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ABSTRACT 

This paper presents a fast closed-form solution estimating the rotation points of joints relative to the motion capture 
data. The proposed solution estimates the physical location of joints inside the body of the person wearing the track-
ers. The Generalized Delogne-Kåsa method used for our implementation fits spheres, cylinders, circles and planes to 
the motion capture data without the need for initial guessing. This non-iterative, closed-form solution is fast as it 
calculates the rotation point with O(N) averaging along with one inversion of a 3x3 positive semi-definite matrix for 
each joint. The error in the joint location is on average 3σ/√N which is low. In addition, sample points for every 
joint can be from different time sequence allowing flexibility in recovering the joint locations. Once the joint loca-
tion relative to the tracker position is determined, it could be used for the remainder of the data set. Publicly avail-
able CMU motion capture data was used for this study. Two animation sequences, showing our method, are in-
cluded with this paper. These results can be compared to that available at the CMU site for the same animation.  
Since the pose is found relative to the given data, our pose estimation provide better fit to the given data, revealing 
subtle, individual nuances of the person used for the motion capture. Because of the closed form solution, our tech-
nique is ideally suited for the use of motion captured data to create skeletal motion in 3D games or applications 
where real time performance is essential.  
Key words: sphere curve fit, joint location, articulated motion, Delogne-Kåsa Method, motion-
capture data 
 

1. Introduction 

Motion capture animation has been continuously im-
proved by many authors [2, 5, 6, 12-21, 25, 27, 28, 32].  
Their studies can be divided into two methods of analy-
sis: kinematic and kinetic [1].  In kinematic methods, 
scientists study the mechanical displacements of the 
limbs during motion.  In kinetic (or dynamics) methods, 
the energies and forces on the limbs are studied during 
the motion of the articulated figure. 

Kinematic methods are used in animation by determin-
ing the joint angles from space-time constraints.  Holt et 

al. [8] estimated the 3D motion of an articulated object 
from a sequence of 2D perspective views.  They used a 
decomposition approach to break down the motion of 
each segment.  This was a good use of video motion 
capture to estimate the animation of a figure.  Choi [5] 
improved standard forward kinematic techniques to 
provide more accurate end-effector positions.  Inverse 
kinematics is another technique employed by many 
authors [19].  Kinematics tends to be a faster technique 
than kinetics. 

Kinetic methods consider the changes in energy, inertia, 
and forces to create animation.  These changes deter-
mine the way the joint angles change in time.  Semwal 
et al. [24] visualize the leg rotations of a cyclist show-
ing forces during the pedal-movement.  A straightfor-
ward approach is to use Newtonian or Lagrangian me-
chanics, and involves solving simultaneous second or-
der partial differential equations.  Recursive methods 
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can be more efficient [30].  Liu and Popović [15] infuse 
physical reality in to sparsely keyed motion data.  An 
articulated figure realistically played hopscotch using a 
minimal set of pre-determined positions.  Liu and Pop-
ović [15] relied on off-line calculations.  Popović and 
Witkin [21] discuss a novel application by transforming 
standard models of motion in to a diverse assortment of 
similar motions.  For instance, a standard run sequence 
can transform into a run with a limp-sequence, while 
retaining realism. 

Recently, motion captured data has become a rich 
source for providing realistic human motion.   Content 
based retrieval [17] and using lower dimensional data 
[5] are recent examples of use of the motion captured 
data in recent studies.  Kinetics is of interest on the mo-
tion captured data in Zordan [32].  Most of the existing 
methods involve an initial guess of the underlying 
skeleton and iterating through until a stable solution 
evolves. Various forms of least squares fitting are the 
most popular, most of which use the Levenberg-
Marquart method for solving the minimum.  O’Brien 
[19] calculates a skeleton and then uses inverse kine-
matics to produce motion from motion capture data.  
Our method also belongs to the kinematics group by 
analyzing motion-captured data to find a skeleton 
within the data similar to O’Brien [19].  The proposed 
method improves on the work of O’Brien [19] by pro-
viding a faster replacement for the least squares fit of 
joints.  Our technique is more computationally efficient 
than O’Brien because once the offsets from the sensors 
are calculated during pre-processing, they are reused 
during skeletal animation. This direct approach captures 
the subtle deformations that the human body is capable 
of undergoing during complex movements and is inher-
ent in the sensor (motion captured) data.  These subtle 
body deformations are also present in our skeletal ani-
mation because of our algorithm, thus improving the 
quality of animation.  Although not a focus of this pa-
per, an incremental improvement technique, being im-
plemented, would provide yet another order of magni-
tude improvement in future.   

An articulated figure can be divided into rigid segments 
that are connected to each other by joints.  A tree struc-
ture is a perfect way to organize these segments [19].  
Root to leaf processing of segment properties allow for 
a dependency on the parent segment’s position and ori-
entation.  Such a dependency is exploited in this paper.  
The tree structure of segments can be known ahead of 
time (a-priori).  When the tree structure is not known, 
e.g. motion data from an unknown figure), much more 
off-line analysis is needed to produce the hierarchy.  
The solution is the equivalent of a minimal spanning 

tree [19].  Ko and Cremer [11] used 34 DOF for their a-
priori system.  Bolt [4] used 17 DOF in his model of the 
human figure.  The proposed research in this paper ex-
tends to arbitrary number of DOF, and motion captured 
from other animal forms.  Although implemented for a 
human skeleton that conforms to a tree hierarchy, our 
technique easily extends to the case when tree structure 
is not apparent, and animation must directly work from 
the sensor data. 

2. Closed Form Rotation Point Determination 

In our research, it was found that a closed-form solution 
existed when the variance of the square of the distance 
from the measurement to the point of rotation is mini-
mized.   Zelniker [31] shows that the 2D equivalent had 
been studied and rediscovered since the 1970’s.  Zelni-
ker generalized the method to any number of dimen-
sions and proved that the bias in the estimation is not 
significant enough.  Our Monte Carlo experiments 
comparing the Least Squares Linear Regression (LS), 
and the Generalized Delogne-Kåsa Estimator (GDKE) 
show them to have approximately the same error in 
answer.  The speed is improved when analyzing the 
same count as shown in Figure 1. 
 

Figure 1: Relative speed improvement of GDKE versus 
linear least-squares. 
 
Previous solutions [3, 7] and recently O’Brien et.al. 
[19] determine the rotation point by iterating on a least-
squares equation or M-estimators starting from an ini-
tial guess.  This approach involves either linear or non-
linear fitting of the data and has a chance of not con-
verging to a solution.  The initial guess must be close 
enough to the truth or the iterations may diverge away 
from the point.  The GDKE solution to the center of 
rotation involves no guessing, no iterations, and the 
inversion of a 3x3 matrix.  The GDKE is robust with 
noise and also can distinguish cylindrical joint motion, 
with a little extra work. The speedup shows that our 
method is computationally more efficient than the least-



 

 

square method of O’Brien’s [19],  and is a suitable re-
placement for both linear and non-linear least-squares 
fitting of a sphere, cylinder, circle, and a plane.   
 
The requirements in order to determine the point of 
rotation for this method are: (a) Known fixed axes on a 
parent segment. (b) No translational movement. (c) 
Enough rotational motion. (d) At least 4 positions of 
one marker.  The above requirements are satisfied for 
the problem in hand which amounts to finding the best-
fit sphere for a 2 or 3 degrees-of-freedom (DOF) joint 
or the best-fit cylinder for a 1 DOF joint.  According to 
the National Institute of Standards and Technology [26] 
the best approach to this problem is non-linear Least-
Squares fitting but that method could be problematic for 
the general case.  O’Brien [19] uses linear least-squares 
fitting.  Our research, consistent with recent results in 
Zelniker’s [31], shows that the GDKE is a viable and 
robust replacement for speeding up the calculations as 
explained below.   
 
2.1. Theory  
Presented here is a derivation of the Generalized 
Delogne-Kåsa Estimator (GDKE).  The estimator is a 
closed form solution for a hypersphere that has O(N) 
averaging and involves the inversion of a 3x3 positive-
semidefinite matrix.  Stated simply -- the solution in-
volves solving for the absolute minimum of the vari-
ance of the square of the lengths from the point of rota-
tion to each position for a single marker.  The ith posi-
tion for the jth joint (xji) around the joint’s rotation point 
(cj) can be expressed as 

x ji = c j + R jiρ ji  

where  
ρ ji = 1 

This position (xji) is not the absolute position that comes 
directly from motion capture.  Instead it is relative to 
the parent segment in its fixed coordinate system.  The 
square of the radius of the measurement (Rji) has a vari-
ance of  

s j
2 = 1

N j −1 R ji
2 − ˆ R j

2( )2

i=1

N j

∑              (1)
 

where the radius can be written as 

R ji ≡ x ji − c j  

and the average square of the radius is 

ˆ R j
2 = 1

N j
R ji

2

i=1

N j

∑ . 

Equation 1 is then minimized to solve for the GDKE 
rotation point (cj).  Setting the gradient of the variance 
to zero thus 

∇s j
2 = 0  

will provide an equation to find cj.  The gradient can be 
written, after much algebraic manipulation not pre-
sented here due to space-limitation, as 

∇s j
2 = 4 2C j c j − x j( )− S j( ) 

where Cj is the standard definition of the sample vari-
ance-covariance matrix for a vector quantity given by 

C j = 1
N j −1 x ji − x j( ) x ji − x j( )T

i=1

N j

∑       (2)
 

The average is given by 

x j = 1
N j

x ji
i=1

N j

∑ .                        (3)
 

The variance-covariance matrix (2) is a biased estima-
tor for the covariance of the vector measurement.  Cj 
has been used in many situations [9] for curve fitting 
and has proven useful in identifying the best-fit plane 
for data. 
The other vector quantity Sj can be considered the vec-
tor equivalent of the third central moment and is  

 S j = 1
N j −1 x ji − x j( ) x ji − x j( )T

x ji − x j( )
i=1

N j

∑     (4)
 

Equation 4 is an unbiased mix of multi-dimensional 
moments, and is a new quantity, not available in [29, 
23]. The final solution for the center of the hypersphere 
(i.e. the relative joint location) is 

c j = x j + 1
2 C j

−1S j .                       (5) 

This formula looks different than Zelniker [31] 
but is  algebraically equivalent. 

The variance-covariance matrix Cj is positive-
semidefinite so Cholesky decomposition provides a 
more efficient solution to the equation.  There are two 
cases that Cholesky decomposition produces an unde-
sirable answer or even fails.  The trivial case is if all 
points coincide, then Cj is singular.  This case occurs 



 

 

when the joint does not move.  The non-trivial case is 
during planar motion.  If there exists a vector n such 
that 

x ji
T n = k  

where k and n are constants for all positions of the 
marker, then Cj is singular.  All is not lost though with 
these singularities or even near singularities.  The pla-
nar motion can still be solved for as explained below. 

The Null Space of a matrix is a set of vectors that solve 
the equation Cjn=0.  This set of vectors is inherently 
extracted during the Singular Value Decomposition 
(SVD) [22] of a matrix based on some threshold.  The 
condition number of Cj will provide the threshold and 
the measure for which to check if the motion is planar.  
The condition number is the ratio of the largest eigen-
value to the smallest eigenvalue.  If the threshold is 
equal to the inverse of the condition number then a sin-
gle vector exists in the Null Space of Cj and that vector 
happens to be the normal to the plane of motion.  That 
vector is also the eigenvector that corresponds to the 
smallest eigenvalue.  This is proven by solving for the 
minimum of the variance of the distance from the plane.  
The distance (zji) from the plane for each point is 

z ji = x ji
T n . 

The gradient of the variance is then determined to be 

∇Var z j( )= 2C jn  

which clearly shows the minimum occurs when Cjn=0.  
The only solution to this equation is the Null Space of 
the variance-covariance matrix Cj.  If the motion is de-
termined to be planar the null vector can be used to 
determine the center of the circle on the plane.  The 
equation for the best-fit circle is then 

′ c j = c j + nnT x j − c j( )                   (6) 

which basically removes one dimension along the null 
vector for the solution to the hypersphere. 
So we have a solution for the equation when it is both 
singular and positive.  How do we know it is unique or 
worse yet, maybe it is a maximum and not a minimum?  
The answer can be achieved by finding the double de-
rivative of s2

j (i.e. the Hessian).  The Hessian is deter-
mined as 

1
2 ∇∇T s j

2 = 4C j . 

Since the Hessian is positive-semidefinite, the answer 
in Equation 1 is proven to be an absolute minimum. 

 

2.2 Monte Carlo Simulations 

The GDKE method estimator has been shown to be 
biased [31].  Zelniker’s analysis showed that the bias is 
of order of the standard deviation of the measurements.  
This bias is actually not significant enough to warrant 
dismissal of the method.  We conducted Monte Carlo 
simulations of spherical data to confirm our claim.  
Data points were produced uniformly on a sphere with 
a known error introduced to the positions.  The number 
of points were uniformly chosen between 4 and 1000 
inclusive.  The known error was picked with a Log-
Normal(0,10) distribution.  The radius of the sphere 
was chosen with a LogNormal(0.18,1).  The center of 
the sphere was chosen with Gaussian(0,0.5) uniformly 
around the point (0.6,-0.2,0.9).  The simulation was run 
5000 times and GDK estimators were calculated.  The 
bias from the true center was analyzed using the Or-
dered Statistics method [10] of determining the prob-
ability distribution.  The data showed that the bias mag-
nitude is proportional to σ /√N.   The ordered statistics 
method shows a best fit probability of Weibull(2.378, 
3.302) as can be seen in Figure 2. 

Figure 2:  Probability Density for the bias for the 
GDKE center. 
The resultant distribution has an expected value of 2.93 
and a standard deviation of 1.31.  So the final center 
estimator for the sphere can be expressed empirically as 

c − c0 ≈ 2.93
σ
N

                 
(7) 

which is O(σ/√N) where N is typically 100 samples 
during preprocessing. Here, c0 is the true center, σ is 
the true standard deviation of the positions, N is the 



 

 

sample count.  The radius was similarly analyzed to 
find that the value is unbiased when  

σ < 0.1R0 

as shown in Figure 3.  R0 is the true radius.  This situa-
tion occurs for most measurements and makes physical 
sense since one does not want to have an inaccuracy 
anywhere near the radius of the sphere (i.e. σ =R0).  The 
empirical formula for this situation is 

R − R0 ≈ 0 . 

 

Figure 3: Error in GDKE radius estimate 

These experiments and the analysis from Zelniker show 
that the GDKE method is a better replacement for the 
slower linear and non-linear least-squares fitting used 
by most authors, including OBrien et al. [19]. 

2.3. Procedure for Determining Center 

The procedure to determine point of rotation of a joint 
is as follows.  This method automatically determines 
the type of joint, either spherical, cylindrical or not 
moving at all. 

1) Choose one marker with absolute positions x’ji on 
segment. 
2) Make points relative to parent. 
Mj-1 = column matrix of parent axes 
pj-1 = center of parent’s coordinate frame 

x ji = M j −1
T ′ x ji − p j −1( ) 

3) Calculate mean, covariance and third central moment 
of points using Equations 2,3,4. 
4) Using singular-value decomposition, determine the 
condition number, the null-space vector, and the solu-
tion for the best-fit sphere.  Use Equation 5. 
5) If condition number is small then use spherical solu-
tion otherwise find the rotation center for the planar 
motion.  Use Equation 6. 
6) Store the center of rotation and the null-space vector 
for later use of displaying skeleton at each frame. 

2.4. Applying the GDKE to Motion captured Data 

The motion capture data used in this paper comes 
mainly from the very large database (>2GB) of motions 
captured by Carnegie Mellon University Graphics Lab 
(CMU Labs).  The data is freely downloadable at 
http://mocap.cs.cmu.edu/.  The database was created 
with funding from the NSF grant EIA-0196217.  There 
are 1576 trials in 6 categories and 23 subcategories.  
We also analyzed the data from Advanced Computing 
Center for the Arts and Design (ACCAD) at 
http://accad.osu.edu/. 

Motion capture information is acquired on up to forty 
or more markers on the body depending on the motion 
being studied.  The CMU data comes in a few file for-
mats.  The raw Cartesian coordinates of the data are 
stored in the C3D file format [18].  Each time frame is 
stored, with each frame consisting of X,Y,Z for each 
marker on the body.  If any data is missing from a 
frame, that point is zeroed and marked.  The captured 
motion also comes in the form of ASF and AMC file 
formats.  These are created after the VICON program 
has done analysis of the data.  The ASF format stores 
the skeleton and joint information to create an articu-
lated figure on the screen.  The AMC format contains 
every time frame’s translation and rotation for each 
bone.  Our method works with the raw XYZ data and 
therefore does not consider the post-analysis data in the 
AMC files.  A motion capture file (e.g. C3D file) con-
tains the data, as well as a name associated with each 
marker.  For example, a marker is placed on the right 
thigh and is called “JOE::RTHI”.  Usually, the animator 
doesn’t have the same designation so a cross-
correlation must be achieved to identify which segment 
this marker belongs.  Our implementation uses a two-
file process to cross-correlate a C3D data-set with the 
segments on the ATM model.   

2.3. Extracting Joint Information in Our Implemen-

tation 

Most information in motion capture data comes in the 
form of Cartesian coordinates of markers placed on the 
segments of an articulated figure.  Each joint between 
segments has a point of rotation (if purely rotational) 
and joint axes.  Magnetic tracking sometimes comes 
with orientation axes so much of this section can be 
skipped if that is the case.  Usually, and in our case, the 
frames of data must be analyzed during joint motion to 
determine the axes and rotation point.  The center of 
rotation can be calculated for each joint if: 1) The orien-
tation of the parent segment can be evaluated. 2) The 



 

 

child segment has at least one marker. 3) The child 
segment is in motion relative to the parent segment. 

The orientation of a segment can be determined if there 
are at least three non-linear data points fixed to that 
segment.  One of the data points can be the center of 
rotation.  There is a hierarchical dependency for deter-
mining the center of rotation and the orientation.  Thus, 
the orientation can be determined if there: 1) is one data 
point, rotation point, and a rotation axis; 2) are two data 
points and one rotation point, all non-collinear; 3) are 
three non-collinear data points. The information can be 
retrieved if calculated hierarchically from root to leaf.  
First, define the tree.  Then, assign the markers to their 
appropriate segments.  The root must have at least three 
markers.  No center of  rotation for the root can be de-
termined.  The children of the root can determine their 
center of rotation relative to their parent by the above 
mentioned method of GDKE.   
 
The rotation point cjk for the current time frame k is  
determined from 

c jk = x jk + M jkv j  

where vj is the local relative vector as determined from 
GDKE, xjk is the center of the coordinate system, usu-
ally one of the marker points, and Mjk is the 3x3 matrix 
of column vectors that represent the axes of the seg-
ment’s coordinate system. 
The coordinate matrix is composed of three column 
vectors that make the orthogonal coordinate system.  It 
is determined differently for each of the three cases. 
1) One data point is available, use null-vector: 

ˆ x = ˆ n  

2) Two data points are available, use second point and 
center of rotation: 

ˆ x =
p1 × c
p1 × c

 

3) Three data points are available, use second and third 
point: 

ˆ x =
p2 × p1

p2 × p1

 

Then the other two axes can be calculated from the first 
point by 

ˆ z =
p0 × ˆ x 
p0 × ˆ x 

 

and 

ˆ y = ˆ z × ˆ x  

These produce the rotation matrix M by placing them in 
the columns. 

2.6. Generated Motion 

The root segment (hips) motion can be considered 
freely moving and freely rotating.  In order to find the 
motion of such an object (6 DOF), the segment needs at 
least three unique points on the surface tracked.  The 
motion capture data can be used to create a set of orien-
tation axes and produce the center for any particular 
frame of the data.  The axes are fixed relative to the 
root segment and are a 3x3 matrix determined by the 
above equations.  Next we use the motion data set and 
recursively traverse the tree to traverse down the seg-
ments.  Each segment in the tree contains its own time-
dependent position relative to its parent.  To position 
the figure at a specific time-frame involves traversing 
the tree from the root segment to the endpoints.  During 
the analysis phase, data will be collected giving each 
segment a chance to calculate its motion constants.  
Once these constants of the data-set are determined (i.e. 
relative rotation points and null-vectors), skeletons for 
the remainder of a motion capture data are easily drawn 
using these determined constants. This is computation-
ally far efficient than applying the inverse-kinematics 
solution in existing techniques. 

3. Results 

We conducted several experiments comparing GDKE 
method with linear least square method and found that 
the GDKE produces similar answers to the Least-
Squares Method of O’Brien et al. [19] but is computa-
tionally more efficient as discussed in the paper.  In 
addition, this new method can also produce a better 
answer in the cylindrical case.  The error in the calcula-
tion is only of O(σ/√N) [31] and corresponds to the bias 
as explained in the empirical relationship in Equation 7. 

An example of a single time-frame for a karate pose is 
given in Figure 4.  A more complex data-set was ana-
lyzed involving two figures during a salsa dance.  A 
time-frame from that data is given in Figure 5. 

 



 

 

 

Figure 4: Karate Pose from ACCAD data “Break 
Dancer 1” 

 

Figure 5: Salsa Dance from CMU data 60-14  

Noise can also contribute to the propagation of errors.  
Noise comes in two flavors, measurement noise and 
process errors.  A look at the problem at hand, i.e. 
measured markers on a body, shows how errors are 
introduced.  The accuracy of capturing the coordinates 
of the marker in time is considered measurement noise.  
This is usually a simple Gaussian noise for each meas-
urement.  Process errors are produced when, for exam-
ple, the marker is placed on loose clothing and subse-
quently moves slightly on the body during motion.  All 
these errors contribute to the accuracy of the rotation 
point calculation whichever method is chosen. 

4. Conclusions and Future Research 

We have presented a GDKE implementation that is 
computationally superior to the method of O’Brien et 
al. [19].  In addition, our method is faster that inverse 
kinematic solutions as the actual joint locations are di-
rectly calculated from the sensor data. These estimates 
are found by using a fast closed form solution.  As our 
method derives the animation from sensor data, anima-
tion sequences preserve the subtle variations of the per-
son used for the motion capture study.  Qualitatively, 
this can be observed while playing the CMU data and 
our animation side by side.  Our algorithm is well 
suited for on-the-fly capture and display of the motion 
capture data, and would allow merging of animation 
sequences with ease.  In the future, we plan to utilize an 
incremental improvement technique, which could fur-
ther provide an order of magnitude speed improvement. 
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