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ABSTRACT

In this paper we propose two novel software implementationsof the ray-casting volume rendering algorithm for irregular grids,
called ME-Raycast (Memory Efficient Ray-casting) and EME-Raycast (Enhanced Memory Efficient Ray-Casting). Our algorithms
improve previous work by Bunyket al [1] in terms of complete handling of degenerate cases, memory consumption, and type of
cell allowed in the grid (tetrahedral and/or hexahedral). The use of a more compact and non-redundant data structure, allowed
us to achieve higher memory efficiency. Our results show consistent and significant gains in the memory usage of ME-Raycast
and EME-Raycast when compared to Bunyket al implementation. Furthermore, our results also show that handling of degenerate
cases generates accurate images, correctly rendering all the pixels in the image, while Bunyket al implementation fails in rendering
up to 38 pixels in the final image. When we compare our algorithms to other robust rendering algorithm, like ZSweep [2], we
have considerable performance gains and competitive memory consumption. We conclude that ME-Raycast and EME-Raycastare
efficient methods for ray-casting that allow in-core rendering of large datasets with no image errors.

Keywords: Volume rendering, Ray-casting.

1 INTRODUCTION

Direct volume rendering has become a popular technique
for visualizing volumetric data from sources such as sci-
entific simulations, analytic functions, and medical scan-
ners such as MRI, CT, and ultrasound. A big advantage
of direct volume rendering is to allow the investigation of
the interior of the data volume, because the objects are
considered as composed of a semi-transparent material.

Volumetric data used in volume rendering is usually
represented in the form of a regular or irregular grid. Reg-
ular grids are built with a rigid topological framework,
and can be represented in an implicit form. Irregular
grids, on the other hand, have the advantage of generality
since they can conform to nearly any desired geometry,
and thus, they are useful to represent complex geometries
in a compact way.

Although several algorithms and methods have been
proposed to efficiently render irregular grids, the most
popular one is theray-casting method. In this method,
rays are casted from the viewpoint through every pixel
of the image what determines which cells of the volume
each ray intersects. Every pair of intersections is used
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to compute a contribution for the pixel color and opac-
ity. The ray stops when it reaches full opacity or when it
leaves the volume.

There are many different implementations of the ray-
casting algorithm, [6, 5, 7, 8]. Only a few software solu-
tions, however, deal with irregular grids. Garrity [3] pro-
posed an efficient method for ray-casting irregular grids
using the connectivity of cells. In his method, as the ray
intersects one cell, it must exit through one of its faces. At
this point it is only necessary to check intersections of the
ray with the cell’s faces. Therefore, Garrity used the con-
nectivity of the data to move from cell to cell of the grid,
in order to reduce the cost of identifying the cells which
the ray intersects. This scheme leads to a quadratic cost
on the number of cells. Later, Bunyket al [1] improved
Garrity’s work by determining for each pixel an ordered
list of intersections on external visible faces. This allows
them to efficiently enumerate which boundary face in-
tersects a given ray, and the correct order of the entry
points for the ray. The rendering process follows Gar-
rity’s method, but when a ray exits the grid, the algorithm
can easily determine in which cell the ray will re-enter
the grid. This approach becomes simpler and more effi-
cient than Garrity’s propose, however it keeps some large
auxiliary data structures.

The memory consumption of Bunyket al approach is
very high. This can have some implications in the algo-
rithm efficiency when the computer does not have enough
main memory. In addition, the amount of memory used
by the ray-casting algorithm could complicate its imple-
mentation in the graphics hardware. Nowadays, this be-



comes a huge obstacle for achieving real-time perfor-
mance in rendering.

Besides the memory consumption problem, Bunyket
al approach has other shortcomings. First, there are some
degenerate cases that cannot be handled by their algo-
rithm. And second, it deals only with tetrahedral grids. In
this work, we propose two novel ray-casting algorithms
based on Bunyket al approach, but improving it in dif-
ferent ways. Our goal is to develop memory efficient ray-
casting algorithms that provide accurate results. Our ap-
proaches: (i) completely handle degenerate cases; (ii) use
different data structures that are much smaller than the
ones used in Bunyket al approach; and (iii) deal with
both tetrahedral and/or hexahedral grids.

Our algorithms, called ME-Raycast (Memory Efficient
Ray-casting) and EME-Raycast (Enhanced Memory Ef-
ficient Ray-Casting), presented consistent and significant
gains in memory usage over Bunyket al approach. Our
gains were not only in memory usage, but also in the cor-
rectness of the final image. Bunyket al approach did
not handle all possible degenerated cases, so it generated
some incorrect pixels in the image.

We also compared our algorithms to other robust di-
rect volume rendering algorithms based on cell projection
paradigm, ZSweep. Our algorithms outperform ZSweep
for all datasets. In terms of memory usage, for smaller
images resolutions, ME-Ray spends more memory than
ZSweep. EME-Ray, otherwise, spends less memory than
ZSweep for most of the cases.

The remainder of this paper is organized as follows.
In the next section we relate our work to others in the
field of volume rendering of irregular grids. Section 3 de-
scribes our ray-casting algorithms and the improvements
we made on Bunyk’s approach, and shows how our al-
gorithms handle the degenerate cases. In section 4 we
present the results of our most important experiments.
Finally, in section 6, we present our conclusions and pro-
posals for future work.

2 RELATED WORK

There are mainly two categories of algorithms for direct
volume rendering on irregular grids: ray-casting and pro-
jection.

Ray-casting algorithms are usually called image-space
methods, since in its outer loop, it iterates over all the
pixels of the output image. In the work by Garrity [3], as
mentioned before, for each ray, exterior faces are tested
to find the first intersection point. After that, the cells are
traversed using the connectivity relation between them.
This work was further improved by Bunyket al [1], by
computing for each pixel a list of intersections on exter-
nal visible faces, and easily determining the correct order

of the entry points for the ray. These two are all-software
approaches, which means that they do not require any
graphics hardware. Our work is also an all-software im-
plementation, but provides improvements over Bunyket
al work. Weiler et al [12], on the other hand, imple-
mented ray-casting using the graphics hardware. They
find the initial ray entry point by rendering front faces,
and then traverse through cells using the fragment pro-
gram by storing the cells and connectivity graph in tex-
tures. Their method, however, work only on convex un-
structured data, and is based on GPU programming.

Another class of rendering algorithms is the one that
performs the render based on the sweeping paradigm to
lower the cost of the ray-casting. The first work in this
class was developed by Giertsen [4]. In his work, a plane
sweeps the dataset in the up direction, or in the direction
of Y axis, intersecting with cells. For every line of pix-
els of the image, all intersections of the sweeping plane
with the cells of the grid is approximated by a regular
2D grid, and a bidimensional raycast is performed. One
weakness of this method is the approximation imposed
in the accommodation of the 2D grid, result of the inter-
section of the plane sweep with the data cells, onto the
regular grid. Later, the work by Silvaet al [10] improved
Giertsen work. The Lazy Sweep algorithm avoids the ap-
proximation mentioned above.

Projection algorithms, on the other hand, reconstruct
the image from the object space to the image space. The
projection requires that the cells are first sorted in visi-
bility ordering and then composed to generate their color
and opacity in the final image. The first algorithm to be
fully implemented to use projection was the ZSweep by
Fariaset al. [2]. The algorithm was implemented using
only the CPU, what provided flexibility and easy paral-
lelization. The ZSweep is a simple and efficient face pro-
jection rendering algorithm. ZSweep sweeps the dataset
vertices, in depth order, with a plane perpendicular to
the viewing direction. When the sweep plane hits a ver-
tex, ZSweep project the faces incident on that vertex. To
achieve memory efficiency, they used a mechanism called
early ray composition. We used ZSweep algorithm as a
baseline for our performance evaluation, in order to com-
pare the speed and memory usage of our ray-casting algo-
rithms over a projective one. The great advantage of pro-
jective methods is that they are efficiently implemented
in programmable graphics hardware. Several cell projec-
tion algorithms were implemented using hardware graph-
ics (e.g., [13], [9], [11]).

3 OUR APPROACHES

The main goal of ME-Raycast and EME-Raycast algo-
rithms is to combine correctness of the results with effi-



ciency in memory usage, without degrading the execution
time.

For both algorithms, the traversal for each pixel starts
in the same way proposed in Bunyket al implementation.
We project the visible faces on the screen and keep for
each pixel the list of intersection points which enters the
volume. Nevertheless, for the internal grid adjacency
representation, ME-Raycast and EME-Raycast use com-
pletely different data structures. In fact, EME-Raycast
was developed as an optimization of ME-Raycast in
terms of memory usage. EME-Raycast uses simpler
data structures than ME-Raycast. Our algorithms also
include an identical and efficient method to deal with the
degenerate cases that can occur during the ray traversal
process, described in section 3.3.

3.1 ME-Raycast Algorithm

Before explaining the ME-Raycast algorithm itself, we
describe its basic data structures. These data structures
are also used by EME-Raycast, except for the most mem-
ory expensive array and some auxiliary structures, which
are eliminated in EME-Raycast to lower memory con-
sumption.

Basic Structures ME-Raycast keeps three basic struc-
tures: the vertex array (Points_VEC), the cell array
(Cells_VEC) and the face array (Faces_VEC). There
are also some auxiliary structures: theUse_Set of a
vertex v is a list of all cells incident onv (see Farias
et al [2]); the Neighbor_Array of a cell c is an ar-
ray of indices of all neighboring cells ofc; and the
Triangular_Faces of a cellc is an array of indices
of the triangular faces that boundc (in hexahedral cells,
the faces need to be broken in two triangular faces).

TheUse_Set array substitutes thereferredBy list
used in Bunyk’s implementation. TheUse_Set for each
vertex, is a list of all cells incident on the vertex, in con-
trast with thereferredBy list, which is a list of faces
incident on the vertex. TheUse_Set can be created in
the preprocessing phase, inO(c), wherec is the number
of cells. We allocate an array of integers (int_array),
of the size of the number of vertices. For each cell, we
loop through each of its vertices, and increment the ele-
ment ofint_array indexed by the number of the ver-
tex, and a global counter. At the end, we know how many
cells are incident on each vertex and the global total of
incident cells on every vertex. Then, we allocate another
array (Use_Set ) using the global counter. We repeat
the loop on the array of cells and fill in theUse_Set of
each vertex.

Another step in the preprocessing phase is to find
for each cell Ci its face-neighbor cells, which are
the cells that share a face withCi, and create the

Neighbor_Array for Ci. We determine all the
face-neighbor cells by scanning theUse_Set of the
vertices of the cell. During this scanning, we create for
each cell a list with the indices for itsface-neighbor
cells. We save a great amount of memory by keeping
such lists on the cell structure instead of on the face
structure (as done in Bunyk’s method), since the number
of faces is always greater than the number of cells. This
information speeds up the process of stepping through
the grid during ray-casting.

The Faces_VEC array is created on demand during
the raycast process, as the faces are intersected by the
rays. Only intersected faces are inserted. As a face is
inserted, all its related parameters are computed. The
number of faces in the array will depend on the image
resolution and on the size of the dataset. For example,
for a small resolution image and a large scale dataset, lots
of faces will never be intersected by any ray and con-
sequently will not be created by the process. Bunyk’s
method, on the other hand, inserts all faces in the prepro-
cessing phase and compute their parameters at the begin-
ning of the rendering. Processing time is saved, but with
the cost of great memory overhead.
Algorithm The ME-Raycast algorithm can be divided
into two phases: the preprocessing phase, and the core en-
gine. Just like Bunyk’s implementation, the preprocess-
ing is performed while the dataset is read. In the prepro-
cessing phase, the following steps are performed:

1. Read and store the vertices and cells of the dataset,
creatingPoints_VEC andCells_VEC.

2. Generate theUse_Set list for each vertex.

3. Determine for each cell itsface-neighbor list.

To identify external faces of a cell, we store its own in-
dex, indicating that there is noface-neighbor cell sharing
this face. We also create a list with all external faces. This
list keeps, for each face, the index to the cell and to the
relative face in the cell. The core engine of ME-Raycast
algorithm performs the rendering process. For each point
of view, ME-Raycast execute the following code.

Project external faces
creating Ext_Faces;

For each pixel
While( Ext_Faces not empty){
Repeat {

Find next intersection by
checking other cell’s faces;
If (no intersection)

check degenerate case;
Accumulate colors/opacity;



} While (next intersected
face is internal)

}

The visible external faces (the ones whose normals
have angles greater than 90o with the viewing direction)
are projected on the screen, generating for each pixel a
list of intersections with the external faces. These inter-
sections will be used to start the raycast for each pixel.

To visualize the dataset from a different point of view,
the list of faces is reused, saving processing time. Only
the faces parameters must be recomputed for all faces.
Also, our implementation allows both parallel and per-
spective projections.

3.2 EME-Raycast Algorithm

EME-Raycast and ME-Raycast have similar algorithms,
but in EME-Raycast we have removed some data struc-
tures used in ME-Raycast.

The basic structures used in the EME-Ray are only two:
the array of vertices (Points_VEC), and the array of
cells (Cells_VEC). We have removed the array of faces
(Faces_VEC), since it was one of the most memory ex-
pensive structures in ME-Raycast. Without the array of
faces, we can save about 5∗2∗ f bytes of memory, where
f is the total number of triangular faces in the data set.
Therefore, in a dataset with about 1 million faces, we are
save about 52 Mb of memory.

From the cell structure, we removed the array
Triangular_Faces. As tetrahedral cell uses 36
bytes, saving 16 bytes, and a hexahedral cell uses 60
bytes, saving 48 bytes of memory. In all we save about
(16∗ t + 48∗ h) bytes of memory, wheret is the total
number of tetrahedral cells andh is the total number of
hexahedral cells.

The vertex structure is identical to the one used in ME-
Ray. However, the data structures removals are responsi-
ble for increasing the execution time. As we do not store
the faces anymore, we need to recalculate the parameters
for verification of ray intersection every time that a new
face is checked.

3.3 Handling Degeneracies

The intersection between a ray and a face of a cell is the
result of the algebraic calculation of the intersection be-
tween a line and a plane, see [1]. For tetrahedral grids, it
is the intersection between the line defined by the ray path
and the plane defined by the three vertices of a triangular
face. For hexahedral grids, where each quadrangular face
is defined by four vertices, the intersection is found by
splitting the quadrangular face into two triangular faces,
and performing the same calculation mentioned above,

for each face. This way, we do not need to worry about
the four points being coplanar to define a plane.

Bunyket al use the Point-Within-Triangle algorithm to
determine the ray intersections and to look for the next
cell the ray will intersect. In their algorithm, however,
degenerated situations may arise when the ray hits a ver-
tex or an edge. In Figure 1, we exemplify in 2D the case
where the ray hits a vertex. The blue cell corresponds to
the first cell that the ray intersects, called the current cell.
Bunyk et al approach would check only the cells neigh-
boring the current cell faces, i.e., faces of the cellsA and
E. However, the ray does not intersect with neitherA nor
E faces. In this case, the final color of the pixel will be
wrong, since the composition process will be interrupted.

a b c

A B

DE

C

Figure 1: 2D example where the ray hits a vertex and
Bunyk approach does not find c

To avoid this type of error, we propose a different kind
of verification to look for the next cell intersected by the
ray. The idea is to allow the continuation of the ray traver-
sal, by looking for the next cell scanning theUse_Set
of each vertex which determine the current cell. In the
example in Figure 1, this scanning will return cellsA, B,
C, D andE. Therefore, this scheme asserts that another
intersection will be found in a face of cellC, guaranteeing
that the ray traversal will continue and the image will be
correctly generated.

When the ray hits an edge, the problem can be solved
by the same procedure explained above. In Figure 2, we
show an 3D example for this case. In this example, the
blue cell of (a) corresponds to the first cell that the ray
intersects. The next intersection is in the edgeV0V1 in the
point b. Bunyk et al approach would look for the next
intersection in all the faces adjacent toV0V1 edge. These
faces are shown in (b). As we can observe in the figure, it
is not possible to find the next intersection in the adjacent
faces ofV0V1. Our approach, on the other hand, uses the
Use_Set of the vertices of the blue cell to find the next
intersection. Using theUse_Set of V0 andV1, we find
the yellow cell of (a). In the yellow cell, we find the next
face the ray intersects, determiningc.

4 EXPERIMENTAL RESULTS

In this section we evaluate the performance and mem-
ory usage of ME-Raycast (ME-Ray) and EME-Raycast
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Figure 2: 3D example where the ray hits an edge and
Bunyk approach does not find c

(EME-Ray). Our evaluation uses two different baselines
for the comparisons. The baselines are two direct vol-
ume rendering algorithms for irregular grids: the Bunyk
et al implementation of ray-casting (BUNYK ); and the
ZSweep cell projection algorithm (ZSweep). The ideas
behind these comparisons are to: (1) Measure the im-
provements over Bunyk work in terms of memory usage
and correctness of the final image. (2) Put our results in
perspective, with respect to other robust rendering algo-
rithm (that generates correct final images). Following, we
briefly describe the two baselines, show the datasets used
in our experiments, and, then, describe our performance
analysis.

4.1 Baselines

BUNYK: Bunyk et al. implementation initially projects
the external visible faces on the screen, creating for each
pixel, a list of the intersections generated by these pro-
jections. The process starts by projecting all faces whose
normal make an angle greater then 90o with the viewing
direction. After projecting every visible face, the algo-
rithm knows, for each pixel, which face through which
the ray enters the volume. Since the algorithm computes
all cell’s neighbors in preprocessing, it is computed, in
constant time, the next face the ray is going to intersect.
For every two consective intersections, opacity and color
integrations are computed. Once there is no more entry
point for the pixel, the ray has left the volume, and the
process is finshed for the current pixel. It is important
to notice that, the list of faces created to carry on this
method is responsible for about half the memory usage
of this implementation.

Table 1: Datasets used in our experiments.
Dataset Information

Datasets Vertices Faces Boundary Cells

Blunt Fin 40.960 381.548 13.516 187.395
Comb. Chamber 47.025 437.888 15.616 215.040

Oxygen Post 109.744 1.040.588 27.676 513.375
SPX 149.224 1.677.888 44.160 827.904

Delta Wing 211.680 2.032.084 41.468 1.005.675

Hexa 2.684 6.432 1.344 1.920

ZSweep: The ZSweep algorithm is a direct volume
rendering algorithm based on the sweeping paradigm,
and built over the success of prior sweep approaches [10].
The main idea of ZSweep algorithm is the sweeping of
the data with a plane parallel to the viewing planeXY ,
towards the positivez direction. The sweeping process
is performed by ordering the vertices by their increasing
z coordinate values, using a heap sort, and then retriev-
ing one by one from this data structure. For each vertex
swept by the plane sweep, the algorithm projects, onto
the screen, all faces that are incident to it. When a face
is projected onto a given pixel, the result is equivalent
to the intersection of the ray emanating from this same
pixel and the face being projected. ZSweep stores its
z-value, and other auxiliary information, in sorted order
in a list of intersections for the given pixel, called pixel
list. To achieve memory efficiency, ZSweep uses a mech-
anism called early composition. The composition of the
intersections in a pixel list is performed as thetarget-Z
is reached. Thetarget-Z represents the maximumz coor-
dinate among the vertices adjacent to the first vertex en-
countered by the sweeping plane. When the plane reaches
a targetz, the next targetz will be again the maximum
z coordinate among the vertices adjacent to the current
reached target, and the process continues.

4.2 Workload

Our experiments were conducted in a Pentium 4,
2.80GHz with 1GB of memory, running Linux Fedora
Core 2. We have used five different tetrahedral datasets:
Blunt Fin, Combustion Chamber, Oxygen Post, SPX and
Delta Wing, and also one small hexahedral dataset, called
Hexa, used only to show our handling of hexahedral
grids. The number of vertices, faces, boundary faces and
cells for each dataset are listed in Table 1. We also varied
the image sizes, from 128× 128 to 1024× 1024 pixels.

4.3 ME-Raycast and EME-Raycast Perfor-
mance

In this section we evaluate ME-Raycast and EME-
Raycast algorithms, compared to ZSweep and BUNYK
results. In terms of the number of pixels rendered,
ME-Ray, EME-Ray and ZSweep rendered all the pixels,



generating a correct image. However, since BUNYK
does not handle all possible degenerate cases, it fails in
rendering the amount of pixels shown in Table 2. As we
can observe in this table, for Blunt Fin, Oxygen, Delta
and SPX, BUNYK generates a great amount of flaws in
the 512×512 and 1024×1024 images. Up to 38 pixels
were not rendered correctly.

Table 2: Pixels not rendered by BUNYK
Bad pixels - BUNYK

Image Size Blunt Fin Combustion Oxygen Delta SPX
1282 2 - - 1 -
2562 3 1 4 2 3
5122 10 - 11 7 5
10242 31 2 38 17 18

Tables 3, 4, 5, 6 and 7 show the results of time and the
amount of memory consumed for Blunt Fin, Combustion
Chamber, Oxygen Post and SPX datasets, respectively,
rendered by ME-Ray and EME-Ray when compared to
BUNYK and ZSweep execution, for four different im-
age resolutions, 128× 128, 256× 256, 512× 512, and
1024×1024. The results for the Hexa dataset are not con-
sidered because it is a very small dataset, and BUNYK
algorithm cannot handle heaxahedral datasets. The per-
centages presented in these tables correspond to the ratio
of our algorithm (ME-Ray or EME-Ray) result over the
baseline (BUNYK or ZSweep). In other words, we con-
sider BUNYK or ZSweep results as 100% and are pre-
senting how much we increase or decrease this baseline.

Table 3 presents the results for the Blunt Fin dataset.
Comparing ME-Ray and EME-Ray with BUNYK, we
observe that they use considerably less memory than
BUNYK. ME-Ray uses, for a 1024× 1024 image, al-
most the same memory BUNYK uses for a 128×128 im-
age. EME-Ray uses 3.5 times less memory than BUNYK
for a 512×512 image and 2.5 times less memory for a
1024×1024 image. These significant reductions in mem-
ory usage comes with an increase in the execution time.
The increase, however, is only about 26% for ME-Ray
for a 1024× 1024 image. When compared to ZSweep,
we observe that EME-Ray outperforms ZSweep in terms
of render time and memory usage for the three larger im-
age precisions.

Table 4 shows the results for Combustion Chamber
dataset. ME-Ray and EME-Ray also consume less mem-
ory than BUNYK. For a 512× 512 image, EME-Ray
spends 3.6 times less memory than BUNYK and, for
a 1024× 1024 image EME-Ray spends 2.7 times less
memory. In terms of execution time, BUNYK outper-
forms ME-Ray, but for a 1024×1024, ME-Ray is only
6% slower. When compared to ZSweep, ME-Ray spends
more memory, but is faster, and EME-Ray is faster and
uses less memory for larger images.

Table 3: Blunt Fin Data Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 145% 32% 52% 229%

EME-Ray 225% 50% 24% 106%

2562 ME-Ray 133% 30% 61% 184%
EME-Ray 281% 64% 25% 75%

5122 ME-Ray 138% 32% 69% 96%
EME-Ray 335% 78% 28% 39%

10242 ME-Ray 126% 29% 75% 40%
EME-Ray 304% 70% 39% 20%

Table 4: Combustion Chamber Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 184% 57% 73% 351%

EME-Ray 166% 51% 24% 115%

2562 ME-Ray 141% 43% 74% 287%
EME-Ray 215% 65% 25% 96%

5122 ME-Ray 153% 57% 75% 169%
EME-Ray 232% 87% 28% 63%

10242 ME-Ray 106% 38% 76% 76%
EME-Ray 224% 80% 37% 37%

Table 5 shows the results for Liquid Oxygen Post
dataset. ME-Ray and EME-Ray use considerably less
memory than BUNYK. For larger images, BUNYK
uses about 3 times more memory than our algorithms.
As the image size grows, however, BUNYK becomes
much more faster than EME-Ray. Compared to ZSweep,
ME-Ray is about 2.6 times faster and uses 1.5 times less
memory for the largest image precision. For a 512×512
image, EME-Ray is about 1.5 times faster and uses 1.6
times less memory than ZSweep.

Table 5: Liquid Oxygen Post Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 162% 24% 44% 216%

EME-Ray 200% 29% 24% 118%

2562 ME-Ray 137% 39% 50% 205%
EME-Ray 268% 76% 24% 100%

5122 ME-Ray 142% 41% 57% 142%
EME-Ray 276% 79% 26% 64%

10242 ME-Ray 136% 38% 66% 70%
EME-Ray 289% 82% 30% 32%

Table 6 shows the results for the largest dataset, Delta
Wing, that has more than 1 million cells. ME-Ray
method is about 1.5 times slower than BUNYK, but uses
1.6 times less memory and EME-Ray uses less than 30%
of the memory used by BUNYK. Compared to ZSweep,
ME-Ray is faster for all images sizes, but consumes more
memory. For small images, even EME-Ray consumes
more memory than ZSweep. This is due to the indices we
keep for the neighboring cells for each cell. Nevertheless,
EME-Ray performs significantly better than ZSweep.



Table 6: Delta Wing Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 141% 15% 38% 200%

EME-Ray 150% 16% 23% 124%

2562 ME-Ray 162% 26% 44% 216%
EME-Ray 203% 32% 24% 118%

5122 ME-Ray 139% 32% 51% 209%
EME-Ray 244% 56% 24% 100%

10242 ME-Ray 148% 33% 61% 152%
EME-Ray 271% 61% 27% 68%

Table 7 shows the results for the SPX dataset. Although
ME-Ray is slower than BUNYK, it uses less memory.
EME-Ray uses even less memory. For example, to create
a 512×512 image, EME-Ray uses about 1/4 of the mem-
ory necessary for BUNYK to create a 256×256 image.
Compared to ZSweep, ME-Ray and EME-Ray are faster
than ZSweep. In terms of memory usage, ME-Ray uses
more memory than ZSweep and EME-Ray uses 1.2 times
less memory than ZSweep for a 1024×1024 image.

Table 7: SPX Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 120% 20% 51% 273%

EME-Ray 197% 33% 23% 125%

2562 ME-Ray 154% 41% 68% 349%
EME-Ray 178% 48% 24% 121%

5122 ME-Ray 136% 46% 72% 320%
EME-Ray 192% 66% 24% 109%

10242 ME-Ray 116% 41% 74% 222%
EME-Ray 222% 79% 27% 83%

5 DISCUSSION

ME-Ray and EME-Ray had obtained consistent and sig-
nificant gains in memory usage over BUNYK. In terms
of the image resolution, we can observe that the gains
of ME-Ray and EME-Ray over BUNYK are bigger for
smaller image sizes. This occurs because BUNYK cre-
ates at once an array with all the faces in the dataset, and
this does not depend on the image size. While ME-Ray
creates the faces as they are intersected by the rays. Oth-
erwise, in terms of the dataset size, as we expected, when
the dataset increases, the reductions in memory usage of
ME-Ray also increases. This result confirms that our data
structures are set to handle big datasets.

Furthermore, the reductions in memory requirements
we obtained with our data structures, allowed us to use
double precision in the parameters to calculate the inter-
section between a ray and a face. BUNYK uses float for
these parameters, consequently causing some precision
errors. We have made some experiments with BUNYK
algorithm increasing the parameters precision to double

and obtained better images. On the other hand, the mem-
ory requirements increased about 12F bytes (where F is
the number of faces in the dataset).

The increase in the execution time, when compared
to BUNYK, comes from the fact that we have to scan
through out theUse_Set of the vertices to perform the
ray traversal. Since theUse_Set keeps the indices for
the cells incident on each vertex, its likely to occur dou-
ble intersection computation for internal faces. On the
other hand, BUNYK keeps all faces incident on the ver-
tices which makes it faster to compute such intersections,
while spending more memory. In our experiments, how-
ever, we are only comparing executions where the whole
dataset fits in main memory for both methods. As the
memory usage increases, the rendering will need to use
of the virtual memory mechanisms of the operating sys-
tem, which would have great influence on the overall ex-
ecution time.

It is also important to notice that ME-Ray and
EME-Ray gains over BUNYK are not only in memory
usage, but also in the correctness of the final image.
BUNYK does not handle all possible degenerated cases.
For 1024× 1024 images, in all the datasets, BUNYK
algorithm generates some flaws in the image. For Delta
Wing, for example, BUNYK fails in rendering 17 pixels.
This causes some black spots in the image as we can
observe in the 512× 512 image of Figure 3.

When compared to ZSweep, ME-Ray outperforms
ZSweep, in execution time, significantly for all the
datasets and all the image resolutions. Although it is
not an intuitive result, it is explained by the fact that,
in ZSweep, while thetarget-Z is not reached, the pixel
list increases. The bigger the list is, the more expensive
is the insertion, since it is ordered. Depending on the
dataset, thetarget-Z could be a bad parameter to start the
composition. ME-Ray, on the other hand, composes the
pixels on-the-fly as each intersection is found.

Another important difference in the performance of
ME-Ray and EME-Ray, when compared to ZSweep,
is the dataset structure. More "irregular" datasets with
holes and much more external visible faces would benefit
ZSweep, since ME-Ray and EME-Ray would have to
compute more external faces intersection. This, however,
is not the case for our workload, except for SPX, that
provides the smaller performance difference between
ME-Ray and EME-Ray compared to ZSweep.

In terms of memory requirements, ME-Ray spends
more memory than ZSweep, except for 1024× 1024 im-
age resolutions. EME-Ray, on the other side, spends less
memory than ZSweep for most of the datasets and image
resolutions. ZSweep increases linearly the memory re-
quirement with the increase in the image size, since as the



image size increases, each face projected will insert inter-
section units into more pixel lists. ME-Ray also increases
linearly the memory requirements with the increase in the
image size. This increase is due to the increase in the size
of Faces_VEC, since more faces are intersected. EME-
Ray, otherwise, does not haveFaces_VEC data struc-
ture, so the memory usage maintains almost constant,
even when the image size increases.

Figure 3: Delta (512x512) generated by BUNYK with bad
rendered pixels highlighted by the orange box.

6 CONCLUSIONS

We proposed two novel ray-casting algorithms, ME-
Raycast (Memory Efficient Ray-casting) and EME-
Raycast (Enhanced Memory Efficient Ray-Casting). Our
algorithms improve previous work by Bunyket al in
terms of memory consumption, type of cell allowed in
the grid (tetrahedral and hexahedral), and complete han-
dling of degenerate cases. Our goal in improving Bunyk
et al work was to provide a software implementation of
ray-casting that is memory efficient without performance
degradation, and robust, i.e., generates correct images

Our experimental results showed that ME-Raycast and
EME-Raycast are comparable in performance to Bunyk
et al in most of the cases, but had obtained consistent and
significant gains in memory usage over their approach.
These results confirm that our data structures store only
essential information. When compared to other accurate
rendering algorithm, ZSweep, ME-Raycast and EME-
Raycast obtained considerable performance gains, and
competitive memory consumption. EME-Raycast by it-
self spends less memory than ZSweep for most of the
datasets and image resolutions.

Our results also showed that ME-Raycast and EME-
Raycast complete handling of degenerate cases generates
accurate images, rendering correctly all the pixels of the
image. Nevertheless, Bunyket al work failed on render-
ing some pixels in the final image, generating incomplete
results. Besides the memory and performance results, we

showed that we can deal with grids represented by tetra-
hedra, hexahedra or both. As far as we know, they are
the first ray-casting implementations which handle, at the
same time, both types of irregular grids.

We conclude that ME-Raycast and EME-Raycast are
efficient algorithms for ray-casting that allows the in-
core rendering of big datasets, avoiding paging opera-
tions on disk. The low memory usage of our algorithms
also makes them suitable for hardware-based implemen-
tations, in order to achieve real-time rendering. As future
work, we consider the study of out-of-core versions of the
codes that run on clusters of PCs.
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