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ABSTRACT 
Nowadays, most 3D CAD systems support the use of form features. The main advantage of form features is that 
they provide parametric, high-level support for shape manipulation. When the parametric information of a shape 
is not available, it can be retrieved using a feature recognition procedure. In this procedure, a target shape is 
recognized as an instance of one or more features in a pre-defined feature library. The speed and accuracy of the 
feature recognition procedure significantly improve when the target feature type is known. This information can 
be provided by a user, but we propose a new method that identifies the feature type automatically. This method 
uses an evolutionary algorithm to find the optimal feature type. The algorithm randomly generates a population 
of instances of every type of feature available in the feature library. From this initial population of feature 
instances, successive populations are generated using the principle of natural selection. The algorithm was tested 
for different settings and was found to correctly identify features in between one and three minutes. 
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1. INTRODUCTION 
One of the trends in geometric modeling in the past 
decades has been to bring shape manipulation 
routines to a higher level, meaning that a modeler is 
able to perform a certain shape operation with less 
effort. A means to do this is by using form features. 
A form feature is a parameterized shape (part) that 
can be manipulated in pre-defined ways by adapting 
parameter values. Many, if not all, currently used 
geometric modeling applications use form features. 
Information on form features is stored and 
maintained as a model is built up, to ensure that form 
features are available at every step of the modeling 
process and always lead to a valid result. However, 
there are situations in which the form feature 
information is not available, such as when a form 

feature is an unintended result of other modeling 
operations or when there is a domain change, e.g. 
when using different modeling applications. Form 
feature information is also not available when raw 
geometrical data is imported, such as when data is 
obtained from physical objects by a 3D measuring 
device. In these cases, form feature information can 
be retrieved through the process of form feature 
recognition. As a special version of shape 
recognition, form feature recognition does not only 
retrieve shape information, but also a semantic 
understanding of the (possible) parametric 
constitution of the shape. In the practical sense, 
feature recognition means matching a target shape to 
the information that is available in a feature library, 
the collection of available features. 
In the past decades, many algorithms have been 
developed for feature recognition in the domain of 
machining features. These algorithms are mostly 
applied to communication between Computer-Aided 
Design applications and Computer-Aided 
Manufacturing applications, but are not useful for 
free form modeling applications. 
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Efforts are being made to extend feature recognition 
to the free form domain, but many of the techniques 
used for machining features can not, or only in 
highly adapted forms, be used for free form features. 
Some methods for free form feature recognition have 
been developed ([Tho99], [Song05], [Lan05], 
[Pal05]), but the results are few and preliminary. 
More so than for machining features, the recognition 
of free form features is aided by user input. Because 
free form features are more complex than machining 
features, computation times are unavoidably larger. 
Extra information that is given by the user can help 
in reducing the computation time. Also, the set of 
theoretically correct solutions is larger than for 
machining features but the user is typically interested 
in only one or a few results. User input is needed to 
select the desired output from the set of feasible 
outputs. 
One of the pieces of information that lead to more 
efficient algorithms is the type of the feature to be 
recognized. When the feature type of the target shape 
is known, the solution space of the problem is known 
and the search strategy can be adapted. This 
information can easily be asked of the user when the 
feature library is small and distinct, but when the 
number of features to choose from is large and when 
the distinction between features is small, then 
providing the right feature type requires an expert 
user. In this paper we propose a method for 
retrieving the feature type of a target shape 
automatically. The method makes use of the well-
known principle of evolutionary computation.  
Evolutionary computation is a popular technique that 
is based on the principle of natural selection. It 
applies ‘survival of the fittest’ to populations of 
possible solutions to a problem, in order to evolve 
towards an optimal solution. Survival of the fittest is 
a biological mechanism in which organisms with 
certain genetic elements have a higher chance to 
procreate and are therefore more likely to pass on 
these genetic elements to a next generation. 
Evolutionary algorithms have been applied to many 
computational issues in the past. Good results have 
been reported, but part of the popularity of 
evolutionary algorithms can only be explained by 
their elegance. The only application of evolutionary 
algorithms to feature recognition known to the 
authors is that of Pal et al. [Pal05]. However, this 
method makes far-going assumptions on the input 
data and does not result in a parametric description of 
the recognized feature. 

2. PREVIOUS WORK 
In the past two decades, research after form feature 
recognition has been fueled by its application in 
Computer-Aided Process Planning (CAPP), linking 

design to manufacturing. Many different techniques 
for form feature recognition have been developed, of 
which good overviews can be found in ([Shah01], 
[Sub95]). Among the techniques that have been 
developed are graph-based feature recognition 
([Jos88], [Chu90], [Flo89]), hint-based feature 
recognition ([Van93], [Van94]), volume 
decomposition ([Woo82], [Kim92], [Sak95], 
[Sak96]) and neural networks ([Pra92], [Nez97]). 
Graph-based feature recognition expresses target 
shapes in the form of connectivity graphs and then 
uses graph-based heuristics to search these graphs for 
features. Hint-based feature recognition uses a two-
step approach to feature recognition; in the first step, 
hints of possible features are retrieved and in the 
second step these hints are processed and combined. 
Volume decomposition expresses target shapes in the 
form of a tree in which each node is defined as the 
difference between its parent and its parent’s convex 
hull. Features can be found in the leafs of the tree. 
More recently, techniques have been proposed for 
free form feature recognition. Thompson et al 
[Tho99] proposed a method to recognize features 
from point clouds that are the result of scanning real 
objects. This was extended by Song et al. [Song05], 
who implemented a method that recognizes features 
by fitting a template feature to the point cloud data. 
Once an optimal configuration is found, the 
parameter types and values of the recognized feature 
match that of the template feature. They also show 
how the template feature can be used to manipulate 
the recognized feature. Recently, Langerak et al. 
[Lan05] proposed a method to recognize styling 
features in polyhedral data. This method uses surface 
curvature analysis to locate features and offers a 
sketch-based manipulation tool for the identified 
feature. 
There is literature on evolutionary computation in 
abundance. Goldberg [Gol89] and Davis [Dav91] are 
good early references on the subject. A more recent 
overview of the actual problems in evolutionary 
computation is given by Ghosh and Tsutsui [Gho02].  
Evolutionary algorithms have been recently applied 
to feature recognition by Pal et al. [Pal05]. Their 
method extracts features from collections of feature 
surfaces by generating a population of individuals 
with a random number of surfaces from the given 
collection. Consecutive generations inherit feature 
surfaces, which thus accumulate to form an entire, 
recognized feature. They report good results, but 
their method is only applicable to polyhedral inputs 
and assumes it to be know what surfaces belong to a 
feature. In addition, their method is not able to 
handle feature interference.  



3. METHOD OUTLINE 
Feature identification can be seen as a minimization 
problem of a shape similarity function in the 
parametric domain of a feature. The minimization 
problem is a well-known problem. Several methods 
for solving it have been proposed in the past, but as 
the solution space is different for each problem there 
is no generic method that works for all problems. A 
short overview and implementations can be found in 
Press et al. [Pre02]. A popular method for the 
minimization problem is the conjugate gradient 
method, which bases its search strategy on the 
derivative of the fitness function. This method is not 
applicable to the feature identification problem, 
because a derivative for the shape similarity function 
can not be computed. Other minimization methods, 
such as the direction-set method or the simplex 
method are slow and inefficient. We therefore choose 
to apply an evolutionary strategy to feature 
identification, which does not rely on derivative 
information and can be, depending on its 
implementation, relatively fast. 
Evolutionary algorithms solve a problem by 
regarding some element of the problem as an 
individual, onto which the mechanisms of evolution 
are applied. Each individual has a genetic mockup 
that reflects the variables that play a role in the 
problem that is to be solved. When an individual 
procreates, its genetic constitution is inherited by an 
individual in the next generation. The chance that an 
individual procreates is derived from its fitness, 
which is a value that indicates how well the 
individual represents a solution to the problem. How 
well an evolutionary algorithm performs depends on 
the shape of the solution space of the problem, of 
course, but also on the quality of the genetic 
mechanism. 
In the case of feature identification, populations are 
formed by individual features instances. The shape 
similarity between a feature instance and the target 
shape serves as the fitness function in the 
evolutionary computation. Because the appearance of 
feature instance is determined by its parametric 
configuration, it is only natural to consider 
parameters to be a feature’s genes. In this section we 
will first describe the constitution of a feature 
instance in more detail, and then define the 
mechanisms that render successive feature 
populations. 
 
3.1 A Free Form Feature Definition 
Because the evolution of a feature is managed 
through its parameters, in defining a feature there is a 
strong emphasis on the parametric constitution of a 
feature. However, because all parameters need to be 

treated similarly in an evolutionary computation 
procedure, we use a two-layered system in which one 
layer defines the amount of parametric influence, 
whereas the second layer, which we call the 
parameter mapping, defines the nature of the 
influence. As an added benefit, this allows for a 
generic feature definition system, in which the 
parameter mapping can be made domain-
independent. 
As a means to represent features, we use nurbs 
patches. Parametric influence is defined through the 
nurbs control points, so as to mirror a natural genetic 
structure, where each gene has a limited global 
influence. The following definition is used: 
A free form feature is a parametric description of a 
shape,{ }µ P E ,, , containing at least 

- a set of nurbs control points 
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In our implementation, we express the nurbs control 
points in homogenous coordinates and define the 
parameter influence in the form of 4 by 4 
transformation matrices. Each function i

jµ  consist of 

two parts: a transformation matrix and a function 
mask matrix that defines how parameter values 
influence the elements of the transformation matrix. 
For example, when a control point e has a basic state 

)0,0,0(0 =e , then a parameter that defines a 
vertical movement (in the z-direction) is defined by a 

transformation matrix 
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This definition allows for orientation and location of 
a feature to be regarded as a parameter of the feature 
as well, by using the cosine and sine functions in the 
function mask matrices. Although traditionally 
orientation and location are not considered to be part 
of the parametric space of a feature, they do play an 
important role in the identification of a feature. 
Location and rotation settings do alter the shape 
representation of a feature, and there is therefore no 
theoretical objection to regarding them as 
parameters. This enables orientation and location to 
be treated identical to other parameters. They do, 
however, differ from other parameters in that they 
have identical parameter mappings for all nurbs 
control points.  
Our implementation allows for both rigid body 
control of the feature as well as deformation, but for 
the sake of simplicity in this paper it is assumed that 
only rigid body transformation is used. 

3.2 Evolutionary Computation 

The goal of the feature identification procedure is to 
find the type of a feature that best matches a certain 
target shape. It may be that only part of the target 
shape represents a feature. The more ‘material’ there 
is that does not belong to the feature, the higher the 
computation time will be and the less accurate the 
result. In our implementation we therefore provide a 
mechanism for a user to select a region of interest. 
This mechanism asks a user to place a bounding box 
roughly at the location of the feature. Only the shape 
data that is contained by this bounding box is used in 
the feature identification procedure. As will be 
shown in section 4, this mechanism is not needed to 
guarantee the correctness of the feature 
identification, it is merely a means to bring back the 
computation time. 

At the start of the evolutionary computation, a 
population of features is generated. Each feature is a 
copy of a randomly chosen feature from the feature 
library, so the initial feature population consists of a 
mix of all the features that are present in the feature 
library. The features are initiated with random 
parameter values in the domain [-1000, 1000]. This 
domain was used with the assumption that, in 
practical cases, no parameter values outside the 
domain are used. If necessary, the scale can be 

adapted by using larger values in the transformation 
matrix. The size of the population is variable and 
influences the success of the identification procedure. 
In section 4, it is shown how different population 
sizes affect the success of the procedure. 

From this initial population, successive populations 
are generated using the following steps: 

1. The fitness ()f of each individual is computed 
as the mean directed Hausdorff distance between 
the feature and the target shape. The directed 
Hausdorff distance is defined as the smallest 
maximal distance between two shapes. Because 
the Hausdorff distance is most efficiently 
computed on point sets, we use point set samples 
of both target shape and feature shape to compute 
the fitness. 

2. The individuals in the population are ranked by 
fitness, so that )()( 0 nFfFf ≥≥K , where 
the F ’s are the features in the population,  f is 
the fitness function and n the population size. If 
the terminating conditions are met, the algorithm 
terminates. For brevity, we will denote 

)( oFf as 0f . 

3. For each of the n individuals in the next 
generation, two parents (a ‘mother’ and a 
‘father’) are selected. An individual feature can 
be parent to more than one individual in the next 
generation. The chance that an individual is 
selected to be a parent is determined by a one-
sided Gaussian distribution of the fitness: 
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The standard deviation σ  determines how fast 
the chance to procreate decreases with the fitness 
and is also known as the selection size. 
Individuals with a low fitness are less likely to 
become parents to a next generation. 

4. For each individual in the new generation, 
parameters are randomly copied from one of the 
two parents. To prevent the degrading of the gene 
pool, the collection of available genes, in a 
population is subject to mutation. The chance that 
mutation occurs is indicated as the mutation 
probability. When mutation does occur, the value 
of the copied gene is distorted by Gaussian noise 
with a standard deviation that is also known as 
the mutation rate. The two parents may be of 
different types and thus have a different number 
of parameters. In this case, without loss of 
generality, assume that fathermother PP ≥ . 



Then childP  receives a random value between 

motherP  and fatherP  and mother
ii pp =  if 

fatherPi > . 

5. When a new population of features is generated, 
the algorithm proceeds at step one.  

While going through an iterative process, the 
algorithm keeps track of the ancestry of a feature. As 
in natural evolution, each individual feature can be 
placed in a family tree and by backtracking it can be 
determined from what ancestors an individual stems. 
Instead of backtracking for each individual, this 
information is passed on and added to when new 
individuals are created. 

The algorithm terminates when one of the following 
conditions are met: 

1. More than 75% of the ancestors of the 10% fittest 
individuals in a population have the same feature 
type. This type is returned as the result of the 
feature identification. 

2. The fitness of the fittest individual drops below a 
certain threshold. In this case, it is very likely that 
a large majority of the ancestors of this feature 
have the same type, so the type that occurs the 
most in the feature’s ancestral history is returned 
as the identified feature type. 

3. The fitness of the fittest individual in the 
population is lower than or equal to that of the 
previous generation. In this case, the algorithm is 
likely to be stuck in a local minimum. As a best 
guess, the feature type that occurs in 50% of the 
ancestors of the 10% fittest individuals is 
returned as the identified feature type. If no such 
feature exists, the algorithm fails. 

 

4. RESULTS AND ANALYSIS 
The algorithm was tested on a feature library that 
consists of 8 features (see figure 1). This library 
contains features that have been the subject of past 
work on features (Bump, Ridge) and other features 
known from the modeling world (Step, Blend) as 
well as newly constructed features that we expect to 
have a significantly different search space than the 
other features (Cross, Wave, Crown). The cross 
feature is a combination of two ridge features, with 
two perpendicular regions of leveled geometry. The 
Wave feature is a special version of the ridge feature, 
with an added parameter that causes the ridge to lean 
over. The Crown feature is a special version of the 
Bump feature that does not only have a parameter for 
the central bump, but for the middle and the corner of 

its edges as well. Finally, a Plane feature without 
parameters was included to test if the algorithm is 
able to distinguish cases of other features with small 
parameter values. 
Each feature is defined using a 5 by 5 patch of nurbs 
control points. Each feature has a height parameter 
that defines a translation of the control points in the 
z-direction. The translation in the x- and y-direction 
is combined in the parameter radius (for the Bump 
and Crown feature) or defined separately as the 
parameter width and the parameter length 
Feature identification starts with asking the user to 
place a bounding box on a target shape to determine 
the rough position and orientation of the feature. The 
bounding box also indicates what parts of the target 
shape assumingly belong to the feature to be 
identified.  

4.1 Testing on Artificial Target Shapes 
Because testing the algorithm on a large number of 
target shapes is very time-intensive, we simulated 
target shapes by instantiating a random feature from 
the library and setting its parameter values to random 
values. 
 

 

 
 
Figure 1: From the top left to bottom right: Plane, 

Bump, Ridge, Cross, Step, Wave, Blend and 
Crown feature. 

 
Possible ‘excess’ material was simulated by creating 
two extra layers of control points around the control 
points used for the feature. The entire feature was 
converted to a triangular mesh with 2500 triangles 
and the points of the mesh were distorted by 
Gaussian noise. We conducted 100 tests for each 
combination of five different population sizes and 
five different selection sizes (which indicate the 
standard deviation of the Gaussian curve used for 
parent selection), amounting to 2500 tests in total. 
The results are given in Table 1. 
The selection size is expressed as a percentage of the 
total population, and determines how selective the 
fitness values are. It indicates the percentage of 



individuals for which the chance of being selected as 
a parent is within two standard deviations of that of a 
prefect individual. The best result occurs for a 
selection size of 10%. The algorithm was 
implemented in C++ and tested on a computer with a 
3GHz Pentium processor and 1GB RAM. The 
average computation times for the different 
population sizes were 58, 86, 112, 139 and 165 
seconds for the respective population sizes. As the 
initial orientation and location of the feature are 
assumed to be given by the user, the 6 parameter 
values for translation and rotation are set to zero. To 
correct for the inaccuracy of the initial estimation of 
the user, Gaussian noise was added to the parameter 
values. The variables mutation probability and 
mutation rate did not have a significant influence on 
the success of the feature identification or the 
computation time. 
 

 
     (a)    (b) 

 
             (c) 

Figure 2: (a) A target feature, randomly chosen 
from the feature library (b) with added ‘material’ 

(c) distorted with Gaussian noise 
 

Feature 
type 
(# of 

params) 

Correctly 
identified 

Incorrectly 
identified 

Not 
identified 

Total 

Plane (6) 308 (96%) 13 (4%) 1 (0%) 322 
Bump (8) 291 (94%) 14 (5%) 3 (1%) 308 
Ridge (9) 274 (88%) 32 (10%) 5 (2%) 311 
Cross (9) 324 (96%) 8 (2%) 4 (1%) 336 
Step (8) 296 (95%) 14 (5%) 1(0%) 311 
Wave 
(10) 

212 (69%) 73 (24%) 23 (7%) 308 

Blend (8) 301 (96%) 9 (3%) 2 (1%) 312 
Crown 
(10) 

284 (97%) 4 (1%) 4 (1%) 292 

Total 2290 (92%) 167 (7%) 43 (2%) 2500 

 
Table 2: Results of the feature identification per 

feature type 
 
A possible explanation for this is that the algorithm 
converges to a solution very fast (in on average 2.41 
generations). The effect of mutation rate and 
probability is more long term and therefore not 
apparent in our tests. The effect of the initial 
inaccuracy of the translational and rotational 
parameters was significant, but very small. This is 
probably due to the large size of the domain in which 
parameter values are instantiated.  
Table 2 shows, for each feature type, the number of 
features that were correctly or incorrectly recognized 
or for which the algorithm failed. The performance 
of the algorithm for the wave feature is considerably 
worse than for the other feature types, because it is 
often recognized as a ridge feature. This is no 
surprise, because the wave feature is a special 
version of the ridge feature, with one added 
parameter.  
 
 

Population size/ 
Selection size 

 
1000 

 
1500 

 
2000 

 
2500 

 
3000 

 
Total 

5% 78 91 96 100 100 463 
10% 83 96 100 100 100 479 
20% 82 94 95 99 100 470 
30% 76 88 88 97 100 449 
40% 62 83 89 93 100 429 
Total 381 (76.2%) 452 (90.4%) 468 (93.6%) 489 (98.8%) 500 (100%) 2290 
 

Table 1: Number of successful feature identifications per population and selection size 



If this parameter has a small value, the wave feature 
behaves almost identical to the ridge feature. This 
also explains the slightly worse performance for the 
ridge feature. 
From the results it can be concluded that the method 
correctly identifies a large portion of the test shapes, 
and that the computation time of the method is 
reasonable. Feature identification cannot be 
compared to other methods since no similar method 
exists, known to the authors, in current literature. 

4.2 An Application Example 
To demonstrate that the algorithm also works in non-
artificial situations, we show an application example 
in which the algorithm is applied to a CAD model of 
a plastic coffee cup (see figure 3a). One of the 
features in this model, a wedge on the edge of the 
bottom of the cup, is shown in figure 3b, indicated by 
the user with a bounding box. To successfully be 
able to recognize the wedge-shaped feature, a new 
feature was added to the library, as is shown in figure 
4. With this addition, the library consisted of 9 
features. 
 

 
 (a)   (b) 

Figure 3: (a) CAD model of a coffee cup (b) A 
region of interest 

At the start of the procedure, the user was asked to 
place a bounding box at the region of interest, as 
shown in figure 3b. The bounding box contained 113 
polygons. From there on, a feature identification 
procedure was started. The feature identification used 
a feature population of 3000 and a selection size of 
10%. For the identification, a mutation rate and 
probability of respectively 0.1 and 10% were used. 
The feature identification procedure was repeated 10 
times. In all repetitions of the procedure, the feature 
was correctly recognized as a wedge feature. In 8 of 
these repetitions, three generations were needed to 
come to a correct identification, which cost on 
average 172 seconds. In two cases, only two 
generations were needed, in on average 118 seconds. 
In all cases, the feature identification procedure 
terminated because 75% of the ancestors of the top 
feature in the last generation were of the type Wedge. 

 
Figure 4: A wedge feature 

5. CONCLUSIONS AND FURTHER 
WORK 
We have proposed and implemented a method for 
feature identification using an evolutionary 
algorithm. The algorithm is successful in retrieving 
the feature type of a target shape and its computation 
time is reasonable. The algorithm was tested on a 
small feature library, but there is no theoretical 
limitation for using it on a larger, even interactive 
feature library. We intend to use the feature 
identification in a broader free form feature support 
system, in which users define and compose their own 
features, which can then be recognized in target 
shapes of their choice. We are currently completing 
an extension of the presented techniques to a free 
form feature recognition algorithm. In this procedure, 
the feature type is assumed to be known, but the 
parameter values are not. The free form feature 
recognition algorithm retrieves the parameter values 
in an evolutionary process that is similar to that 
presented in this paper. 
An even more advanced application of the presented 
evolutionary technique that we are working on is in 
feature type construction. In this procedure, the 
target shape does not match a feature type that is 
available in the feature library. The shape is analyzed 
and a new feature type is automatically constructed 
that fits the target shape. To obtain a mechanism that 
is flexible enough to automatically construct a 
feature type, the genes are no longer formed by the 
parameters, but by the elements of the parameter 
mappings, increasing the number of genes from m to 
mn, where m is the number of parameters and n the 
number of nurbs control points. Also, the principle of 
mutation is extended to allow new individuals to 
have more or less genes than their parents.  
The proposed feature identification method can be 
applied to retrieve the feature type prior to any (free 
form) feature recognition system. In future work it 



will be investigated if other user-input can be 
automated, such as the location of a feature or an 
estimation of its parameter values. When more parts 
of the work with form features is automated, an even 
higher-level approach to feature recognition can be 
implemented that in turn allows a user to more easily 
manipulate shapes. 
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