
SIFT Implementation and Optimization for
General-Purpose GPU

S. Heymann
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

heimie@selective.de

K. Müller
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

kmueller@hhi.de

A.Smolic
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

smolic@hhi.de

B. Fröhlich
Bauhaus University Weimar

Fakultät Medien
Germany 99423, Weimar

bernd.froehlich@medien.uni-weimar.de

T. Wiegand
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

wiegand@hhi.de

ABSTRACT
With the addition of free programmable components to modern graphics hardware, graphics processing units
(GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel
buffer processing. In this paper we present methods and techniques that take advantage of modern graphics
hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature
vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature
Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition
changes of the processed images. We present results of the various stages for feature vector generation of our
GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on
Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic
branching and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods
feature-tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for
other tasks.

Keywords
GPU, SIFT, feature extraction, tracking.

1. INTRODUCTION
With the inclusion of programmable parts in modern
graphics hardware, such as vertex and fragment
processors, developers started using the power of
graphics processing units (GPUs) for general
purpose computations beyond creating beautiful
pictures and creating high-end game engines. The
research field that arose from those efforts is known
as GPGPU (general purpose computations on GPUs).
To make use of the GPU for more general

computations it is necessary to transform the
algorithms under investigation such that it optimally
utilizes the parallel processing model used on
modern graphics hardware. A number of algorithms
and applications have been implemented onto
GPGPUs, e.g. kd-tree search [FS05], sorting
algorithm acceleration [GHLM05] and database
search [GLW*04]. An overview of concepts for
algorithm transformation to GPU architecture is
given in [Har05] and [OLG*05].

In this paper we show, how a feature extraction
algorithm can be adapted to make use of modern
graphics hardware and which processing acceleration
can be obtained by optimizing all stages of the
algorithm. Specifically, the SIFT Algorithm
[Low04a] was implemented on a NVIDIA
QuadroFX 3400 GPU with 256MB video RAM,
taking advantage of new functionalities, e.g. dynamic
branching and multiple render targets (MRTs) of the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

fragment and vertex processor. After reviewing the
related work, we give a short overview of the
algorithm, followed by the stage-by-stage GPU
implementation and the obtained overall acceleration
of the algorithm in comparison to standard CPU
implementation.

2. RELATED WORK
One of the main problems of computer vision is the
generation of stable feature-points from natural
images. These feature-points are used for
correspondence matching to find known objects and
gain information about their presence, position, size
or rotation in other images [BL02]. One approach for
feature tracking is given in [Fun05], but the extracted
feature points were not invariant to scale and the
application was focused on the usage of multiple
parallel graphics cards. One method to create highly
stable feature-vectors from images is the Scale
Invariant Feature Transform (SIFT) introduced by
David Lowe [Low04a]. SIFT features are invariant
against rotation, changes in scale and
lighting/contrast and can therefore be well applied to
scene modeling, recognition and tracking [GL04]
and panorama creation.

3. SIFT OVERVIEW
The SIFT method consists of different stages to
obtain relevant feature points. These stages where
analyzed and individually adapted to maximize GPU
parallel processing using only few CPU accesses.
The single SIFT stages are:

1. Search for potential points of interest by creation
of a Difference of Gaussian (DoG) scale-space
pyramid as image representation and filtering for
extreme values

2. Further filtering and reduction of the obtained
points from 1. to select stable points with high
contrast. To each remaining point, its position
and size are assigned.

3. Orientation assignment to each point by finding a
characteristic direction.

4. Feature vector calculation based on the
characteristic direction from 3. to provide rotation
invariance.

5. The whole process is stacked in a way that only a
subset of elements from the beginning of a stage
is passed onto the next stage.

To achieve scale invariance it is necessary to create a
representation of the image frequencies. This is
realized using a scale space pyramid as introduced by
Witkin [Wit83]. Each image within the pyramid
refers to different image frequencies. By searching in

all images of the scale space pyramid, the obtained
feature point candidates become scale invariant. The
scale-space pyramid is constructed by taking a gray-
scaled version of the original image and convolving
it repeatedly with Gaussian convolution kernels of
increasing size. Thus a number of images with
increasing blurriness is constructed as shown in the
stack of four 640x480 images in Figure 1 top-left. In
the next stage, the most blurred image from this stack
is downscaled by a factor of two and afterwards
convolved with the same set of Gaussian kernels as
before to create the next stack of four 320x240
images. The whole process is repeated until a
specified size has been reached, which is 80x60 in
the example in Figure 1 top-right.

Figure 1. Gaussian pyramid (top) and difference

of Gaussian (bottom).
Now the pyramid consists of continuously convolved
versions of the original image with different sizes
and blurriness. To calculate the single frequencies of
the image, adjacent images or stages of the same size
of the pyramid have to be subtracted to create the
Difference of Gaussian (DoG) representation, as
shown in Figure 1 bottom. Finally, the obtained DoG
pyramid is filtered to find the global extreme values.
The filtering is applied pixel wise by comparing the
luminance of the current pixel to its 8 neighbors
within the same image, as well as to its 9 non-shifted
neighbors of both adjacent layers of the same size. If
the luminance valueof the pixel under investigation is
a minimum or maximum among all these
neighboring luminance values, the pixel is
considered as feature point candidate.

In the next step, the obtained candidates are further
filtered to eliminate feature points that are unsuitable
for correspondence detection. Here, mainly two types
of unsuitable points are considered. First, points
erroneously found due to noise in the input image
and second points that lay on edges. The first type is
eliminated by introducing a threshold for luminance
differences between a possible feature point and its
neighbors. Only, if the threshold is exceeded, the

point is further processed and considered as
candidates. Edge points need to be excluded, since
they are unsuitable for tracking and correspondence
matching. For edge point detection, the surface
curvature around the surface D(x,y) of a candidate
point at position (x,y) can be analyzed using the
Hessian Matrix H of second order local derivatives:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂
∂

∂∂
∂

∂∂
∂

∂
∂

2

22

2

2

2

),(),(

),(),(

y
yxD

yx
yxD

yx
yxD

x
yxD

H . (1)

As shown by Harris and Stephens [HS88], the
curvature of D(x,y) is proportional to the Eigen
vectors of H. Since we are only interested in a
criterion for edge or non-edge points, only the ratio
between both Eigen values e1 and e2 with e1 ≥ e2 is
important. Let r = e1/e2 be this ratio, then:

() ()
() .det

and1trace
2
221

221

reee

eree

==

+=+=

H

H
 (2)

From this, the criterion for non-edge points is
derived as:

() ()
r

r 22 1
)det(

trace +
<

H
H

. (3)

In Lowe [Low04b], best results for excluding edge
points have been reported for r = 10.

In the third step, the remaining feature points are
assigned with their main orientation to achieve
rotation invariance. Therefore, the gradients within a
certain distance around each feature point are
transformed into polar coordinates:

() () ()

()
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

+=

∂
∂

∂
∂

−

∂
∂

∂
∂

x
yxD

y
yxD

y
yxD

x
yxD

yx

yxm

),(

),(
1

2),(2),(

tan,

,,

θ
. (4)

Then, a histogram is constructed from the phase
values θ(x,y) and weighted with magnitude values
m(x,y), to obtain the main direction of the gradients
around the feature points.

Figure 2. Image gradient transformation into key

point descriptors.

Finally, feature vectors are created from the
gradients. In Figure 2 left, the image gradients are
shown. For each 4x4 region, the main orientation is
used as new local coordinate system, meaning that
also new texture coordinates need to be interpolated
at intermediate positions. The 16 gradients within
that particular region are than obtained within this
new texture coordinate system. The created
descriptor elements are a projection of the 16
gradients onto 8 directions, aligned in the local
coordinate system, defined by the main orientation,
as shown in Figure 2, right. This projection is carried
out for all 4x4 regions, thus creating a feature vector
of 128 entries. Finally, the feature vector is
normalized to achieve invariance to contrast changes.

4. GPU-IMPLEMENTATION
For the implementation of the SIFT algorithm on the
GPU, adaptation of the initial CPU algorithms were
required to fit the algorithm well into the graphics
pipeline [Zel05] and take full advantage of the GPUs
parallel processing abilities. Therefore, the main
focus was to restructure the different SIFT stages to
fit the GPU texture format. The experiments where
carried out on a system, using an Intel Xeon 3.2GHz
CPU, 2GB of RAM and a NVIDIA QuadroFX 3400
GPU with 256MB video RAM and PCI Express x16
graphics bus.

4.1. DoG Pyramid Creation
SIFT features are generated from gray level images,
whereas GPU texture buffers are designed for three
color + one alpha channels. GPUs do not only have a
parallel processing ability on a per pixel basis
parallelized by the number of fragment processors on
the GPU, there also is a parallelism on the
computational stages of the GPU calculating the four
color values at once as a vector. Having only gray
images the computations done to convolve an image
would waste 75% of the processing power. To make
full usage of the vector abilities of GPUs the gray-
level input image is modified. Here, we rearranged
the gray image data into a four channel RGBA
image, as shown in Figure 3.

Figure 3. Texture packing to RGBA16 GPU

format.
One color value in the RGBA image represents 2x2
pixel of the gray-level image, thus reducing the
image area by 4. With the RGBA image, the

convolution can be processed without wasting
computational power on the GPU. In the case of a
convolution, the processing on the packed data is
straightforward, since here mostly linear operations,
such as pixel- wise additions or multiplications are
applied. In cases of operations, where pixel
processing also depends on neighboring pixels, the
algorithm adaptation for packed data becomes
complicated, since all neighboring references need to
be redirected. Reorganizing the input image creates
some computational overhead which is
comparatively low since the data remains in this
packed format for the whole process of scale-space
and DoG pyramid creation. The packing is
implemented using a simple fragment shader that
takes a block of 2x2 adjacent pixels and arranges
them into one RGBA pixel. The Gaussian
convolution is directly applied onto the packed
RGBA format, as shown in Figure 4 with a 9tap
Gaussian kernel. Here, the Gaussian kernel is split
into even and odd values to carry out two separate
semi-convolutions, which are added afterwards for
the final result. Each pixel of the Gaussian kernel is
multiplied with all four color components in one
calculation, thus only requiring one texture access.
The calculations with even and odd Gaussian kernel
pixels are implemented in the same fragment shader
and therefore the same texture access can be used for
both steps.

Figure 4. Gaussian convolution in RGBA16 GPU

format, (a) odd and (b) even samples.
Horizontal and vertical filtering with Gaussian
kernels of different sizes is applied successively and
the differently blurred images are subtracted to create
the DoG pyramid, described above.

Using this technique allows us to convert a color
image into a gray level image and pack the pixels in
the described way in one rendering pass.

4.2. Key Point Filtering and Orientation
For the detection of feature points, as described
before, dynamic branching is used to keep the whole
selection process in the GPU. Therefore, the criteria
for possible feature points where rearranged starting
with the luminance difference threshold, which
excludes 50% of possible feature points. Then the
search for global extreme values first compares a

point with its 8 neighbors within the same buffer,
leaving only 0.6% of possible points followed by
comparison with the 9 pixel of the adjacent buffers
within the DoG stack. Possible feature points are
shown in Figure 5(b). Afterwards, the exclusion of
noise and edge points is carried out, leaving stable
feature points, as shown in Figure 5(c).

Figure 5. Extraction and filtering of features.

After filtering and localization of potential feature
points, the corresponding feature vectors are
calculated. To calculate the gradient direction and
magnitude, MRT functionality is used. For both
values, only the four direct neighboring pixels are
required, which keeps the referencing for calculation
relatively simple. The reqired pixel access and
operations are shown in Figure 6.

Figure 6. Gradient magnitude (top) and direction

(bottom) calculation for red channel.
Here, the central texel “rgba” with its packed 4
original pixels as the four color components is
processed. The magnitude and direction calculation
for the central “r” component are shown in Figure 6,
which require the four neighboring components that
are highlighted as solid colors. Each central
component requires two other components from the
central texel and two from adjacent texels. The
required operations for magnitude and direction
calculation are also shown in Figure 6. Both
calculations require the same input data. Since the
input data is already packed, the use of two color
components for magnitude and direction respectively
is not possible. Instead, the use of MRTs greatly
accelerates the processing, since both calculations
can be carried out at once, writing the results into
two separate rendering targets. Thus, time consuming
OpenGL context switching is avoided and only one
texel access for both operations is required, since

magnitude and direction use the same intermediate
calculation (i.e. horizontal and vertical subtraction).

4.3. Feature Descriptor Creation
Both render targets are now used to create the
weighted histograms of the 4x4 regions around each
feature point, as shown in the theoretical part in
Figure 2. Each region is associated with 8 directions,
adding up to a 128-element output vector. This
operation differs from previously implemented
operations, since for each single input element (or
extreme point) 128 output elements are created. This
operation can not be carried out at once, even with
MRTs. Therefore, each region is processed in one
fragment shader call, as there is no possibility to split
the histogram calculation itself. For this calculation,
it is useful to select a structure, where for each
fragment different data can be accessed. A simple
rectangular area, as used for the other calculations is
not sufficient, since interpolation algorithms would
interpolate the four corner attributes across the area,
whereas here, each point requires independent
attributes. A suitable representation for such
independent attribute purposes is a vertex grid that
can be created from geometry points via glVertex2f()
or a line of multiple segments.

For easier processing, magnitude and direction
values are rearranged from the two rendering targets
into one texture to further process them with the
precalculated texture directions, as shown in
Figure 7.

Figure 7. Gradient map unpacking into one

texture.
Here, the packed values for magnitude and direction
are unpacked and interleaved at the same time, such
that one output value only contains one magnitude
and one associated direction value. In this form, both
values are contained in one texture that can be
further processed without format change.

For the final feature creation, gradient histograms for
the 4x4 areas of each extreme point are created. Each
area has to be processed in one fragment shader call,
since the histogram calculation itself cannot be split
up without expensive calculations. To carry out the
histogram calculation in one shader cycle, 8 output
values have to be calculated simultaneously. This
again can be achieved, using MRTs on advanced

graphics cards. In Figure 8(a) the data structure for
the feature generation is shown. As an example, a
feature vector is shown in Figure 8(b), which
consists of 16 vertices and is mapped into the two
render targets.

Figure 8. Render Targets for Feature Generation.
(a) Frame buffers in both render targets and (b)

feature point position in image and access on pre-
calculated texture coordinates.

Each vertex of a feature vector is associated with
appropriate attributes in the CPU. These attributes
contain relative texture coordinates, magnitude and
direction of gradient areas. The corresponding
calculations can be carried out independently and all
necessary parameters are coded in the feature
vectors. As a result, each render target from
Figure 8(a) contains a complete data set for half the
feature vectors.

These SIFT feature vectors can now be used for
correspondence matching between different images,
e.g. for tracking in an image sequence. For this
purpose, the Euclidean distance D between two
feature vectors V1 and V2 with length N is
calculated, as shown in (5).

()∑
=

−=
N

i
ii VVD

1

221 . (5)

In our SIFT implementation, each vector has N = 128
elements. The associated subtractions in (5) can be
well calculated in parallel. In a test, a CPU and GPU
implementation were compared in terms of
processing time. For this test, a number of feature
vectors K were taken, with K varying between 500
and 3000. Each feature vector was compared with
each other, resulting in K2 comparisons. While the
processing time for 3000x3000 comparisons was
13sec using the CPU implementation, the GPU
implementation only required 0.5sec.

4.4. Results
After optimizing all SIFT stages for efficient GPU
processing, the entire algorithm was tested and
compared against the original CPU implementation

[BL02] Brown, M. and Lowe, D., “Invariant Features
from Interest Point Groups”, British Machine
Vision Conference, BMVC 2002, Cardiff, Wales,
2002.

and a manually SSE (Streaming SIMD Extension)
optimized version. The results are shown in Figure 9.

Here, the manually SSE optimized version requires
0.312sec compared to 0.406sec for the original CPU
implementation. In comparison to that, the SIFT
algorithm could be drastically accelerated by
utilizing massive parallel GPU processing and thus
achieving a processing time of only 0.058sec. Thus,
SIFT feature extraction can be carried out in real
time at approximately 20 frames/sec.

[FS05] Foley, T. and Sugerman, J., ”KD-Tree
Acceleration Structures for a GPU Raytracer”,
Eurographics Report, Graphics Hardware, 2005.

[Fun05] Fung, J., “Computer Vision on the GPU”,
GPU Gems 2, pp. 649-666, Addison-Wesley,
2005.

[GL04] Gordon, I. and Lowe, D.G., “Scene
modeling, recognition and tracking with invariant
image features”, International Symposium on
Mixed and Augmented Reality (ISMAR),
Arlington, USA, 2004.

[GLW*04] Govindaraju, N.K., Lloyd, B., Wang, W.,
Lin, M. and Manocha, D., „Fast Computation of
Database Operations using Graphics Processors”,
Proc. ACM SIGMOD 2004, Paris, France, 2004.

[GHLM05] Govindaraju, N.K., Henson, M., Lin, M.
and Manocha, N., “Interactive Visibility Ordering
of Geometric Primitives in Complex
Environments”, Proc. ACM SIGGRAPH i3d,
Washington DC, USA, 2005.

[HS88] Harris, C., Stephens, M., “A Combined
Corner Edge Detector”, Proc. Alvey Vision
Conference, pp. 189-192, Manchester, 1988.

[Har05] Harris, M., “Mapping Computational
Concepts to GPUs”, GPU Gems 2, pp. 493-508,
Addison-Wesley, 2005.

Figure 9. Results for all SIFT operator stages of
the GPU implementation in comparison to

standard CPU processing.
[KF05] Kilgariff, E., Fernando, R., “The GeForce 6

Series GPU Architecture”, GPU Gems 2, pp.
471-491, Addison-Wesley, 2005.

5. CONCLUSION
In this paper we have shown, how the SIFT
algorithm can considerably be accelerated by
utilizing GPU parallel processing. After arranging
the luminance values of the input image into the
GPU texture buffers RGBA format, all follow-up
operations have also been adapted to this texture
format and make use of new GPU technology,
namely dynamic branching for the detection of
relevant feature points and MRTs for parallel
gradient direction and magnitude calculation. As a
result, the SIFT algorithm can be applied to image
sequences with 640x480 pixels at 20 frames/sec.
Future work will mainly focus on real-time
applications using SIFT features, e.g. calibration
estimation for 3D scene reconstruction for image
sequences.

[Low04a] Lowe, D.G. 2004, “Object Recognition
from local scale-invariant features”, Proc.
International Conference on Computer Vision,
pp.1150-1157, Corfu, Greece.

[Low04b] Lowe, D.G., “Distinctive Image Features
from Scale-Invariant Keypoints”, International
Journal of Computer Vision, 2004.

[OLG*05] Owens, J.D., Luebke, D., Govindaraju,
N.K., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J., “A Survey of General-Purpose
Computation on Graphics Hardware”,
Eurographics 2005, State of the Art Reports,
Dublin, Ireland, 2005.

[Wit83] Witkin, A.P., “Scale-space filtering, Proc.
International Joint Conference on Artificial
Intelligence, pp. 1019-1022, Karlsruhe, Germany,
1983.

6. References
[BL03] Brown, M. and Lowe, D. G., “Recognising

Panoramas”, Proc. of the 9th International
Conference on Computer Vision (ICCV2003),
pp. 1218-1225, Nice, France, 2003.

[Zel05] Zeller, C., “Introduction to the Hardware
Graphics Pipeline”, ACM SIGGRAPH i3d,
Invited Speech, Washington DC, USA, 2005.

	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

