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ABSTRACT 
With the addition of free programmable components to modern graphics hardware, graphics processing units 
(GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel 
buffer processing. In this paper we present methods and techniques that take advantage of modern graphics 
hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature 
vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature 
Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition 
changes of the processed images. We present results of the various stages for feature vector generation of our 
GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on 
Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic 
branching and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods 
feature-tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for 
other tasks. 
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1. INTRODUCTION 
With the inclusion of programmable parts in modern 
graphics hardware, such as vertex and fragment 
processors, developers started using the power of 
graphics processing units (GPUs) for general 
purpose computations beyond creating beautiful 
pictures and creating high-end game engines. The 
research field that arose from those efforts is known 
as GPGPU (general purpose computations on GPUs). 
To make use of the GPU for more general 

computations it is necessary to transform the 
algorithms under investigation such that it optimally 
utilizes the parallel processing model used on 
modern graphics hardware. A number of algorithms 
and applications have been implemented onto 
GPGPUs, e.g. kd-tree search [FS05], sorting 
algorithm acceleration [GHLM05] and database 
search [GLW*04]. An overview of concepts for 
algorithm transformation to GPU architecture is 
given in [Har05] and [OLG*05].  

In this paper we show, how a feature extraction 
algorithm can be adapted to make use of modern 
graphics hardware and which processing acceleration 
can be obtained by optimizing all stages of the 
algorithm. Specifically, the SIFT Algorithm 
[Low04a] was implemented on a NVIDIA 
QuadroFX 3400 GPU with 256MB video RAM, 
taking advantage of new functionalities, e.g. dynamic 
branching and multiple render targets (MRTs) of the 
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fragment and vertex processor. After reviewing the 
related work, we give a short overview of the 
algorithm, followed by the stage-by-stage GPU 
implementation and the obtained overall acceleration 
of the algorithm in comparison to standard CPU 
implementation. 

2. RELATED WORK 
One of the main problems of computer vision is the 
generation of stable feature-points from natural 
images. These feature-points are used for 
correspondence matching to find known objects and 
gain information about their presence, position, size 
or rotation in other images [BL02]. One approach for 
feature tracking is given in [Fun05], but the extracted 
feature points were not invariant to scale and the 
application was focused on the usage of multiple 
parallel graphics cards. One method to create highly 
stable feature-vectors from images is the Scale 
Invariant Feature Transform (SIFT) introduced by 
David Lowe [Low04a]. SIFT features are invariant 
against rotation, changes in scale and 
lighting/contrast and can therefore be well applied to 
scene modeling, recognition and tracking [GL04] 
and panorama creation.  

3. SIFT OVERVIEW 
The SIFT method consists of different stages to 
obtain relevant feature points. These stages where 
analyzed and individually adapted to maximize GPU 
parallel processing using only few CPU accesses. 
The single SIFT stages are: 

1. Search for potential points of interest by creation 
of a Difference of Gaussian (DoG) scale-space 
pyramid as image representation and filtering for 
extreme values 

2. Further filtering and reduction of the obtained 
points from 1. to select stable points with high 
contrast. To each remaining point, its position 
and size are assigned. 

3. Orientation assignment to each point by finding a 
characteristic direction.  

4. Feature vector calculation based on the 
characteristic direction from 3. to provide rotation 
invariance. 

5. The whole process is stacked in a way that only a 
subset of elements from the beginning of a stage 
is passed onto the next stage. 

To achieve scale invariance it is necessary to create a 
representation of the image frequencies. This is 
realized using a scale space pyramid as introduced by 
Witkin [Wit83]. Each image within the pyramid 
refers to different image frequencies. By searching in 

all images of the scale space pyramid, the obtained 
feature point candidates become scale invariant. The 
scale-space pyramid is constructed by taking a gray-
scaled version of the original image and convolving 
it repeatedly with Gaussian convolution kernels of 
increasing size. Thus a number of images with 
increasing blurriness is constructed as shown in the 
stack of four 640x480 images in Figure 1 top-left. In 
the next stage, the most blurred image from this stack 
is downscaled by a factor of two and afterwards 
convolved with the same set of Gaussian kernels as 
before to create the next stack of four 320x240 
images. The whole process is repeated until a 
specified size has been reached, which is 80x60 in 
the example in Figure 1 top-right. 

 
Figure 1. Gaussian pyramid (top) and difference 

of Gaussian (bottom). 
Now the pyramid consists of continuously convolved 
versions of the original image with different sizes 
and blurriness. To calculate the single frequencies of 
the image, adjacent images or stages of the same size 
of the pyramid have to be subtracted to create the 
Difference of Gaussian (DoG) representation, as 
shown in Figure 1 bottom. Finally, the obtained DoG 
pyramid is filtered to find the global extreme values. 
The filtering is applied pixel wise by comparing the 
luminance of the current pixel to its 8 neighbors 
within the same image, as well as to its 9 non-shifted 
neighbors of both adjacent layers of the same size. If 
the luminance valueof the pixel under investigation is 
a minimum or maximum among all these 
neighboring luminance values, the pixel is 
considered as feature point candidate. 

In the next step, the obtained candidates are further 
filtered to eliminate feature points that are unsuitable 
for correspondence detection. Here, mainly two types 
of unsuitable points are considered. First, points 
erroneously found due to noise in the input image 
and second points that lay on edges. The first type is 
eliminated by introducing a threshold for luminance 
differences between a possible feature point and its 
neighbors. Only, if the threshold is exceeded, the 



point is further processed and considered as 
candidates. Edge points need to be excluded, since 
they are unsuitable for tracking and correspondence 
matching. For edge point detection, the surface 
curvature around the surface D(x,y) of a candidate 
point at position (x,y) can be analyzed using the 
Hessian Matrix H of second order local derivatives: 
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As shown by Harris and Stephens [HS88], the 
curvature of D(x,y) is proportional to the Eigen 
vectors of H. Since we are only interested in a 
criterion for edge or non-edge points, only the ratio 
between both Eigen values e1 and e2 with e1 ≥ e2 is 
important. Let r = e1/e2 be this ratio, then: 
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From this, the criterion for non-edge points is 
derived as: 
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In Lowe [Low04b], best results for excluding edge 
points have been reported for r = 10. 

In the third step, the remaining feature points are 
assigned with their main orientation to achieve 
rotation invariance. Therefore, the gradients within a 
certain distance around each feature point are 
transformed into polar coordinates: 
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Then, a histogram is constructed from the phase 
values θ(x,y) and weighted with magnitude values 
m(x,y), to obtain the main direction of the gradients 
around the feature points. 

 
Figure 2. Image gradient transformation into key 

point descriptors. 

Finally, feature vectors are created from the 
gradients. In Figure 2 left, the image gradients are 
shown. For each 4x4 region, the main orientation is 
used as new local coordinate system, meaning that 
also new texture coordinates need to be interpolated 
at intermediate positions. The 16 gradients within 
that particular region are than obtained within this 
new texture coordinate system. The created 
descriptor elements are a projection of the 16 
gradients onto 8 directions, aligned in the local 
coordinate system, defined by the main orientation, 
as shown in Figure 2, right. This projection is carried 
out for all 4x4 regions, thus creating a feature vector 
of 128 entries. Finally, the feature vector is 
normalized to achieve invariance to contrast changes. 

4. GPU-IMPLEMENTATION 
For the implementation of the SIFT algorithm on the 
GPU, adaptation of the initial CPU algorithms were 
required to fit the algorithm well into the graphics 
pipeline [Zel05] and take full advantage of the GPUs 
parallel processing abilities. Therefore, the main 
focus was to restructure the different SIFT stages to 
fit the GPU texture format. The experiments where 
carried out on a system, using an Intel Xeon 3.2GHz 
CPU, 2GB of RAM and a NVIDIA QuadroFX 3400 
GPU with 256MB video RAM and PCI Express x16 
graphics bus. 

4.1. DoG Pyramid Creation 
SIFT features are generated from gray level images, 
whereas GPU texture buffers are designed for three 
color + one alpha channels. GPUs do not only have a 
parallel processing ability on a per pixel basis 
parallelized by the number of fragment processors on 
the GPU, there also is a parallelism on the 
computational stages of the GPU calculating the four 
color values at once as a vector. Having only gray 
images the computations done to convolve an image 
would waste 75% of the processing power. To make 
full usage of the vector abilities of GPUs the gray-
level input image is modified. Here, we rearranged 
the gray image data into a four channel RGBA 
image, as shown in Figure 3. 

 
Figure 3. Texture packing to RGBA16 GPU 

format. 
One color value in the RGBA image represents 2x2 
pixel of the gray-level image, thus reducing the 
image area by 4. With the RGBA image, the 



convolution can be processed without wasting 
computational power on the GPU. In the case of a 
convolution, the processing on the packed data is 
straightforward, since here mostly linear operations, 
such as pixel- wise additions or multiplications are 
applied. In cases of operations, where pixel 
processing also depends on neighboring pixels, the 
algorithm adaptation for packed data becomes 
complicated, since all neighboring references need to 
be redirected. Reorganizing the input image creates 
some computational overhead which is 
comparatively low since the data remains in this 
packed format for the whole process of scale-space 
and DoG pyramid creation. The packing is 
implemented using a simple fragment shader that 
takes a block of 2x2 adjacent pixels and arranges 
them into one RGBA pixel. The Gaussian 
convolution is directly applied onto the packed 
RGBA format, as shown in Figure 4 with a 9tap 
Gaussian kernel. Here, the Gaussian kernel is split 
into even and odd values to carry out two separate 
semi-convolutions, which are added afterwards for 
the final result. Each pixel of the Gaussian kernel is 
multiplied with all four color components in one 
calculation, thus only requiring one texture access. 
The calculations with even and odd Gaussian kernel 
pixels are implemented in the same fragment shader 
and therefore the same texture access can be used for 
both steps. 

 
Figure 4. Gaussian convolution in RGBA16 GPU 

format, (a) odd and (b) even samples. 
Horizontal and vertical filtering with Gaussian 
kernels of different sizes is applied successively and 
the differently blurred images are subtracted to create 
the DoG pyramid, described above. 

Using this technique allows us to convert a color 
image into a gray level image and pack the pixels in 
the described way in one rendering pass. 

4.2. Key Point Filtering and Orientation 
For the detection of feature points, as described 
before, dynamic branching is used to keep the whole 
selection process in the GPU. Therefore, the criteria 
for possible feature points where rearranged starting 
with the luminance difference threshold, which 
excludes 50% of possible feature points. Then the 
search for global extreme values first compares a 

point with its 8 neighbors within the same buffer, 
leaving only 0.6% of possible points followed by 
comparison with the 9 pixel of the adjacent buffers 
within the DoG stack. Possible feature points are 
shown in Figure 5(b). Afterwards, the exclusion of 
noise and edge points is carried out, leaving stable 
feature points, as shown in Figure 5(c). 

 
Figure 5. Extraction and filtering of features. 

After filtering and localization of potential feature 
points, the corresponding feature vectors are 
calculated. To calculate the gradient direction and 
magnitude, MRT functionality is used. For both 
values, only the four direct neighboring pixels are 
required, which keeps the referencing for calculation 
relatively simple. The reqired pixel access and 
operations are shown in Figure 6. 

 
Figure 6. Gradient magnitude (top) and direction 

(bottom) calculation for red channel. 
Here, the central texel “rgba” with its packed 4 
original pixels as the four color components is 
processed. The magnitude and direction calculation 
for the central “r” component are shown in Figure 6, 
which require the four neighboring components that 
are highlighted as solid colors. Each central 
component requires two other components from the 
central texel and two from adjacent texels. The 
required operations for magnitude and direction 
calculation are also shown in Figure 6. Both 
calculations require the same input data. Since the 
input data is already packed, the use of two color 
components for magnitude and direction respectively 
is not possible. Instead, the use of MRTs greatly 
accelerates the processing, since both calculations 
can be carried out at once, writing the results into 
two separate rendering targets. Thus, time consuming 
OpenGL context switching is avoided and only one 
texel access for both operations is required, since 



magnitude and direction use the same intermediate 
calculation (i.e. horizontal and vertical subtraction).  

4.3. Feature Descriptor Creation 
Both render targets are now used to create the 
weighted histograms of the 4x4 regions around each 
feature point, as shown in the theoretical part in 
Figure 2. Each region is associated with 8 directions, 
adding up to a 128-element output vector. This 
operation differs from previously implemented 
operations, since for each single input element (or 
extreme point) 128 output elements are created. This 
operation can not be carried out at once, even with 
MRTs. Therefore, each region is processed in one 
fragment shader call, as there is no possibility to split 
the histogram calculation itself. For this calculation, 
it is useful to select a structure, where for each 
fragment different data can be accessed. A simple 
rectangular area, as used for the other calculations is 
not sufficient, since interpolation algorithms would 
interpolate the four corner attributes across the area, 
whereas here, each point requires independent 
attributes. A suitable representation for such 
independent attribute purposes is a vertex grid that 
can be created from geometry points via glVertex2f() 
or a line of multiple segments. 

For easier processing, magnitude and direction 
values are rearranged from the two rendering targets 
into one texture to further process them with the 
precalculated texture directions, as shown in 
Figure 7. 

 
Figure 7. Gradient map unpacking into one 

texture. 
Here, the packed values for magnitude and direction 
are unpacked and interleaved at the same time, such 
that one output value only contains one magnitude 
and one associated direction value. In this form, both 
values are contained in one texture that can be 
further processed without format change. 

For the final feature creation, gradient histograms for 
the 4x4 areas of each extreme point are created. Each 
area has to be processed in one fragment shader call, 
since the histogram calculation itself cannot be split 
up without expensive calculations. To carry out the 
histogram calculation in one shader cycle, 8 output 
values have to be calculated simultaneously. This 
again can be achieved, using MRTs on advanced 

graphics cards. In Figure 8(a) the data structure for 
the feature generation is shown. As an example, a 
feature vector is shown in Figure 8(b), which 
consists of 16 vertices and is mapped into the two 
render targets.  

 
Figure 8. Render Targets for Feature Generation. 
(a) Frame buffers in both render targets and (b) 

feature point position in image and access on pre-
calculated texture coordinates. 

Each vertex of a feature vector is associated with 
appropriate attributes in the CPU. These attributes 
contain relative texture coordinates, magnitude and 
direction of gradient areas. The corresponding 
calculations can be carried out independently and all 
necessary parameters are coded in the feature 
vectors. As a result, each render target from 
Figure 8(a) contains a complete data set for half the 
feature vectors.  

These SIFT feature vectors can now be used for 
correspondence matching between different images, 
e.g. for tracking in an image sequence. For this 
purpose, the Euclidean distance D between two 
feature vectors V1 and V2 with length N is 
calculated, as shown in (5). 
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In our SIFT implementation, each vector has N = 128 
elements. The associated subtractions in (5) can be 
well calculated in parallel. In a test, a CPU and GPU 
implementation were compared in terms of 
processing time. For this test, a number of feature 
vectors K were taken, with K varying between 500 
and 3000. Each feature vector was compared with 
each other, resulting in K2 comparisons. While the 
processing time for 3000x3000 comparisons was 
13sec using the CPU implementation, the GPU 
implementation only required 0.5sec. 

 

4.4. Results 
After optimizing all SIFT stages for efficient GPU 
processing, the entire algorithm was tested and 
compared against the original CPU implementation 
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