image and Video
Based Painterly Animation”, In Proc. 3rd ACM
Symposium on Non-Photorealistic Animation
and Rendering (June 7-9, 2004, Annecy, France),
ACM Press, New York, USA, 2004, pp. 113-120.

[Her98] Hertzmann, A., “Painterly Rendering with
Curved Brush Strokes of Multiple Sizes”, In Proc.
25th Intl. Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
ACM Press, New York, USA, 1998, pp. 453-460.

[Her03] Hertzmann, A., “A Survey of Stroke-Based
Rendering”, In IEEE Computer Graphics &
Applications, Special Issue on Non-
Photorealistic Rendering, Vol. 23, No. 4, IEEE
Computer Society, Los Alamitos, CA, USA,
2003, pp. 70-81.

[Kal02] Kalnins, R.D., L. Markosian, B.J. Meier,
M.A. Kowalski, J.C. Lee, P.L. Davidson, M.
Webb, J.F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing Strokes Directly on
3D Models”, In Proc. 29th Intl. Conference on
Computer Graphics and Interactive Techniques
(ACM SIGGRAPH), ACM Press, New York,
USA, 2002, pp. 755-762.

[Lit97] Litwinowicz, P., “Processing Images and
Video for An Impressionist Effect”, In Proc.24th
Intl. Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
ACM Press, New York, USA, 1997, pp. 407-414.

[Mei96] Meier, B.J., “Painterly Rendering for
Animation”, In Proc. 23th Intl. Conference on
Computer Graphics and Interactive Techniques
(ACM SIGGRAPH), ACM Press, New York,
USA, 1996, pp. 447-484.

[Ols05] Olsen, S.V., B.A. Maxwell, and B. Gooch,
“Interactive Vector Fields for Painterly
Rendering”, In Proceedings of Graphics Interface
2005 (May 9-11, Victoria, Canada), volume 112
of ACM International Conference Proceeding
Series, Canadian Human-Computer
Communications Society, A K Peters, LTD.,
2005, pp. 241-247.

[Sch05] Schlechtweg, S., T. Germer, and T.
Strothotte, “RenderBots--Multi-Agent Systems
for Direct Image Generation”, In Computer
Graphics Forum, Volumn 24, number 2,
Eurographics Association, Switzerland, 2005, pp.
137-148.

[Str02] Strothotte, T. and S. Schlechtweg, Non-
photorealistic Computer Graphics: Modeling,
Rendering, and Animation, Morgan Kaufmann,
San Fransisco, CA, USA, 2002

[Wil97] Willats, J., Art and Representation,
Princeton University Press, Princeton, NJ, USA,
1997.

[Way01] Way, D.L. and Shih Z.C., “The Synthesis
of Rock Textures in Chinese Landscape
Painting”, In Computer Graphics Forum, Volumn
20, number 3, Eurographics Association,
Switzerland, 2001, pp. 123-131.

Figure 5: Synthesized painting of one NCTU scene using

Impressionism Monet style set

Figure 6: Synthesized painting using impressionism quick

draw style.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: Synthesized paintings by combining modules from painterly rendering style and pen-and-ink style. (a)
Painterly style. (b) Half-toning with line using color module of painterly style. (c) Stippling using color module

of painterly style. (d) Mosaics using color module of painterly style. (e) Painterly style using cross-section
module of half-toning with line. (f) Painterly style using cross-section module of stippling. (g) and (h) Half-

toning with line using path module of painterly style.

	1. INTRODUCTION
	2. Related works
	3. Overview
	3.1 Image processing front end stage
	3.2 Creative style selection stage
	3.3 Synthesizer back end stage
	4. Primitive system
	4.1 Extendedness
	4.2 Elementary operators

	5. Rendering system
	5.1 Module composition
	5.2 Parameter hierarchy
	5.3 Style one: impressionism, Monet
	5.4 Style two: impressionism, quick draw
	5.6 Other styles

	6. Mark system
	7. Results
	8. Conclusion and future work
	9. REFERENCES

