
An Evolutionary Strategy for Free Form Feature
Identification in 3D CAD Models

T.R.Langerak, J.S.M.Vergeest, H.Wang, Y.Song

Delft University of Technology
Landbergstraat 15

2628 CE Delft
The Netherlands

t.r.langerak@tudelft.nl

ABSTRACT
Nowadays, most 3D CAD systems support the use of form features. The main advantage of form features is that
they provide parametric, high-level support for shape manipulation. When the parametric information of a shape
is not available, it can be retrieved using a feature recognition procedure. In this procedure, a target shape is
recognized as an instance of one or more features in a pre-defined feature library. The speed and accuracy of the
feature recognition procedure significantly improve when the target feature type is known. This information can
be provided by a user, but we propose a new method that identifies the feature type automatically. This method
uses an evolutionary algorithm to find the optimal feature type. The algorithm randomly generates a population
of instances of every type of feature available in the feature library. From this initial population of feature
instances, successive populations are generated using the principle of natural selection. The algorithm was tested
for different settings and was found to correctly identify features in between one and three minutes.

Keywords
Feature recognition, evolutionary algorithms, feature library

1. INTRODUCTION
One of the trends in geometric modeling in the past
decades has been to bring shape manipulation
routines to a higher level, meaning that a modeler is
able to perform a certain shape operation with less
effort. A means to do this is by using form features.
A form feature is a parameterized shape (part) that
can be manipulated in pre-defined ways by adapting
parameter values. Many, if not all, currently used
geometric modeling applications use form features.
Information on form features is stored and
maintained as a model is built up, to ensure that form
features are available at every step of the modeling
process and always lead to a valid result. However,
there are situations in which the form feature
information is not available, such as when a form

feature is an unintended result of other modeling
operations or when there is a domain change, e.g.
when using different modeling applications. Form
feature information is also not available when raw
geometrical data is imported, such as when data is
obtained from physical objects by a 3D measuring
device. In these cases, form feature information can
be retrieved through the process of form feature
recognition. As a special version of shape
recognition, form feature recognition does not only
retrieve shape information, but also a semantic
understanding of the (possible) parametric
constitution of the shape. In the practical sense,
feature recognition means matching a target shape to
the information that is available in a feature library,
the collection of available features.
In the past decades, many algorithms have been
developed for feature recognition in the domain of
machining features. These algorithms are mostly
applied to communication between Computer-Aided
Design applications and Computer-Aided
Manufacturing applications, but are not useful for
free form modeling applications.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Efforts are being made to extend feature recognition
to the free form domain, but many of the techniques
used for machining features can not, or only in
highly adapted forms, be used for free form features.
Some methods for free form feature recognition have
been developed ([Tho99], [Song05], [Lan05],
[Pal05]), but the results are few and preliminary.
More so than for machining features, the recognition
of free form features is aided by user input. Because
free form features are more complex than machining
features, computation times are unavoidably larger.
Extra information that is given by the user can help
in reducing the computation time. Also, the set of
theoretically correct solutions is larger than for
machining features but the user is typically interested
in only one or a few results. User input is needed to
select the desired output from the set of feasible
outputs.
One of the pieces of information that lead to more
efficient algorithms is the type of the feature to be
recognized. When the feature type of the target shape
is known, the solution space of the problem is known
and the search strategy can be adapted. This
information can easily be asked of the user when the
feature library is small and distinct, but when the
number of features to choose from is large and when
the distinction between features is small, then
providing the right feature type requires an expert
user. In this paper we propose a method for
retrieving the feature type of a target shape
automatically. The method makes use of the well-
known principle of evolutionary computation.
Evolutionary computation is a popular technique that
is based on the principle of natural selection. It
applies ‘survival of the fittest’ to populations of
possible solutions to a problem, in order to evolve
towards an optimal solution. Survival of the fittest is
a biological mechanism in which organisms with
certain genetic elements have a higher chance to
procreate and are therefore more likely to pass on
these genetic elements to a next generation.
Evolutionary algorithms have been applied to many
computational issues in the past. Good results have
been reported, but part of the popularity of
evolutionary algorithms can only be explained by
their elegance. The only application of evolutionary
algorithms to feature recognition known to the
authors is that of Pal et al. [Pal05]. However, this
method makes far-going assumptions on the input
data and does not result in a parametric description of
the recognized feature.

2. PREVIOUS WORK
In the past two decades, research after form feature
recognition has been fueled by its application in
Computer-Aided Process Planning (CAPP), linking

design to manufacturing. Many different techniques
for form feature recognition have been developed, of
which good overviews can be found in ([Shah01],
[Sub95]). Among the techniques that have been
developed are graph-based feature recognition
([Jos88], [Chu90], [Flo89]), hint-based feature
recognition ([Van93], [Van94]), volume
decomposition ([Woo82], [Kim92], [Sak95],
[Sak96]) and neural networks ([Pra92], [Nez97]).
Graph-based feature recognition expresses target
shapes in the form of connectivity graphs and then
uses graph-based heuristics to search these graphs for
features. Hint-based feature recognition uses a two-
step approach to feature recognition; in the first step,
hints of possible features are retrieved and in the
second step these hints are processed and combined.
Volume decomposition expresses target shapes in the
form of a tree in which each node is defined as the
difference between its parent and its parent’s convex
hull. Features can be found in the leafs of the tree.
More recently, techniques have been proposed for
free form feature recognition. Thompson et al
[Tho99] proposed a method to recognize features
from point clouds that are the result of scanning real
objects. This was extended by Song et al. [Song05],
who implemented a method that recognizes features
by fitting a template feature to the point cloud data.
Once an optimal configuration is found, the
parameter types and values of the recognized feature
match that of the template feature. They also show
how the template feature can be used to manipulate
the recognized feature. Recently, Langerak et al.
[Lan05] proposed a method to recognize styling
features in polyhedral data. This method uses surface
curvature analysis to locate features and offers a
sketch-based manipulation tool for the identified
feature.
There is literature on evolutionary computation in
abundance. Goldberg [Gol89] and Davis [Dav91] are
good early references on the subject. A more recent
overview of the actual problems in evolutionary
computation is given by Ghosh and Tsutsui [Gho02].
Evolutionary algorithms have been recently applied
to feature recognition by Pal et al. [Pal05]. Their
method extracts features from collections of feature
surfaces by generating a population of individuals
with a random number of surfaces from the given
collection. Consecutive generations inherit feature
surfaces, which thus accumulate to form an entire,
recognized feature. They report good results, but
their method is only applicable to polyhedral inputs
and assumes it to be know what surfaces belong to a
feature. In addition, their method is not able to
handle feature interference.

3. METHOD OUTLINE
Feature identification can be seen as a minimization
problem of a shape similarity function in the
parametric domain of a feature. The minimization
problem is a well-known problem. Several methods
for solving it have been proposed in the past, but as
the solution space is different for each problem there
is no generic method that works for all problems. A
short overview and implementations can be found in
Press et al. [Pre02]. A popular method for the
minimization problem is the conjugate gradient
method, which bases its search strategy on the
derivative of the fitness function. This method is not
applicable to the feature identification problem,
because a derivative for the shape similarity function
can not be computed. Other minimization methods,
such as the direction-set method or the simplex
method are slow and inefficient. We therefore choose
to apply an evolutionary strategy to feature
identification, which does not rely on derivative
information and can be, depending on its
implementation, relatively fast.
Evolutionary algorithms solve a problem by
regarding some element of the problem as an
individual, onto which the mechanisms of evolution
are applied. Each individual has a genetic mockup
that reflects the variables that play a role in the
problem that is to be solved. When an individual
procreates, its genetic constitution is inherited by an
individual in the next generation. The chance that an
individual procreates is derived from its fitness,
which is a value that indicates how well the
individual represents a solution to the problem. How
well an evolutionary algorithm performs depends on
the shape of the solution space of the problem, of
course, but also on the quality of the genetic
mechanism.
In the case of feature identification, populations are
formed by individual features instances. The shape
similarity between a feature instance and the target
shape serves as the fitness function in the
evolutionary computation. Because the appearance of
feature instance is determined by its parametric
configuration, it is only natural to consider
parameters to be a feature’s genes. In this section we
will first describe the constitution of a feature
instance in more detail, and then define the
mechanisms that render successive feature
populations.

3.1 A Free Form Feature Definition
Because the evolution of a feature is managed
through its parameters, in defining a feature there is a
strong emphasis on the parametric constitution of a
feature. However, because all parameters need to be

treated similarly in an evolutionary computation
procedure, we use a two-layered system in which one
layer defines the amount of parametric influence,
whereas the second layer, which we call the
parameter mapping, defines the nature of the
influence. As an added benefit, this allows for a
generic feature definition system, in which the
parameter mapping can be made domain-
independent.
As a means to represent features, we use nurbs
patches. Parametric influence is defined through the
nurbs control points, so as to mirror a natural genetic
structure, where each gene has a limited global
influence. The following definition is used:
A free form feature is a parametric description of a
shape,{ }µ P E ,, , containing at least

- a set of nurbs control points
{ }),,(,),,,(1111 nnnn zyxezyxeE === K

each with a basic state),,(0000
iiii zyxe = ,

ni ≤≤1
- a parameter set { }mppP ,,1 K= , mj ≤≤1

and },{ jjj valuenamep =

- a parameter mapping, defined as the set

(){ }UU
n

i

m

j
ji

i
j PpEe

1 1

,
= =

∈∈= µµ , where i
jµ is

a function with the type epe →),(that defines
the influence of parameter pj on element ei. The
configuration of each element can be computed
by combining all the mappings defined on the
element, so that:

)),)...),),,(((...((121
0

121 ppppee mmi
i
m

i
m

ii
i −−= µµµµ

In our implementation, we express the nurbs control
points in homogenous coordinates and define the
parameter influence in the form of 4 by 4
transformation matrices. Each function i

jµ consist of

two parts: a transformation matrix and a function
mask matrix that defines how parameter values
influence the elements of the transformation matrix.
For example, when a control point e has a basic state

)0,0,0(0 =e , then a parameter that defines a
vertical movement (in the z-direction) is defined by a

transformation matrix

1000
1100
0010
0001

 and a

function mask matrix:

constconstconstconst
varconstconstconst

constconstconstconst
constconstconstconst

,

where xpxconst =),(and p x(x,p) var ⋅= .

This definition allows for orientation and location of
a feature to be regarded as a parameter of the feature
as well, by using the cosine and sine functions in the
function mask matrices. Although traditionally
orientation and location are not considered to be part
of the parametric space of a feature, they do play an
important role in the identification of a feature.
Location and rotation settings do alter the shape
representation of a feature, and there is therefore no
theoretical objection to regarding them as
parameters. This enables orientation and location to
be treated identical to other parameters. They do,
however, differ from other parameters in that they
have identical parameter mappings for all nurbs
control points.
Our implementation allows for both rigid body
control of the feature as well as deformation, but for
the sake of simplicity in this paper it is assumed that
only rigid body transformation is used.

3.2 Evolutionary Computation

The goal of the feature identification procedure is to
find the type of a feature that best matches a certain
target shape. It may be that only part of the target
shape represents a feature. The more ‘material’ there
is that does not belong to the feature, the higher the
computation time will be and the less accurate the
result. In our implementation we therefore provide a
mechanism for a user to select a region of interest.
This mechanism asks a user to place a bounding box
roughly at the location of the feature. Only the shape
data that is contained by this bounding box is used in
the feature identification procedure. As will be
shown in section 4, this mechanism is not needed to
guarantee the correctness of the feature
identification, it is merely a means to bring back the
computation time.

At the start of the evolutionary computation, a
population of features is generated. Each feature is a
copy of a randomly chosen feature from the feature
library, so the initial feature population consists of a
mix of all the features that are present in the feature
library. The features are initiated with random
parameter values in the domain [-1000, 1000]. This
domain was used with the assumption that, in
practical cases, no parameter values outside the
domain are used. If necessary, the scale can be

adapted by using larger values in the transformation
matrix. The size of the population is variable and
influences the success of the identification procedure.
In section 4, it is shown how different population
sizes affect the success of the procedure.

From this initial population, successive populations
are generated using the following steps:

1. The fitness ()f of each individual is computed
as the mean directed Hausdorff distance between
the feature and the target shape. The directed
Hausdorff distance is defined as the smallest
maximal distance between two shapes. Because
the Hausdorff distance is most efficiently
computed on point sets, we use point set samples
of both target shape and feature shape to compute
the fitness.

2. The individuals in the population are ranked by
fitness, so that)()(0 nFfFf ≥≥K , where
the F ’s are the features in the population, f is
the fitness function and n the population size. If
the terminating conditions are met, the algorithm
terminates. For brevity, we will denote

)(oFf as 0f .

3. For each of the n individuals in the next
generation, two parents (a ‘mother’ and a
‘father’) are selected. An individual feature can
be parent to more than one individual in the next
generation. The chance that an individual is
selected to be a parent is determined by a one-
sided Gaussian distribution of the fitness:

22
)(

2
2)(σ

πσ

parentf
parent efP

−

=

The standard deviation σ determines how fast
the chance to procreate decreases with the fitness
and is also known as the selection size.
Individuals with a low fitness are less likely to
become parents to a next generation.

4. For each individual in the new generation,
parameters are randomly copied from one of the
two parents. To prevent the degrading of the gene
pool, the collection of available genes, in a
population is subject to mutation. The chance that
mutation occurs is indicated as the mutation
probability. When mutation does occur, the value
of the copied gene is distorted by Gaussian noise
with a standard deviation that is also known as
the mutation rate. The two parents may be of
different types and thus have a different number
of parameters. In this case, without loss of
generality, assume that fathermother PP ≥ .

Then childP receives a random value between

motherP and fatherP and mother
ii pp = if

fatherPi > .

5. When a new population of features is generated,
the algorithm proceeds at step one.

While going through an iterative process, the
algorithm keeps track of the ancestry of a feature. As
in natural evolution, each individual feature can be
placed in a family tree and by backtracking it can be
determined from what ancestors an individual stems.
Instead of backtracking for each individual, this
information is passed on and added to when new
individuals are created.

The algorithm terminates when one of the following
conditions are met:

1. More than 75% of the ancestors of the 10% fittest
individuals in a population have the same feature
type. This type is returned as the result of the
feature identification.

2. The fitness of the fittest individual drops below a
certain threshold. In this case, it is very likely that
a large majority of the ancestors of this feature
have the same type, so the type that occurs the
most in the feature’s ancestral history is returned
as the identified feature type.

3. The fitness of the fittest individual in the
population is lower than or equal to that of the
previous generation. In this case, the algorithm is
likely to be stuck in a local minimum. As a best
guess, the feature type that occurs in 50% of the
ancestors of the 10% fittest individuals is
returned as the identified feature type. If no such
feature exists, the algorithm fails.

4. RESULTS AND ANALYSIS
The algorithm was tested on a feature library that
consists of 8 features (see figure 1). This library
contains features that have been the subject of past
work on features (Bump, Ridge) and other features
known from the modeling world (Step, Blend) as
well as newly constructed features that we expect to
have a significantly different search space than the
other features (Cross, Wave, Crown). The cross
feature is a combination of two ridge features, with
two perpendicular regions of leveled geometry. The
Wave feature is a special version of the ridge feature,
with an added parameter that causes the ridge to lean
over. The Crown feature is a special version of the
Bump feature that does not only have a parameter for
the central bump, but for the middle and the corner of

its edges as well. Finally, a Plane feature without
parameters was included to test if the algorithm is
able to distinguish cases of other features with small
parameter values.
Each feature is defined using a 5 by 5 patch of nurbs
control points. Each feature has a height parameter
that defines a translation of the control points in the
z-direction. The translation in the x- and y-direction
is combined in the parameter radius (for the Bump
and Crown feature) or defined separately as the
parameter width and the parameter length
Feature identification starts with asking the user to
place a bounding box on a target shape to determine
the rough position and orientation of the feature. The
bounding box also indicates what parts of the target
shape assumingly belong to the feature to be
identified.

4.1 Testing on Artificial Target Shapes
Because testing the algorithm on a large number of
target shapes is very time-intensive, we simulated
target shapes by instantiating a random feature from
the library and setting its parameter values to random
values.

Figure 1: From the top left to bottom right: Plane,

Bump, Ridge, Cross, Step, Wave, Blend and
Crown feature.

Possible ‘excess’ material was simulated by creating
two extra layers of control points around the control
points used for the feature. The entire feature was
converted to a triangular mesh with 2500 triangles
and the points of the mesh were distorted by
Gaussian noise. We conducted 100 tests for each
combination of five different population sizes and
five different selection sizes (which indicate the
standard deviation of the Gaussian curve used for
parent selection), amounting to 2500 tests in total.
The results are given in Table 1.
The selection size is expressed as a percentage of the
total population, and determines how selective the
fitness values are. It indicates the percentage of

individuals for which the chance of being selected as
a parent is within two standard deviations of that of a
prefect individual. The best result occurs for a
selection size of 10%. The algorithm was
implemented in C++ and tested on a computer with a
3GHz Pentium processor and 1GB RAM. The
average computation times for the different
population sizes were 58, 86, 112, 139 and 165
seconds for the respective population sizes. As the
initial orientation and location of the feature are
assumed to be given by the user, the 6 parameter
values for translation and rotation are set to zero. To
correct for the inaccuracy of the initial estimation of
the user, Gaussian noise was added to the parameter
values. The variables mutation probability and
mutation rate did not have a significant influence on
the success of the feature identification or the
computation time.

 (a) (b)

 (c)

Figure 2: (a) A target feature, randomly chosen
from the feature library (b) with added ‘material’

(c) distorted with Gaussian noise

Feature
type
(# of

params)

Correctly
identified

Incorrectly
identified

Not
identified

Total

Plane (6) 308 (96%) 13 (4%) 1 (0%) 322
Bump (8) 291 (94%) 14 (5%) 3 (1%) 308
Ridge (9) 274 (88%) 32 (10%) 5 (2%) 311
Cross (9) 324 (96%) 8 (2%) 4 (1%) 336
Step (8) 296 (95%) 14 (5%) 1(0%) 311
Wave
(10)

212 (69%) 73 (24%) 23 (7%) 308

Blend (8) 301 (96%) 9 (3%) 2 (1%) 312
Crown
(10)

284 (97%) 4 (1%) 4 (1%) 292

Total 2290 (92%) 167 (7%) 43 (2%) 2500

Table 2: Results of the feature identification per

feature type

A possible explanation for this is that the algorithm
converges to a solution very fast (in on average 2.41
generations). The effect of mutation rate and
probability is more long term and therefore not
apparent in our tests. The effect of the initial
inaccuracy of the translational and rotational
parameters was significant, but very small. This is
probably due to the large size of the domain in which
parameter values are instantiated.
Table 2 shows, for each feature type, the number of
features that were correctly or incorrectly recognized
or for which the algorithm failed. The performance
of the algorithm for the wave feature is considerably
worse than for the other feature types, because it is
often recognized as a ridge feature. This is no
surprise, because the wave feature is a special
version of the ridge feature, with one added
parameter.

Population size/
Selection size

1000

1500

2000

2500

3000

Total

5% 78 91 96 100 100 463
10% 83 96 100 100 100 479
20% 82 94 95 99 100 470
30% 76 88 88 97 100 449
40% 62 83 89 93 100 429
Total 381 (76.2%) 452 (90.4%) 468 (93.6%) 489 (98.8%) 500 (100%) 2290

Table 1: Number of successful feature identifications per population and selection size

If this parameter has a small value, the wave feature
behaves almost identical to the ridge feature. This
also explains the slightly worse performance for the
ridge feature.
From the results it can be concluded that the method
correctly identifies a large portion of the test shapes,
and that the computation time of the method is
reasonable. Feature identification cannot be
compared to other methods since no similar method
exists, known to the authors, in current literature.

4.2 An Application Example
To demonstrate that the algorithm also works in non-
artificial situations, we show an application example
in which the algorithm is applied to a CAD model of
a plastic coffee cup (see figure 3a). One of the
features in this model, a wedge on the edge of the
bottom of the cup, is shown in figure 3b, indicated by
the user with a bounding box. To successfully be
able to recognize the wedge-shaped feature, a new
feature was added to the library, as is shown in figure
4. With this addition, the library consisted of 9
features.

 (a) (b)

Figure 3: (a) CAD model of a coffee cup (b) A
region of interest

At the start of the procedure, the user was asked to
place a bounding box at the region of interest, as
shown in figure 3b. The bounding box contained 113
polygons. From there on, a feature identification
procedure was started. The feature identification used
a feature population of 3000 and a selection size of
10%. For the identification, a mutation rate and
probability of respectively 0.1 and 10% were used.
The feature identification procedure was repeated 10
times. In all repetitions of the procedure, the feature
was correctly recognized as a wedge feature. In 8 of
these repetitions, three generations were needed to
come to a correct identification, which cost on
average 172 seconds. In two cases, only two
generations were needed, in on average 118 seconds.
In all cases, the feature identification procedure
terminated because 75% of the ancestors of the top
feature in the last generation were of the type Wedge.

Figure 4: A wedge feature

5. CONCLUSIONS AND FURTHER
WORK
We have proposed and implemented a method for
feature identification using an evolutionary
algorithm. The algorithm is successful in retrieving
the feature type of a target shape and its computation
time is reasonable. The algorithm was tested on a
small feature library, but there is no theoretical
limitation for using it on a larger, even interactive
feature library. We intend to use the feature
identification in a broader free form feature support
system, in which users define and compose their own
features, which can then be recognized in target
shapes of their choice. We are currently completing
an extension of the presented techniques to a free
form feature recognition algorithm. In this procedure,
the feature type is assumed to be known, but the
parameter values are not. The free form feature
recognition algorithm retrieves the parameter values
in an evolutionary process that is similar to that
presented in this paper.
An even more advanced application of the presented
evolutionary technique that we are working on is in
feature type construction. In this procedure, the
target shape does not match a feature type that is
available in the feature library. The shape is analyzed
and a new feature type is automatically constructed
that fits the target shape. To obtain a mechanism that
is flexible enough to automatically construct a
feature type, the genes are no longer formed by the
parameters, but by the elements of the parameter
mappings, increasing the number of genes from m to
mn, where m is the number of parameters and n the
number of nurbs control points. Also, the principle of
mutation is extended to allow new individuals to
have more or less genes than their parents.
The proposed feature identification method can be
applied to retrieve the feature type prior to any (free
form) feature recognition system. In future work it

will be investigated if other user-input can be
automated, such as the location of a feature or an
estimation of its parameter values. When more parts
of the work with form features is automated, an even
higher-level approach to feature recognition can be
implemented that in turn allows a user to more easily
manipulate shapes.

6. REFERENCES
[Chu90] Chuang, S. H., Henderson, M.R., Three-
dimensional shape pattern recognition using vertex
classification and vertex-edge graph Computer-
Aided Design, Vol. 22, No. 6, pp. 377-387, 1990.
[Dav91] Davis, L, editor, Handbook of genetic
algorithms, New York, Van Nostrand Reuinhold,
1991.
[Flo89] De Floriani, L., Feature Extraction from
Boundary Models of Three-Dimensional Objects,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 11, No. 8, pp.785-798, 1989.
[Gho02] Ghosh, A. and Tsutsui, S., editors,
Advances in Evolutionary Computing, Natural
Computing Series, Springer, 2002.
[Gol89] Goldberg, D.E., Genetic algorithms in
search, optimization and machine learning, Addison-
Wesley, Reading, Massachusetts, 1989.
[Jos88] Joshi, S., Chang, T.C., Graph-based
heuristics for recognition of machined features,
Computer-Aided Design, Vol. 20, No.2, pp.58-66,
1988.
[Kim92] Kim, Y.S., Recognition of form features
using convex decomposition, Computer-Aided
Design, Vol. 24, No. 9, pp. 461-476, 1992.
[Lan05] Langerak, T.R., Vergeest, J.S.M., Song, Y.,
Parameterising styling lines for reverse design using
free form shape analysis.”, Proceedings of
IDETC/CIE, ASME 2005.
[Nez97] Nezis, K., Vosniakos, G., Recognizing 2½D
shape features using a neural network and heuristics,
Computer-Aided Design, Vol. 29, No. 7, pp. 523-
539, 1997.
[Pal05] Pal, P., Tigga, A.M., Kumar, A., Feature
extraction from large CAD databases using genetic
algorithm, Computer-Aided Design, Vol. 37, No. 5,
pp 545-558, 2005.
[Pra92] Prabhakar, S., Henderson, M.R., Automatic
form-feature recognition using neural-network-based
techniques on boundary representations of solid

models, Computer-Aided Design, Vol. 24, No. 7, pp.
381-393, 1992.
[Pre02] Press, W.H., Vetterling, W.T., Teukolsky,
S.A., Flannery, B.P., Numerical Recipes in C++: the
art of scientific computing, Cambridge University
Press, 2002.
[Sak95] Sakurai, H., Volume decomposition and
feature recognition: part 1 – polyhedral objects,
Computer-Aided Design, Vol. 27, No. 11, pp. 833-
843, 1995.
[Sak96] Sakurai, H., Dave, P., Volume
decomposition and feature recognition: part 2 –
curved objects, Computer-Aided Design, Vol. 28,
No. 6, pp. 517-537, 1996.
[Shah01] Shah, J.J., Anderson, D., Kim, Y.S., Joshi,
S., A discourse on geometric feature recognition
from CAD models, Journal of computing and
information science in engineering, Vol 1, pp. 41-51,
2001.
[Song05] Song, Y., Vergeest, J.S.M., Bronsvoort,
W.F., Fitting and manipulating freeform shapes using
templates, Journal of computing and information
science in engineering, Vol 5, No. 2, pp. 86-95,
2005.
[Sub95] Subrahmanyam, S., Wozny, M., An
overview of automatic feature recognition techniques
for computer-aided process planning, Computers in
industry, Vol. 26, pp. 1-21, 1995.
[Tho99] Thompson, W.B., Owen, J.C., de St.
Germain, H.J., Stark, S.R., Henderson, T.C., Feature-
based reverse engineering of mechanical parts, IEEE
Transactions on robotics and automation, Vol. 15,
No. 1, 1999.
[Van93] Vandenbrande, J.H., Requicha, A., Spatial
reasoning for the automatic recognition of
machinable features in solid models, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 15, No. 12, pp 1269-1285, 1993.
[Van94] Vandenbrande, J.H., Requicha, A.,
Geometric computation for the recognition of
spatially interacting machining features, In:
Advances in feature based manufacturing, Shah, J.,
Mäntylä, M, Nau, D., eds. Elsevier Science, New
York, pp. 39-63, 1994.
[Woo82] Woo, T., Feature extraction by volume
decomposition, Proc. Conf. CAD/CAM Technology
in Mechanical Engineering, Cambridge, MA, USA,
March 1982.

