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ABSTRACT
Digital atlases of the brain serve as a spatial reference frame which can be used to relate data from different
image modalities and experiments. In this paper we describe a standardized pipeline for the creation of extendable
surface-based anatomical insect brain atlases from 3D image data of a population of individuals. The pipeline
consists of the major steps imaging and preprocessing, segmentation, averaging, surface reconstruction, and surface
simplification. At first, 3D image data sets from confocal microscopy are resized, stitched, and initially displayed
using standard image processing and visualization tools. Then brain structures, such as neuropils and neurons, are
labeled by means of manual segmentation and line extraction algorithms. The averaging step comprises affine and
elastic registration and a mean shape selection strategy. Finally non-manifold surfaces of the labeled and aligned
structures are reconstructed using a generalized surface reconstruction algorithm. These surfaces are simplified
and adapted to further needs by decimation and retriangulation. The chosen methods of each step are adequate for
a variety of data. We propose an iterative application of the pipeline in order to build the atlas in a hierarchical
fashion, integrating successively more levels of detail. The approach is applied in several different neurobiological
research fields.

Keywords: Digital neuroanatomy, brain atlas, surface reconstruction.

1. INTRODUCTION
One specific aim of neuroscience is to analyze learn-
ing and behavior. Understanding such neural functions
is based on knowledge about the wiring of the brain
and functional properties of individual neurons as well
as parts of the nervous system. Therefore anatomical
and functional properties of neural networks are inves-
tigated.

Particularly suited for such analysis are insect brains,
since they are easy to access and brain substructures
as well as important single neurons are already known
and identified. Furthermore, due to the small size of
the structures one is able to examine them as a whole
down to a level of single neurons. Much knowledge is
extracted by comparing anatomical structures and their
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functions of individuals at several development stages
or from individuals that equal or differ genetically.

In the last decade 3D imaging methods, like confo-
cal microscopy or transmission electron tomography,
have become standard together with sophisticated
staining methods. Nowadays they provide large
amounts of data that has to be organized, analyzed
and explored. Almost a revolution from the biological
point of view are population-averaged standard atlases
that for the first time in biology provide spatial refer-
ences. These allow the researchers to relate data from
different experiments and different data modalities
as well as to accumulate information with spatial
reference. Furthermore they facilitate visualization of
neurobiological data and form a basis for investigating
the relation between brain morphology, brain function,
and genetic factors. In the long term this will help to
turn neuroanatomy into a more quantitative science.

We describe a generalized pipeline for the gen-
eration of insect brain atlases from 3D image data
of a population of individual brains. We consider
surface-based atlases, since these are easier to deal
with than volumetric atlases. The pipeline roughly
comprises imaging, segmentation, averaging, and
surface reconstruction. All methods required within



the pipeline were integrated in the open visualization
platform Amira [SWH04].

This paper is organized as follows: In section 2 we
give an overview about existing brain atlases. Sec-
tion 3 describes the concept and the steps of the at-
las generation pipeline. Applications of the procedure
and the resulting atlas are presented in Section 4. We
discuss the limits of our approach and conclude in Sec-
tion 5.

2. RELATED WORK
For the human brain a variety of digital population-
based atlases have been introduced and continuously
enhanced. Techniques for the generation of such brain
atlases, for instance, are described in [GMT00] and
[TT01]. They focus on the development of registra-
tion and averaging strategies using cerebral CT and
MRT scans. A processing environment that enables
researchers to combine and execute established meth-
ods is presented in [RMT03]. It has been used suc-
cessfully to build average intensity atlases with fully
automated processing. The general steps for atlas gen-
eration of human brains are similar to the ones for the
generation of insect brain atlases. Nevertheless imag-
ing modalities and application dependent objectives re-
quire the development of more specific and appropri-
ate techniques.

Meanwhile invertebrate brain atlases also do
emerge. In [RZM∗02] and [RBMM01] the generation
of atlases for the fruitfly Drosophila melanogaster and
the honeybee Apis mellifera are described. Besides
generation methods supplemental information on
neurobiological backgrounds and application fields
of insect brain atlases can be found in [BRR∗05]
and [PH04]. Web interfaces (http://www.neurofly.de;
http://www.neurobiologie.fu-berlin.de/BeeBrain) al-
low downloading and interactive viewing of currently
existing models. The analysis of insect brains is still
an explorative research field. So far little attention
has been paid to the integration and sequencing of
all steps needed for a complete atlas generation into
one single visualization platform. The insertion
of a taxonomic description of brain structures and
the usage of advanced visualization and interaction
techniques also remain challenging tasks.

3. ATLAS GENERATION PIPELINE
The proposed pipeline for the generation of brain at-
lases is composed as follows: First the image data is
preprocessed and initially visualized. In a second step
the structures of interest are segmented and a label is
assigned to each of them. The averaging takes place
in step three. Therefor all labeled data sets have to
be registered into a common reference and a mean or
median has to be derived. Finally three-dimensional
surface models of the averaged brain structures are re-

Figure 1. Schematic overview of the pipeline for the gen-
eration of surface-based insect brain atlases. After imag-
ing and preprocessing (1), structures are segmented (2).
The averaging of individuals (3) is followed by a surface

reconstruction(4).

constructed. Figure 1 shows a schematic overview of
the proposed pipeline.

The underlying methods of each step have to fulfill
several requirements. They must be applicable to the
present imaging data and provide robust results. The
techniques shall allow for modifications of final and
intermediate data. For example the insertion and dele-
tion of structures shall be supported. In addition the
methods have to consider the user’s skills and wishes.
Finally the received results shall enable further pro-
cessing.

We propose an iterative application of the pipeline.
First coarse structures like neuropils are reconstructed
and an initial atlas is generated. Using the same work
steps, more detailed information such as substructures
of neuropils or neurons is integrated. Thereby the ini-
tial standard serves as a reference frame for the regis-
tration procedure and the final visualization. This ap-
proach allows for a hierarchical organization of data,
which in turn establishes a basis for the representation
of the natural hierarchical organization of brain struc-
tures.

In the following we will describe the steps of the
pipeline by means of brain data of the honeybee. Sec-
tion 4 shows that the pipeline and its results are much
more generally applicable.

Imaging and Preprocessing
Presently insect brains such as the fly brain or the
honeybee brain are imaged with confocal laser scan-
ning microscopy. After preparation including dissec-
tion and staining, the size of a honeybee brain (~2.5×
1.6 × 0.8 mm) extends the maximum field of view of
the microscope with a common configuration. There-
fore multiple stacks are used to acquire entire brains.
Typically 2 × 3 partially overlapping tiles, each using



Figure 2. Slice view of a honeybee brain confocal mi-
croscopy image in xy-, yz-, and xz-plane. The data set

is composed of six separately acquired image stacks.

between 80 and 120 slices of 512×512 pixels in plane
and a thickness of 8 µm are imaged.

For the combination of the image stacks landmarks
that define corresponding points are placed manually.
Afterward the stacks are merged using a conventional
pyramidal blending. The landmarks are used to define
the regions that will be blended. The scanning tech-
nique usually causes a shortening of distance in the
z-direction. This is compensated by applying a linear
scaling to the data [BRR∗05].

By means of slicing or direct volume rendering or
the combination of the two a first insight into the edited
data is gained and the image and preprocessing quality
can be checked. A slice view of a complete bee brain
data set can be found in Figure 2.

Segmentation
In the next step anatomically distinct structures of the
brain are segmented and assigned unique labels. The
results are stored in so-called label fields in which each
voxel represents a coding for a particular brain struc-
ture. These label fields will be used in the following
averaging step and form the basis of the surface recon-
struction. For several insects a coarse division and
nomenclature of the brain into neuropils already has
been defined and can be used as a guideline for the
segmentation. In the honeybee brain we currently dis-
tinguish 22 major compartments.

The development of fully automatic segmentation
methods is impeded by several difficulties. For in-
stance, the borders of neuropils are often fuzzy, thus
lacking strong gray value gradients. Gray values of
structures highly depend on the chosen staining. Ad-
ditionally they vary within the regions and between
different individuals. Furthermore research in neuro-
biology still remains explorative aiming at discovering
new structures and correlations. So frequently there is
little a priori information and results are strongly influ-
enced by the user’s knowledge and experience.

Figure 3. Segmentation of neuropils in the honeybee
brain. Anatomical structures of interest were segmented
and assigned individual labels. Here they are overlaid

their corresponding gray value data set.

For the segmentation of neuropils we provide simple
but robust, and user-friendly tools, which support man-
ual segmentation. The user can choose from freehand
boundary drawing, interval thresholding, and propagat-
ing contours based on a level set method [WnZ03]. For
the latter a small circle is placed on mouse click and
then the contour of the circle is extended as the user
moves the mouse. All tools require the adjustment of
only few parameters and allow for an interactive cor-
rection of the segmentation results. Their efficiency
is improved by the integration of interpolation and ex-
trapolation of label segmentation between slices. At
any time structures can be added, removed or refined
easily within the provided editor.

Figure 3 shows an example segmentation of honey-
bee brain neuropils.

Averaging
From the preprocessed and labeled data sets of indi-
viduals an atlas representing the brain characteristics
of the analyzed species has to be derived. For this pur-
pose an average of the sample is determined. This is
usually done by computing the mean or median. In
general the procedure comprises a registration of the
data sets to a common reference and a subsequent av-
eraging step.

We use an iterative averaging scheme which is based
on the work presented in [RBMM01]. First global dif-
ferences in position, orientation, and size of all data
sets are compensated and an initial average image is
generated. Using a nonrigid registration the data sets
are then registered to the initial reference. This leads
to a new less blurred average image to which the trans-
formed images are registered again, and so forth.

Affine registration. The procedure starts with an
affine registration of the individual images to an arbi-
trarily chosen template. Usually a subjective choice of
a data set such as the original individual brain which
appears most average to the user works as an adequate



first reference. In order to allow for standardization
we select the individual brain which has the smallest
deviation from the mean volume over all components
in the reconstruction as it has been used in [RZM∗02].
Our affine registration implementation is based on the
multiresolution search method presented in [SHH97].

Label and intensity averaging. Having registered
all original individual images, a mean or median can
be determined from them. Here the computation of the
voxelwise arithmetic average of data values forms the
most intuitive and general approach. For label fields,
which are non-numerical images, a non-arithmetic ave-
rage is needed. We do use a method that has been
proposed in [BRR∗05]. It selects the label that occurs
most frequently and represents at least t percent of the
valid voxels. A result voxel is termed ‘undecided’ if
there is no unique most frequent label.

Elastic registration. Due to the remaining local
shape varieties an average image solely based on a
global affine registration might be inaccurate resulting
in blurred average intensities and average labels with
a large quantity of undecided voxels. Application
of elastic registration methods helps to reduce this
inaccuracy.

Our pipeline contains a non rigid registration
method described in [RZM∗02]. The algorithm
computes an individual rigid transformation for each
labeled brain structure. These transformations are
relatively small due to the prior global alignment.
For each voxel within a segmented substructure the
transformation vector is calculated based on the
per-structure alignment. Afterward the piece-wise
defined vector field between the substructures is
component-wise interpolated. This is done by using
a heat transfer equation: at locations where the
vectors are known the ‘temperature’, which means
the component of the transformation vector, is kept
fixed and in-between the resulting equilibrium state is
computed.

We also offer a multiresolution and multigrid cubic
B-spline registration based on the developments pub-
lished in [RBMM01] and [RSH∗99]. This approach
pays more attention to fine details than the above out-
lined method.

In general, elastic registration is a delicate step,
since the transformation might eliminate not only
preparation artifacts like mechanical deformations, but
also anatomical variability. If one is interested in this,
elastic registration should be employed particularly
conservatively.

Convergence. For some applications an average re-
sulting from the affine registration step may be suffi-
cient. It preserves possibly relevant shape differences
and requires a comparatively lower computation time.

However, to minimize the number of undecided voxels
and to avoid disappearance of small structures the ap-
plication of subsequent non-rigid registration often is
necessary. Here the fraction of undecided voxels in the
average label images and a visual observation coupled
with an entropy analysis define the choice of the algo-
rithm and the termination of the averaging procedure.
In [RBMM01] a maximum iteration number of four
has been proposed. No significant decrease in entropy
and the number of undecided voxels could be observed
in subsequent registration steps.

Surface generation
In this step surfaces are created that separate regions
with different labels. If more than two differently
labelled regions meet in space, complex topological
situations may arise and the resulting separating sur-
face in general is not a manifold. In order to gener-
ate such non-manifold surfaces from label fields, we
utilize a generalized surface reconstruction algorithm
[HSSZ97]. It produces interfaces between all neigh-
boring voxels of different type, nicely stitched together.
Like standard marching-cubes, it works by processing
each hexahedral cell (dual to the voxel grid) individu-
ally and utilizing tables that contain triangulations for
different equivalence classes. An equivalence class is
a set of cells with labeled corners, where the cells can
be transformed into each other by discrete rotations,
reflections, and/or label permutations. While in the
marching-cubes case 1 + 13 such topologically dis-
tinct classes exist, for more than 2 labels on a cell
more classes may exist. The number of equivalence
classes can be computed by group theoretical means
[BLS05, Heg98]: employing e.g. all before mentioned
symmetry groups simultaneously, for 1 to 8 different
labels on the eight corners of a cell there are 1, 13, 44,
66, 43, 15, 3, 1 different classes. Employing less sym-
metry groups, these numbers are significantly higher.
Practically we use pre-computed tables only for con-
figurations with up to three different labels. More
complex cases occur rarely and the corresponding tri-
angulations are computed on-the-fly. Figure 4(a) de-
picts the outer average surfaces of the major substruc-
tures of the honeybee brain. For alternative algorithms
see [BDS∗03] and [BRvL∗05].

The number of triangles resulting from the sur-
face generation algorithm typically has to be reduced.
Since down-sampling the labeled input data may result
in loss of tiny but relevant structures, we generate the
surface in high resolution and simplify it afterwards,
using the method presented in [GH97]. Figures 4(b)
and 4(c) show detailed views after reducing the
number of triangles to 20 % and 5 %, respectively,
of the original number of triangles. The simplified
surface finally is remeshed in Figure 4(d), using



(a) (b)

(c) (d)

Figure 4. Generation of surfaces separating different biological structures. (a) outer average surfaces of the major
substructures of the honeybee brain, (b) after reducing the number of triangles to 20%, (c) after reducing the number

of triangles to 5%, and (d) after remeshing the simplified surface.

an implementation based on algorithms proposed
in [SG03].

A surface editor enables the modification of the re-
sulting surface. It provides the subdivision, collapse,
removement or translation of selected triangles. Ad-
ditional patches can be defined. Structures can be se-
lected and their associated triangles can be saved as
individual surfaces. These tools are mainly used for
final visualization purpose. They also support further
processing such as the insertion of new structures and
the subdivision of existing ones.

Data integration

The resulting atlas represents a group of structures
which can be regarded as a certain level of a hierarchy.
On the next level substructures as for example single
neurons or the glomeruli are added. The integration
of additional data follows the above process. Again
preprocessing, segmentation, averaging and surface re-
construction are needed in order to insert more detail
into the existing atlas. We exemplary describe the ap-

proach for the integration of a projection neuron. See
Figure 5 for the visualization of some work steps.

Image acquisition and preprocessing. Projection
neurons (PN) are stained and imaged using confocal
microscopy. Typically 2×2 tiled stacks of 350 sec-
tions each with 1024×1024 voxels are scanned. The
integration of the PN also requires an acquisition of
its surrounding neuropil regions which are needed for
the registration. Therefore a generic counterstaining
is applied and imaging is done according to the above
protocol.

To avoid loss of detail usually neither resampling
nor merging of the PN image stacks takes place. In
contrast aiming at lower computation times in the reg-
istration step the size of the neuropil data is reduced
and the stacks are composed into one data set. Neu-
ron images usually contain only parts of the brain and
subsequent steps of the pipeline have to be restricted
to these parts. For this purpose several regions in the
label image of the atlas have to be removed and the
volume has to be cropped.



(a) (b)

(c) (d)

Figure 5. Neuron integration. (a) Segmentation of a neuronal part in one of the four commonly acquired image stacks.
(b) Combined display of surface reconstructions of neuropils surrounding the considered neuron. The individual (light)
and the standard neuropils (dark) differ in size and orientation. (c) After affine registration of the individual to the
standard neuropils, the neuron (arrows) sticks out the atlas. Nonrigid registration can compensate for this inaccuracy.

(d) View of a complete bee brain with a selection of integrated neurons

Neuron segmentation. The neuropils belonging to
the considered neuron are segmented as described in
Section Segmentation. For the segmentation of the
neuron itself more specific methods are needed. Due
to staining intensity variations, the existence of fine
structures close to the resolution limit, and a partly in-
sufficient resolution in z-direction fully automatic seg-
mentation has not been achieved yet. In our pipeline
promising results can be obtained by means of line
extraction algorithms [SED∗04, WnZ03]. Thereby
the user manually sets branching or end points thus
roughly tracing the graph like structures of the neuron.
The centerline and thickness of the neuronal segment
between these points are then detected automatically
for example by minimizing an energy functional.

Registration of surrounding neuropils. For the inte-
gration of the neuron into the atlas the individual neu-
ropils and the corresponding neuropils of the standard
are registered using the same methods as for comput-

ing the standard. Afterward the resulting transforma-
tion is applied to the neuron data.

Surface reconstruction. Using a thickness-
annotated graph, which represents the neuron, a
surface reconstruction can be easily obtained. Our
pipeline contains an implementation of the method
described in [WnZ03]. Here the neuronal surface is
initially described as a union of a set of spheres and
cylinders. Applying an implicit surface algorithm,
consistent and closed surfaces are generated that can
be used for volume or surface rendering.

Computational performance
The computation time for the generation of an atlas
highly depends on the number of individual data sets
and the chosen registration strategy. An averaged at-
las composed of ten individual brains can be created
within one week. The following measurements apply
to a single data set of size 650 × 400 × 120. Align-
ment and merging of the stacks took about two min-



utes. Manual segmentation of the neuropils required
between two and six hours depending on the number
of neuropils and the user’s knowledge. Affine registra-
tion needed one hour. Non-rigid registration according
to [RZM∗02] required one hour whereas the method
presented in [RBMM01] used up to 12 hours. Label
voting and intensity averaging required about two min-
utes. The surface was generated within 38 seconds and
produced 1.2 · 106. triangles. The simplification down
to 2 · 104 triangles required 168 seconds and the final
remeshing took about 3.5 minutes. The computation
times for the steps of the integration of neuron data
are similar. Speed-up can be observed during registra-
tions. This results from the reduction of the data to
only concerning neuropils. All techniques were tested
on a current PC (3.0GHz Intel Pentium 4 processor).

4. APPLICATIONS
Using the proposed pipeline, a standard atlas of the
honeybee brain has been generated [BRR∗05]. This
standard initially composed of 22 neuropils, is cur-
rently extended and refined. In [KMK∗04] progress
has been made in the investigation of the temporal dy-
namics of olfactory coding, and the neuronal wiring
within different integration areas of the olfactory path.
Here experimental data were acquired by stimulating
the antennae with a range of odors and recording the re-
sponse from single projection neurons. Individual neu-
rons and accordant neuropils were reconstructed and
collected into the framework of the standard atlas of
the honeybee brain. Thus morphological as well as
physiological properties of brain structures have been
integrated. This work directly supports the analysis of
neuronal circuits and explores the role of single neu-
rons within the network.

The standardized atlas of the fly brain
(see [RZM∗02] for details) is upgraded by an av-
erage model of the thoracic-abdominal nervous
system, which contains deeply analyzed insect motor
pattern generators and most of the insect individually
identified neurons. Multiple stained whole-mount
preparations of the thoracic ganglia are averaged (see
Figure 6 for first results). Afterward morphological
details such as projections of legs, wings and halteres
are added to the standard. On the next level neuropil
structures are subdivided based on functional issues
and finally groups of identified neurons are integrated
into the atlas.

Parts of the pipeline have also been used for the gen-
eration of a standard atlas out of ten individual locust
(Schistocerca gregaria) brains. Here neuropils belong-
ing to the first hierarchy of the brain structure ontol-
ogy have been averaged. The atlas is intended to form
a spatial reference for the analysis of the central com-
plex, its substructures, and its nervous system down to
single neurons [KSH05].

Figure 6. Atlas of fly thoracic ganglion. Shown are the
average surface reconstruction of three individual fly tho-
racic ganglions and an overlaid individual surface recon-

struction (grid)

The most time-consuming step in geometry recon-
struction from image data is image segmentation.
Using atlases, fully automatic segmentation of image
data from an unknown subject can be performed.
In [RBMMJ04] confocal microscopy images of 20 in-
dividual bee brains have been segmented by nonrigid
registration to an atlas. The results were compared to
a manually generated gold standard and showed a very
high accuracy for most of the considered structures.

5. CONCLUSION AND FUTURE
WORK

We presented a standardized pipeline for the creation
of population-averaged atlases from 3D image data.
The atlases are surface-based and extendable. Our
pipeline consists of a sequence of steps, of which some
require fine-tuned and sophisticated image and geome-
try processing algorithms. The proposed pipeline has
been used to create a honeybee ‘standard brain’ and it
is applied in a variety of other biological fields now.

Atlases resulting from the proposed procedure serve
as spatial references, into which data from other ex-
periments can be integrated – while maintaining their
spatial context. Thus a natural organization of infor-
mation is achieved that is well suited for visually sup-
ported analysis. Utilization of such reference models,
augmented with empirical data of diverse provenance,
greatly facilitates many scientific investigations. Ex-
amples in neurobiology are investigations of relations
between brain morphology, brain function, and genetic
factors.

In the future we will also associate ontological in-
formation with the spatially referenced substructures.
This will provide not only a visual representation of
the natural ontology of biological structures, but also
will enable new navigation techniques.
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