
Interactive Distributed Translucent Volume Rendering

Balázs Domonkos Balázs Csébfalvi
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Magyar tudósok krt. 2.

H-1117, Budapest, Hungary

domonkos@ik.bme.hu, cseb@iit.bme.hu

ABSTRACT

Translucent volume rendering is a robust and efficient direct volume-rendering technique for capturing optical effects, like
subsurface scattering, translucency, and volumetric shadows. However, due to the limited computing and memory resources of
the recent consumer graphics hardware, high-resolution volume data can still hardly be interactively visualized by this method.
In this paper we present the theoretical aspects and implementation details of a parallelization scheme for translucent volume
rendering. Our method is a three-pass parallel rendering algorithm with parallel compositing, based on object-space distribution
of the data among the rendering nodes. In the first pass the 2D shadow maps are computed and sent to the effected nodes. In the
second pass the nodes render their associated subvolumes by sequential translucent volume rendering. The generated framelets
are then visualized by a dedicated display node in the third pass.

Keywords: Volume Rendering, Volumetric Shadows, Parallel and Distributed Graphics

1 INTRODUCTION

Using traditional direct volume visualization, the classi-
cal volume-rendering integral is numerically computed
by evaluating finite number of samples along the view-
ing rays [Lev88]. Optical properties, like color and
opacity are assigned to the samples by mapping the den-
sity and optionally the gradient magnitude with a trans-
fer function. The color samples are shaded according
to the normalized direction of the estimated gradient,
which is treated as a normal of an isosurface. In a nearly
homogeneous region, however, the variation of the den-
sities is presumably due to the noisy data acquisition.
Therefore the gradient estimation yields stochastic nor-
mal directions in the originally homogeneous regions.
As there are no well-defined isosurfaces in these re-
gions, the evaluation of a local shading model is not
physically plausible. This problem is usually avoided
by modulating the opacities by the gradient magnitude
[Lev88], which enhances the well defined isosurfaces
contained in the volume. Another drawback of the clas-
sical direct volume rendering model is that it relies on
accurately estimated gradient directions. However, the
gradient is usually calculated from quantized density
values, so it can represent only a limited number of
surface normals. Furthermore, the ideal gradient es-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2007 conference proceedings, ISBN 1213-6964
WSCG’2007, January 29 – February 1, 2007
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

timation cannot be efficiently implemented, therefore
it is only approximated in practical applications. Be-
cause of these two reasons, images rendered by the
traditional direct volume-rendering approach typically
contain staircase artifacts.

Translucent volume rendering [KPHE02], which is
based on a fundamentally different optical model, does
not rely on estimated gradients at all. In this case, the
colors are also assigned to the samples by a transfer
function, but they are not shaded by evaluating an ex-
plicit local shading model. Instead, the color of each
sample is multiplied by the intensity of an attenuated
light ray coming from the light source into the given
sample position. Furthermore, with a Gaussian pertur-
bation, this approach can also be used for a rough ap-
proximation of forward scattering. Despite its robust-
ness and optical modeling potential, the literature on
translucent volume rendering is relatively narrow. In
this paper we aim at an efficient parallel implementa-
tion scheme for translucent volume rendering of large-
scale volumetric data sets. For the classical direct vol-
ume rendering of high-resolution data sets several re-
searchers proposed efficient hierarchical data distribu-
tion and parallelization schemes. According to our best
knowledge, however, a parallel translucent volume ren-
dering algorithm has not been published yet.

In Section 2 the previous work related to distributed
and parallel volume rendering is reviewed. In Sec-
tion 3 we briefly overview the traditional sequential
implementation of translucent volume rendering on a
single GPU. Our parallelization scheme and its imple-
mentation are presented in Section 4 and Section 5 re-
spectively. Images generated by our algorithm and the
performance measurements are reported in Section 6,



halfway vector
order of

compositing

Figure 1: Translucent volume rendering on a single
GPU using back-to-front compositing.

while in Section 7, we summarize the contribution of
this paper.

2 RELATED WORK
There are four fundamentally different approaches for
direct volume rendering: ray casting [Lev88], splatting
[Wes90], shear-warp factorization [LL94], and texture
mapping [CCF94, WE98]. The sequential or single-
processor implementations of these methods are usually
used to visualize data sets of moderate resolution. Prac-
tical data sets, however, continue to drastically increase
in size, therefore different parallelization and data dis-
tribution schemes have been proposed for all the four
basic algorithms.

Ray casting, which can produce the highest quality
of rendered images, has been implemented on different
architectures using either image-space or object-space
partitioning [LY96, MPH93, MPHK94, BIPS00,
PTT98, RPS99]. Similarly, the classical object-order
splatting technique has also been adapted to mul-
tiprocessor environments [Elv92, JG95, LWM97].
The shear-warp algorithm, which had been originally
proposed as a fast software implementation of di-
rect volume rendering, was parallelized on an SGI
system [Lac96]. As most of the recent consumer
graphics cards supports 3D texture mapping, the
texture-slicing approach became one of the most
popular volume-rendering techniques. Nevertheless, its
most important drawback is that due to limited texture
memory large-scale volume data cannot be rendered
without swapping subvolumes between the main
memory and the local texture memory [GWGS02].
In this case, the bottleneck is the bandwidth of data
transferring rather than the performance of the GPU.
Therefore implementations for parallel architectures
have been proposed by several researchers to overcome
this limitation [KMM01, MHE01, GPH04].

The previously published parallel systems usually
support only the classical volume-rendering model.
However, a more sophisticated optical model, which
includes volumetric shadows and forward scattering,
requires a more complicated communication between

halfway vector

order of

compositing

Figure 2: Translucent volume rendering on a single
GPU using front-to-back compositing.

the parallel processing units. In this paper we adapt
the sequential translucent volume rendering method
to parallel computing nodes. We demonstrate that,
using a static data distribution scheme and parallel
image compositing with high-speed communication
channels, intermediate image data can be efficiently
transferred between the nodes. As a consequence, the
communication overhead is negligible compared to the
rendering cost.

3 TRANSLUCENT VOLUME REN-
DERING

Translucent volume rendering can be efficiently imple-
mented exploiting the 3D texture mapping capability
of recent graphics cards. Unlike traditional slice-based
direct volume rendering techniques, in this case volu-
metric shadows are calculated simultaneously with the
compositing of the resampling slices. In order to avoid
the computation of a 3D shadow map, the slicing is per-
formed perpendicular to the halfway vector between the
viewing direction and the direction of the light source
as illustrated in Figure 1. For each pixel covered by
the projection of a slice, the intensity of the light has
to be determined, which reaches the intersection point
between the slice and the corresponding viewing ray.
Therefore each slice is simultaneously projected onto a
plane perpendicular to the direction of the light source.
In this way, a 2D shadow map can be maintained, which
corresponds to the current stage of compositing. When-
ever a pixel is processed in the pixel shader it is de-
termined where the corresponding intersection point is
projected onto the current shadow map and its color is
modulated accordingly. As the resolution of the shadow
map is the same as the resolution of the frame buffer,
accurate volumetric shadows can be calculated by this
method. If the angle between the viewing direction
V and the direction of the light source L is less than
90 degrees then the halfway vector H is calculated as
H = (L+V)/2 and a back-to-front compositing is per-
formed (see Figure 1). Otherwise the halfway vector is



calculated as H = (L−V)/2 and a front-to-back com-
positing is performed (see Figure 2).

4 DISTRIBUTED TRANSLUCENT
VOLUME RENDERING

As our major goal is to interactively render large-scale
data sets using the translucent shading model, the ba-
sic algorithm is adapted to a parallel computing en-
vironment. Parallelization schemes can be classified
according to the type of entities, which are simulta-
neously processed. Single-threaded software renderers
take graphics primitives one after another and the pix-
els corresponding to these primitives are also processed
sequentially. In contrast, recent graphics cards have
multiple graphics pipelines, therefore more vertices and
pixels can be processed at the same time. Pixel-based
parallelization can also be performed when multiple
graphics cards are used for creating tiles of the over-
all output image and the rendering queue is branched
into multiple pipes. On the other hand, when the data
is divided in an initialization step, multiple subsets of
graphics primitives and subvolumes can be processed
at the same time.

In our case the original volumetric data is decom-
posed into subvolume blocks using axis-aligned subdi-
vision. These blocks are distributed among the comput-
ing nodes. This static data distribution scheme is more
favorable than pixel-level partitioning, because of two
reasons. (1) To create an equivalent rendering model,
initial shadow maps are needed to start the rendering
of a subset of the volume. This inter-node shadow
communication can be more easily performed using a
fixed object-space subdivision rather than image-space
decomposition, which deals with non-axis-aligned con-
nection surfaces. (2) Furthermore the nodes can effi-
ciently render only subvolumes of moderate resolution
without swapping because of their limited texture mem-
ory.

This object-parallel approach needs compositing the
subsets of pixels corresponding to different subvol-
umes. This procedure involves processing of alpha and
depth values for each pixel, therefore compositing can
be a bottleneck of the overall rendering system and
unsuitable for interactive applications. However, when
the compositing is also done in parallel, interactive
compositing is possible. There are several algorithms
providing parallel image compositing on multi-
processor architectures including direct send, parallel
pipeline [LRN96], and binary swap [MPHK94].

In our approach a three-pass, object-parallel algo-
rithm was used with parallel pipeline compositing. It
performs the following steps:

halfway vector

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

Figure 3: Parallel calculation of 2D shadow maps on
the separate nodes. The numbers represent the differ-
ent time steps.

halfway vector

Figure 4: Sharing the 2D shadow maps with the ef-
fected nodes for parallel compositing.

halfway vector

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

Figure 5: Parallel translucent volume rendering on the
separate nodes. The numbers represent the different
time steps.

1. pass: Each node computes its 2D shadow map and
shares it with the effected nodes for parallel com-
positing.

2. pass: After compositing the received 2D shadow
maps, each node performs translucent volume ren-
dering as in the basic algorithm. The images of sub-
volumes are shared among all nodes.

3. pass: The portions of the final image are also com-
posited in parallel and sent to the display node.

The first step is necessary, because each node needs
an initial shadow map in order to start its effective ren-
dering process. This map comes from the composited



p
D

p p p p
0 1 2 3

p p p p
0 1 2 3

Figure 6: Parallel pipeline algorithm on distributed memory architectures. Left: framelet transfer for four composit-
ing processes performed in N−1 steps, where N is the number of compositors. Right: collecting final framelets
for an external (display) process or for an internal process (compositing shadow maps). This is performed in one
step [LRN96].

shadow 
calculation

final output 
calculation

local 
shadow map

parallel
compositing

local image
transfer5.

1.

2.

3.

4.

N.

Figure 7: Parallel translucent volume rendering
scheme for four rendering-compositing nodes and a
composting-only display node. Shadow map calcula-
tion requires four parallel compositing contexts while a
single context is needed for final image compositing.
The participants of the final image context are fixed,
while the members of the shadow maps are dynam-
ically calculated based on the orientation of the vol-
ume. Note that the filled arrows point from the render-
ing sources to the destinations.

shadow maps produced by the nodes associated to the
covering subvolumes. Rendering these maps can be
performed very efficiently on the graphics hardware,
since only one multiplication has to be executed per
pixel in the pixel shader code. Moreover, the nodes can
simultaneously generate the shadow maps of their cor-
responding subvolumes, as illustrated in Figure 3, with-
out waiting for each other. After having the shadow
maps calculated they are shared with the effected nodes
for parallel compositing (see Figure 4). In the second
step, the nodes first have to composite the received im-
ages to produce an initial shadow map for the render-
ing. Depth information is not required here, as only
an accumulated light attenuation needs to be evaluated
for each pixel. Afterwards the nodes simultaneously
perform the traditional translucent volume rendering
for their assigned subvolumes (see Figure 5). The re-
sulting framelets are split up, composited simultane-

g l o b a l pi , N

f u n c t i o n p a r a l l e l _ p i p e l i n e ( i , t a r g e t , f rame ) {
de f fk ← f rame . sub_image ( 0 , k∗ f rame . h e i g h t /N,

f rame . width , ( k +1)∗ f rame . h e i g h t /N−1)
pnext ← pi+1 mod N
pprev← pi−1 mod N

f o r j ← 0 , . . ., N−2
fsend ← fi− j mod N
frecv← fi− j−1 mod N
send fsend → pnext

r e c e i v e frecv ← pprev

compose frecv wi th fsend

i f i �= t a r g e t
send fi →ptarget

e l s e
f o r j ← 0 , . . ., N−1 ( j �= i )

r e c e i v e f j ← p j

}

Listing 1: Pseudo-code of the parallel pipeline
algorithm on distributed memory architectures for
process pi. The variables are coded as follows:
p0 . . . pN−1 are the compositing processors, f0 . . . fN−1

are the image framelets, and target is the index of the
target process.

ously, and the portions are sent to a dedicated node,
which is responsible for displaying. In this third step
depth-sorting is necessary before compositing, since
the alpha-blending evaluation is order-dependent.

5 IMPLEMENTATION
We implemented our algorithm on a GPU cluster, a
shared memory parallel rendering and compositing en-
vironment using the ParaComp1 library. This software
solution uses the parallel pipeline compositing algo-
rithm consisting of two parts (see Figure 6 and List-
ing 1). The images to be composited are divided into

1 Parallel Compositing library specified for multiprocessor systems by
Hewlett-Packard in collaboration with Computational Engineering
International



N framelets, which is the number of the composit-
ing processes. In the first part of the algorithm these
framelets flow around through each node in N−1 steps,
each consisting of a compositing and a communication
stage. After N−1 steps each processor will have a fully
composited portion of the final frame. The framelets are
collected for an external display node or for an internal
node in the second part in one step. The clear benefit
of this compositing scheme is that the amount of data
transferred on the network is independent of the num-
ber of compositing processes.

The detailed scheme of our algorithm is illustrated in
Figure 7. Each rendering-compositing node being re-
sponsible for a subvolume has two separate processes
and a local shadow buffer. The shadow calculation
process renders the shadow image of the correspond-
ing subvolume and belongs to multiple compositing
contexts. The number of these contexts equals to the
number of rendering nodes, which is four in Figure 7.
Each compositing context has an explicit target process:
the one which will use the composited shadow image.
The other processes provide framelets to the context if
the subvolumes of them occlude the subvolume corre-
sponding to the target process. The composited shadow
map is the input of another process of the node, which
performs the final output calculation. The final image is
composited in an additional context similarly in parallel
– this is the fifth context in Figure 7. The parallel im-
age compositing is illustrated with filled arrows while
the empty arrows stand for direct local image transfer.

It follows that N + 1 frames have to be composited
applying N parallel rendering-compositing nodes. Ac-
cording to this scheme, for interactive rendering the al-
gorithm could be optimal when the rendering and com-
positing time of the shadow map calculation equals to
the time required for producing the final output.

Node-level aspects

As a bottleneck of our algorithm could be the effi-
ciency of the sequential translucent volume rendering
performed on the separate nodes, we optimized the
fragment programs corresponding to this pass (see List-
ing 2). In order to perform high-precision composit-
ing, we use alternating floating-point render targets or
ping-pong buffering [KPHE02]. The previous state of
the frame buffer is stored in a 2D texture denoted by
frameBuffer. In the first step the color of the cur-
rent pixel (colorIn) is read from this 2D texture. As
the opacity channel represents the accumulated opac-
ity, we can terminate the execution of the fragment pro-
gram if it is already higher than a predefined thresh-
old. This is similar to the well-known early ray termi-
nation [DH92].

The volumetric data is loaded into the texture mem-
ory as a 3D density array. The trilinearly interpolated
density values are used for addressing a look-up table

representing the current transfer function. Using this
post-classification approach, the transfer function can
be interactively modified on the fly. If the opacity of
a sample (color.a) read from the look-up table is
less than a predefined threshold, its contribution to the
current pixel is negligible. Therefore the execution is
terminated in this case as well. For shading the col-
ors assigned to the samples, the attenuation of the light
coming from the light source to the given sample has to
be calculated. This information is stored in a 2D texture
map denoted by shadowMap. However, to read the ap-
propriate pixel of the shadow map, the object-space po-
sition of each sample has to be projected onto an image
plane perpendicular to the direction of the light source.
This task can be shared between the vertex shader and
the pixel shader. The vertex shader performs the pro-
jection for the vertices of the proxy geometry and the
result is stored in texture coordinates assigned to the
vertices according to Listing 3. First the vertex posi-
tions are transformed by the model-view and projection
transformations. The role of TexTrans is to calculate
the normalized 3D texture coordinates from the posi-
tion of the given vertex. Transformations LightView
and LightProj are initialized according to the posi-
tion of the light source, and they are used to map the
vertex position onto an image plane perpendicular to
the direction of the light source.

It is assumed that the graphics hardware performs
perspectively correct interpolation of the texture coor-
dinates. However, IN.TEX1 in the pixel shader rep-
resents the homogeneous coordinates of a sample point
projected onto an image plane perpendicular to the di-
rection of the light source. To calculate the correspond-
ing Cartesian screen coordinates, a homogeneous divi-
sion has to be performed in the pixel shader and af-
terwards the appropriate pixel position in the shadow
map is calculated by translation and scaling operations.
From this pixel position the intensity of the attenuated
light is read (light) and the color of the current sam-
ple is modulated by this value. The rest of the fragment
program is just responsible for the usual evaluation of
front-to-back compositing. The fragment program for
the back-to-front evaluation is almost the same, only
the compositing operations are different.

For the simultaneous compositing of the shadow map
another pixel shader is used. In each iteration step, first
the current resampling slice is projected onto an im-
age plane perpendicular to the viewing direction, and
processed by the previously described fragment pro-
gram. Afterwards the same slice is projected onto an
image plane perpendicular to the direction of the light
source, in order to update the shadow map for the next
iteration (see Listing 4). Similarly to the previous case
the volume data is available in a 3D texture map, while
the transfer function is stored in a look-up table repre-
sented by a 1D texture. Here we also use alternating



f r a g o u t main ( vf30 IN ,
un i fo rm f l o a t ha l fWid th ,
un i fo rm f l o a t h a l f H e i g h t ,
un i fo rm sampler3D da ta ,
un i fo rm sampler1D t r a n s f e r F u n c t i o n ,
un i fo rm samplerRECT f r ameBuf f e r ,
un i fo rm samplerRECT shadowMap )

{
f r a g o u t OUT;

f l o a t 4 c o l o r I n =
f4texRECT ( f r ameBuf f e r , IN .WPOS. xy ) ;

i f ( c o l o r I n . a > 0 . 9 9 ) d i s c a r d ;

f l o a t 4 c o l o r =
f4 tex1D ( t r a n s f e r F u n c t i o n ,

f4 tex3D ( da ta , IN . TEX0 ) . a ) ;
i f ( c o l o r . a < 0 . 0 1 ) d i s c a r d ;

f l o a t 4 p o s i t i o n = IN . TEX1 ;
p o s i t i o n . xy /= p o s i t i o n .w;
p o s i t i o n . x = ( p o s i t i o n . x +1 . 0 )∗ ha l fWid t h ;
p o s i t i o n . y = ( p o s i t i o n . y +1 . 0 )∗ h a l f H e i g h t ;
f l o a t l i g h t = f4texRECT ( shadowMap ,

p o s i t i o n . xy ) . a ;

f l o a t 4 co l o rOu t = c o l o r I n ;
i f ( l i g h t > 0 . 0 1 ) c o l o rOu t . rgb += c o l o r . rgb

∗ ( c o l o r . a ∗ ( 1 . 0 − c o l o r I n . a ) ∗ l i g h t ) ;
c o l o rOu t . a += c o l o r . a − c o l o r I n . a ∗ c o l o r . a ;
OUT. c o l = co l o rOu t ;

r e t u r n OUT;
}

Listing 2: Front-to-back compositing fragment shader
code.

s t r u c t OUTPUT
{

f l o a t 4 H P o s i t i o n : POSITION ;
f l o a t 4 TCoords0 : TEXCOORD0;
f l o a t 4 TCoords1 : TEXCOORD1;

} ;

OUTPUT main ( f l o a t 4 P o s i t i o n : POSITION ,
un i fo rm f l o a t 4 x 4 Pro j ,
un i fo rm f l o a t 4 x 4 View ,
un i fo rm f l o a t 4 x 4 L i g h t P r o j ,
un i fo rm f l o a t 4 x 4 LightView ,
un i fo rm f l o a t 4 x 4 TexTrans
)

{
OUTPUT o u t p u t ;

f l o a t 4 p o s i t i o n = mul ( View , P o s i t i o n ) ;
o u t p u t . H P o s i t i o n = mul ( P ro j , p o s i t i o n ) ;
o u t p u t . TCoords0 = mul ( TexTrans , P o s i t i o n ) ;
f l o a t 4 l i g h t = mul ( LightView , P o s i t i o n ) ;
o u t p u t . TCoords1 = mul ( L i g h t P r o j , l i g h t ) ;

r e t u r n o u t p u t ;
}

Listing 3: Common vertex shader code of the three
passes.

f r a g o u t main ( vf30 IN ,
un i fo rm sampler3D da ta ,
un i fo rm sampler1D t r a n s f e r F u n c t i o n ,
un i fo rm samplerRECT shadowMap )

{
f r a g o u t OUT;

f l o a t t r a n s p a r e n c y =
f4texRECT ( shadowMap , IN .WPOS. xy ) . a ;

i f ( t r a n s p a r e n c y < 0 . 0 1 ) d i s c a r d ;

f l o a t a l p h a =
f4 tex1D ( t r a n s f e r F u n c t i o n ,

f4 tex3D ( da ta , IN . TEX0 ) . a ) . a ;
i f ( a l p h a < 0 . 0 1 ) d i s c a r d ;

OUT. c o l . a = t r a n s p a r e n c y ∗ ( 1 . 0 − a l ph a ) ;
r e t u r n OUT;

}

Listing 4: Shadow map compositing fragment shader
code.

floating-point render targets for high-precision com-
positing. Therefore the previous state of the shadow
map is obtained as an input 2D texture by the fragment
program. In fact, the shadow map contains a trans-
parency value in each pixel, which is first read by a
2D texture fetch. If this value is already less than a
small predefined threshold, the current sample practi-
cally does not contribute to the given pixel, therefore
the execution of the program is terminated. Otherwise
the opacity of the current sample is read from the look-
up table. If this opacity value is under the threshold,
the sample practically does not have an influence onto
the shadow map in this case either, so the execution is
terminated as well. Generally, the transparency of the
sample is calculated and it is multiplied by the previous
value of the given pixel. This fragment program is used
in the rendering pass and in the first initialization pass
as well, when each node calculates the shadow map of
its associated subvolume. Note that it is simpler than
the one applied for the frame buffer compositing, there-
fore it is performed more efficiently. That is the reason
why the cost of the initialization pass is relatively low
compared to that of the second rendering pass.

6 RESULTS
For our experiments we used a Hewlett-Packard “Scal-
able Visualization Array” consisting of five comput-
ing nodes. Each node has a dual-core AMD Opteron
246 processor, an nVidia Quadro FX3450 graphics con-
troller, and an InfiniBand network adapter.

To illustrate the scalability of our volume render-
ing system, configurations of one up to four render-
ing nodes were investigated for four different data sets.
Each setup also contained an additional display node.
The data sets were visualized on a viewport of res-
olution 5122. The volumes were rotated around two



Number of Average Average Shadow
nodes frame rate shadow fps overhead

1 8.15 - 0%
2 9.67 13.53 28.0%
3 11.02 15.73 29.4%
4 12.67 18.29 30.1%

Table 1: Scalability results using the human head
data set (256x256x159). Average frame rate, aver-
age shadow frame rate for all compositing contexts,
and relative shadow computation and communication
overhead.

Number of Average Average Shadow
nodes frame rate shadow fps overhead

1 6.12 - 0%
2 5.73 19.59 29.3%
3 6.74 21.60 31.2%
4 7.67 21.87 35.1%

Table 2: Scalability results using the frog data set
(500x470x136).

Number of Average Average Shadow
nodes frame rate shadow fps overhead

1 4.62 - 0%
2 5.08 17.54 29.0%
3 7.35 25.29 29.1%
4 9.71 27.56 35.2%

Table 3: Scalability results using the Christmas tree
data set (512x499x512).

Number of Average Average Shadow
nodes frame rate shadow fps overhead

1 7.78 - 0%
2 8.68 35.03 24.8%
3 10.03 35.70 28.1%
4 11.95 40.99 29.1%

Table 4: Scalability results using the stag beetle data
set (416x416x247).

axes, in order to shuffle continuously the sorting order
of the subvolumes. The average output frame rates, the
average shadow calculation frame rates, and the rela-
tive shadow overheads are shown in Tables 1-4. The
shadow calculation overhead is the ratio of the shadow
rendering-compositing time and the overall rendering
time. Note that the efficiency of the 2-node distribu-
tion might appear to be poor compared to the 1-node
configuration. This illusory retrogression comes from
the incoming shadow calculation overhead, which is
not present in the 1-node setup. According to our
measurements, the shadow computation overhead is
around 30% including the communication on our hard-
ware, however it is apparently growing by increasing
the number of the partner nodes. The images of med-
ical data sets rendered using 4 rendering-compositing
nodes are shown in Figure 8.

7 CONCLUSION AND FUTURE
WORK

In this paper we have demonstrated that using an
object-space partitioning and high-speed communica-

tion channels between the rendering nodes, parallel
volume rendering can be efficiently implemented on
distributed memory architectures using even a more
sophisticated optical model, which also takes light
attenuation in translucent materials into account.
Although our algorithm requires an initialization step
to calculate, transfer, and composite the 2D shadow
maps for each subvolume, due to the simple order-
independent compositing operation this step can be
efficiently performed. Furthermore, the high-speed
channels are exploited to handle the additionally
required communication overhead, which is theoret-
ically not limited by the computing nodes when the
compositing is also performed in parallel. Because
of these two reasons the performance of our parallel
translucent volume-rendering system is not set back
by the additional computation and communication,
therefore it can be improved by increasing the number
of rendering nodes.

In our future work, we intend to further improve our
algorithm. In the rendering phase each node has to wait
until it receives all the necessary shadow maps. How-
ever, the nodes processing subvolumes shadowed by
many other subvolumes have to wait longer, while the
nodes corresponding to subvolumes closer to the light
source can start rendering earlier. In order to improve
load balancing, the calculation of consecutive frames
can overlap, such that a node can render a framelet be-
longing to the next frame, while another node is still
calculating a framelet belonging to the current frame.

ACKNOWLEDGEMENTS

This work has been supported by the Postdoctoral Fellowship Pro-

gram of the Hungarian Ministry of Education, Hewlett-Packard, and

the Hungarian National Office for Research and Technology.

REFERENCES
[BIPS00] C. Bajaj, I. Ihm, S. Park, and D. Song. Compression-

Based Ray Casting of Very Large Volume Data in Dis-
tributed Environments. In Proceedings of Fourth Inter-
national Conference on High Performance Computing
in the Asia-Pacific Region, pages 720–725, 2000.

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated Volume
Rendering and Tomographic Reconstruction Using Tex-
ture Mapping Hardware. In Proceedings of IEEE Sym-
posium on Volume Visualization, pages 91–98, 1994.

[DH92] J. Danskin and P. Hanrahan. Fast Algorithms for Volume
Ray Tracing. In Proceedings of Workshop on Volume
Visualization, pages 91–98, 1992.

[Elv92] T. Elvins. Volume Rendering on a Distributed Memory
Parallel Computer. In Proceedings of IEEE Visualiza-
tion, pages 93–98, 1992.

[GPH04] C. Gribble, S. G. Parker, and C. Hansen. Interactive vol-
ume rendering of large datasets using the silicon graph-
ics Onyx4 visualization system. TR No. UUCS-04-003,
University of Utah School of Computing, 2004.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interac-
tive Rendering of Large Volume Data Sets. In Proceed-
ings of IEEE Visualization 2002, pages 45–52, 2002.



Figure 8: Images of medical data sets rendered by our parallel translucent volume rendering system.

[JG95] G. Johnson and J. Genetti. Medical Diagnosis using the
Cray T3D. In Proceedings of Parallel Rendering Sym-
posium, pages 70–77, 1995.

[KMM01] J. Kniss, P. McCormick, and A. McPherson. Interactive
Texture-Based Volume Rendering for Large Data Sets.
IEEE Computer Graphics and Applications, 21(4):52–
61, 2001.

[KPHE02] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interac-
tive translucent volume rendering and procedural mod-
eling. In Proceedings of IEEE Visualization, pages 109–
116, 2002.

[Lac96] P. Lacroute. Analysis of a Parallel Volume Rendering
System Based on the Shear-Warp Factorization. IEEE
Transactions on Visualization and Computer Graphics,
2(3):218–231, 1996.

[Lev88] M. Levoy. Display of Surfaces from Volume Data.
IEEE Computer Graphics and Applications, 8(3):29–
37, 1988.

[LL94] P. Lacroute and M. Levoy. Fast Volume Rendering using
a Shear-Warp Factorization of the Viewing Transforma-
tion. Computer Graphics (Proceedings of SIGGRAPH
’94), pages 451–457, 1994.

[LRN96] Tong-Yee Lee, C. S. Raghavendra, and John B.
Nicholas. Image Composition Schemes for Sort-Last
Polygon Rendering on 2D Mesh Multicomputers. IEEE
Transactions on Visualization and Computer Graphics,
2(3):202–217, 1996.

[LWM97] P. P. Li, S. Whitman, and R. Mendoza. ParVox - A Paral-
lel Splatting Volume Rendering System for Distributed
Visualization. In Proceedings of IEEE Symposium on
Parallel Rendering, pages 7–14, 1997.

[LY96] A. Law and R. Yagel. Multi-frame Thrashless Ray
Casting With Advancing Ray-Front. In Proceedings of
Graphics Interface, pages 70–77, 1996.

[MHE01] M. Magallon, M. Hopf, and T. Ertl. Parallel volume
rendering using PC graphics hardware. In Proceedings
of Ninth Pacific Conference on Computer Graphics and
Applications, pages 384–389, 2001.

[MPH93] K. L. Ma, J. S. Painter, and C. D. Hansen. A Data
Distributed, Parallel Algorithm for Ray-Traced Volume
Rendering. In Proceedings of Parallel Rendering Sym-
posium, pages 15–22, 1993.

[MPHK94] K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh.
Parallel Volume Rendering using Binary-Swap Com-
positing. IEEE Computer Graphics and Applications,
14(4):59–68, 1994.

[PTT98] M. E. Palmer, B. Totty, and S. Taylor. Ray Casting
on Shared-Memory Architectures: Memory-Hierarchy
Considerations in Volume Rendering. IEEE Concur-
rency, 6(1):20–35, 1998.

[RPS99] H. Ray, H. Pfister, and D. Silver. Ray Casting Archi-
tectures for Volume Visualization. IEEE Transactions
on Visualization and Computer Graphics, 5(3):210–223,
1999.

[WE98] R. Westermann and T. Ertl. Efficiently Using Graphics
Hardware in Volume Rendering Applications. Computer
Graphics (Proceedings of SIGGRAPH ’98), pages 169–
176, 1998.

[Wes90] L. Westover. Footprint Evaluation for Volume Render-
ing. Computer Graphics (Proceedings of SIGGRAPH
’90), pages 144–153, 1990.


