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ABSTRACT

Most medical scanning techniques generate scalar fields, for whidlge fange of segmentation algorithms exists. Some
scanning techniques like cryosections, however, generate color gétally stored inRGB format. Since standard segmen-
tation algorithms such as isosurface extraction, level-set and regiaingyanethods all have their advantages and drawbacks
and many extensions and specializations of the algorithms have bedop#el/é solve specific problems, one would need
to generalize all these approaches to color data to have the full randgodttamic solutions at hand. A more viable way to
proceed is to convert the color data field to a scalar field in a preprogestsp, which allows for the direct application of
all above-mentioned segmentation approaches. We propose aymtealt converts color to scalar data while preserving the
properties that are important for segmentation purposes. We firgextdhe colors fromRGB to L*a*b* color space, which
separates the luminance channel from the chrominance channelsaifdites the chrominance with respect to human percep-
tion. Then, we cluster the colors present in the data using a number faghes and discuss the advantages and drawbacks.
In order to assign to each cluster an appropriate scalar value, we usgedlsef the recently present€dlor2Gray algorithm

and generalize it for application to volume data. The Color2Gray algorithta originally proposed form is too inefficient to
be applied to volume data, but a restructuring of the algorithm coupled witloagbusterization step allows us to apply the
algorithm even to large volume data. We segment the resulting scalar fietdatandard segmentation algorithms and discuss
our results in comparison to standard conversion results.

Keywords: Color-to-scalar conversion, clusterization, segmentation.

1 INTRODUCTION Two main directions can be distinguished in the con-
text of 3D medical imaging visualization, namely di-
Visualizing medical imaging data is one of the tradiect volume rendering and segmentation. While direct
tional tasks in scientific visualization. The in vivo med-ygjume rendering displays the 3D data allowing for in-
ical scanning techniques typically generate stacks of 2fractive change of the viewing parameters, segmenta-
grayscale images, where the grayscale values represgqip extracts geometry that can be used for rendering
for example, the tissues’ densities. From the stack Gfurposes as well as for quantitative measurements and
images a 3D scalar field can be reconstructed. Examjjrther processing. The main objective of the segmen-
ples of such medical imaging techniques are CT, MRkation process is to extract boundary surfaces of cer-
PET, etc. More thorough examinations can be mad@in objects, separating them from the surrounding tis-
when using ex vivo scanning techniques. The Mosfyes. In medical terms, one would like to extract the
prominent example would be cryosections. When gersp geometry of the scanned organs. Standard segmen-
erating cryosections the individual slices are scannegtion algorithms include isosurface extraction, level-
using digital photography. Thus, the resulting imageget methods, or region-growing approaches. These seg-
are not grayscale but colored. Typically, they are storeghentation algorithms (as well as most direct volume
in RGB color space. Reconstruction of the volumetriqendering approaches) operate on 3D scalar fields. Gen-
data set leads to a 3RGB color field. eralization to color data is often not straihgt forward
. — ) and only few attempts have been taken. Since dif-
Tif\‘/;‘:isvgkr;\girjltg'reBr:qe;‘f;eaS of spring 2007 ferent approaches are more or less suitable for differ-
#| linsen@iu-bremen.de ent segmentation purposes, one would like to have the
whole range of all segmentation algorithms generalized
to color data. A more viable way to achieve this goal is
to convert the color data into an appropriate scalar field
without losing the property of being able to segment
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model with a separate luminance channel and uses then Section 6, we give results that document the effi-

luminance channel for segmentation purposes. Obweacy of our method. In particular, we compare them to

ously, the creation of a 3D luminance field leads to duminance-based conversion and to other clusterization
loss in data information. In particular, two colors withtechniques common in the imaging community. We ap-

same luminance but different chrominance are mappgay standard segmentation techniques to illustrate the
to the same scalar value. Thus, any automatic segmeadvantages of our method when coupling the conver-
tation algorithm would fail in separating two adjacentsion with segmentation procedures.

regions that are colored with the respective two colors.

Any linear mapping that projects the 3D color spac2 RELATED WORK

onto one axis (even chrominance-based approachesfe standard mapping for a color-to-grayscale transfor-
Principal Component Analysis) would suffer from this\tion is the projection of the colors of a color image

drawback. We present a procedure for converBEB 5 the gray axis in the respective color space. Thus,

color fields to scalar fields under the consideration thaty, is mapped to its luminance. Such a method is
the scalar field will be used for segmentation purposeg, 5 qequate for the pixels with same luminance but dif-
Thus, we would like to distinguish all significant col- forent chrominance. Several methods have been pro-
ors (especially when they occur in adjacent region§}se for solving the general problem of reducingvan
while maintaining luminance order for colors with sim- 4 ansional set of data o dimensions, where < n.
ilar chrominance values. Our general approach is d&;nce all standard color spaces have three dimensions,
scribed in Section 3. n=3andm=1 in our case. Principal Component
Our conversion method is based on two steps. In Analysis (PCA) is one of such methods [Jol02]. PCA
first step, we analyze the color data in terms of ocCUlzan pe used for computation of an ellipsoid in color
ring colors, the number of occurrences, and their di%pace (principal components). Color values in the im-
tribution in the color space. We use thea*b” color  gge can then be projected on a (luminance) axis defined
space, since it separates the luminance channel from tgﬂhe primary axis of this ellipsoid. The efficacy of this
chrominance channels and distributes the chrominanggethod depends on the color space. However, PCA can
values such that the Euclidean norm in tha’b” space  g|so suffer from the problem of projecting colors of dif-
approximately captures perceptual dissimilarity. EXferent chrominance to the same position an the axis.
ploiting the color distribution in thé*a*b* space for Another way of generating grayscale images out of
a given data set, we cluster the colors intoegions, color images is to match local contrast in color im-
wheren is the predefined cardinal number of the rang@ges [SB02]. The contrast is regarded as a gradient
of the resulting scalar field. and then the grayscale is recovered by solving a Pois-
We use several approaches for clusterization. Ongn equation. This method has difficulties with cer-
of them is based on a genetic algorithm. It producegin classes of images as the global contrast influence
excellent results but has high computational costs ang avoided. Moreover, local approaches do not work for
therefore, is not applicable to larger 3D data sets. Wgyr purposes, as one color may be mapped to different
use it to validate with it other clusterization algorithms scalar values in different regions.
e.g. axes-aligned binary space splitting, k-means, c- Another recently presented method maintained the
means, and median cut. The details are described fioportionality between perceived color difference and
Section 4. perceived luminance difference, but ignores spatial ar-
In the second step, a representative of each clusteingement of pixels [RGWO5].
has to be mapped to an appropriate scalar value. ForThe goals of the listed approaches are indeed diverse,
this mapping we use the ideas of the recently presentéit none of them is targeted towards a subsequent seg-
Color2Gray approach [GOTGO5]. The Color2Gray al- mentation step. Our approach instead aims for the nec-
gorithm uses three parameters that determine the magssary properties, which are to distinguish all signifi-
ping in terms of luminance and chrominance. We cagant colors and to maintain luminance order for colors
set these parameters such that the mapping has the déth comparable chrominance values. We use a gen-
sired before-mentioned properties. eralization of the recently developed two-dimensional
The main drawback of the Color2Gray algorithm isColor2Gray algorithm [GOTGO05] coupled with a clus-
its asymptotic computation time that ®(N®) for a terization / quantization procedure.
N x N x N volume data set. This runtime does not make We have analysed a number of quantization algo-
it practical for 3D applications. However, when restruc+ithms which could be used for the prior quantization
turing the algorithm and applying it to the clustered col-of the initial image before using the Color2Gray. The
ors instead of the original image colors, we can reducebjective of color quantization is displaying a full color
the computation time t@(k?), wherek is the number image with a restricted set of representative colors with-
of clusters, e. gk = 256 for byte-sized output. Details out a significant, i.e. perceptually almost not notice-
are given in Section 5. able, loss of color impression. Colors are to be approx-



imated as closely as possible when quantized. Quanfall in low-density regions of the color space are within
zation techniques consider quality criteria such as hdarge cells, where large color errors are to be expected.
man perception, computation time, and memory refhe main idea of the k-means algorithm is to defihe
quirements [Sch97]. We have investigated the followeentroids, one for each cluster. These centroids should
ing existing quantization algorithms: static color look-be placed as far from each other as possible. Then each
up algorithm using look-up tables [Hec82], popularitypoint from the initial data set is associated with the near-
algorithm [Hec82], median cut algorithm [Hec82], k- est centroid. When all the points have "their" centroids,
means algorithm [Mac67], fuzzy c-means algorithnmthe K centroids are recalculated as the average centers
[Bez81]. of each cluster.Then a new binding has to be done be-
The idea of static color look-up table algorithms is toWeen the same data set points and the nearest new cen-

divide the color cube into equally thick slices in eact©id- This loop is continued until no more changes are

dimension. The crossproduct of these color levels ca#Pne: The idea of the fuzzy c-means method is similar

be used as the entities of the color look-up table. A sigI-O the k-means approach, but it allows one _d_ata_ p0_|nt
to belong to two or more clusters. Fuzzy partitioning is

nificant drawback of this method are artifacts in form™ * . ; Lo
of edges in the resulting image. The main idea of pc)pc_arrled out through an iterative optimization of the data

ularity algorithms is to build a colormap by finding thepoints membership in the clusters and the correspond-

K most frequently occurring colors in the original im- N9 update of the cluster centers. The iteration termi-
age. The colors are stored in a histogram. Thése nates when there is no difference between the member-

most frequently occurring colors are extracted and usetf!!P 'ésults with respect to some given precision. The
as entries in the color table. The image is quantizeffSults of the k-means and c-means approaches depend

with respect to that table. The question that remains Qn the.choice of the in.itial centroids.'W(.a take as initial
how to map the colors that appear in the original im_centr.mds the data pomts' that are distributed as far as
age but are not stored in the color table. A method th&°SSible from each other in the color space.

detectsf the most frequent_ly _used color ogt of the color: GENERAL APPROACH

stored in the color table within a small neighborhood o

the regarded pixel. Thus, in general, each pixel has /e present a procedure for converting color data to a
be tested to find the shortest distance to one ofithe scalar field in a way that is amenable for subsequent
most frequently used color values. The main drawbackegmentation of the volume. Any segmentation tech-
of this method is that some important but "unpopularhique may be applied to the resulting scalar field.
image colors could be lost. The median-cut method was OUr conversion approach consists of three main steps.
originally described by P. Heckbert [Hec82]. The idedssuming that the 3D color data is given in form of
behind it is to use each of the color in a synthesize®GB data, we first convert thRGB values to a color
look-up table to represent an equal number of pixels dePresentation in the*a*b* color space. Secondly, we
the original image. The algorithm partitions the color@PPly @ quantization step that reduces the number of
space iteratively into subspaces of decreasing size. THg€d colors in the given color data from their original
algorithm starts with an axes-aligned bounding box thdtumber to a typically much smaller number of colors
encloses all the different color values present in th& the same color space. The reduced amount of colors
original image. The "size" of the box is given by thelS chosen with respect to the number of distinguishable
minimum and maximum of each of the color coordi-output values in the to be generated scalar field. When
nates that encloses the current box. For splitting thgonsidering a scalar field that allows us to store 1 byte
box one determines the dimension, in which the boiformation per sample point, we would set the reduced
will be (further) subdivided. The splitting is executednumber of colors for quantization to 256. The quanti-
by sorting the points by increasing values in the dimer¥ation step assures that all important colors can still be
sion, where the current box has its largest edge arflistinguished after quantization. The quantization step
partitioning the box into two halves at the position of2lSO generates a unique mapping of each color of the
the median. Approximately equal numbers of point§riginal color set to one color of the reduced color set.
are generated on each side of the cutting plane. Spliftinally, the reduced set of colors is mapped to scalar
ting is applied iteratively and continued uniil boxes values in a way that luminance order is preserved for
are generated. The numbémay be chosen to be the colors with similar chrominance values.

maximum number of color entries in the available col- Operating inRGB space is inadequate for our pur-
ormap. The color assigned to each of doxes is poses, since it does not distinguish between luminance
calculated by averaging the colors of each box. Thand chrominance. Several color models sucHBS or
median-cut method performs well for pixels, whoseHSV have this property and are widely used for this par-
colors lie in a high-density region of the color spaceticular reason. However, we decided to useltha*b*
where repeated divisions resulted in cells of small sizeolor space, because its Euclidean norm closely corre-
and, hence, small color errors. However, colors thapond to perceptual dissimilarity [PasO8LE L*a*b*



is the most complete color model used conventionallyepresentative of the cluster, to which the initial color
to describe all the colors visible to the human eye. Ivalue has been assigned. The output of this step is a
was developed for this specific purpose by the Internaolor data set irL*a*b* color space that only makes
tional Commission on lllumination or Commission In-use of a restricted number Kfdifferent colors.

ternationale d'Eclairage (CIE). The three parameters in g1y K representative colors of the clusters are to

the mo‘?'e' represent the Iumingngef the colpr, vyhere be mapped t& scalar values. For this purpose we use
L__= 0 yields black and. = 100 indicates whlte,_ its po- he Color2Gray algorithm. However, we do not ap-
sition a between red and green, where negative valuesiy the Color2Gray algorithm directly, as the compu-
indicate green while positive values indicate red, anghyiona| costs are too high for running this algorithm on
its positionb between yellow and blue, where negativegi,ndard-sized 3D data sets. Instead, we apply the map-
values indicate blue and positive values indicate ye||OV\bing idea of the Color2Gray algorithm to therepre-
Assuming that the original data is givenRGB color sentative colors of the cluster. Since the Color2Gray
space, we need to convert the colors to a representatigprithm can be fine-tuned by three intuitive parame-
in theL"a’b" color space. To do so, we first transformye, s \ve examine, which of these parameters would be
the RGB data to theCIE XYZ color space and, after- o syitable for our purposes, such that all significant

wards, convert th&YZ values toL"a’b" colors. Note 14 i the data are distinguishable. Details on this last
that the matrix of transformation froRGB data toXYZ step are given in Section 5.

depends on the chos&EB standard. We consider the : - PR T
The final output of our processing pipeline is a scalar
R709 RGB standard. Hence, the three channels of thﬁeld of same dimensions as the initial color data field.

* %
L*a*b* colors are computed by We use the scalar values for segmentation purposes. We

apply standard segmentation algorithms for a proof of

Lo 116 (%)% ~16, if £ >0.008856 concept.
9033- (%n) , otherwise '
. 500A<<x>%<y>%) and 4 CLUSTERIZATION
Yo ' . . . .
% We introduce two novel clusterization techniques

described in Section 2. We came up with novel
methods ourselves, as we observed that the known
v.vhereXn,Yn,andZ',? are the values @K,Y,an'dz,'respec- . Clusterization methods we applied did not lead to fully
tively, for a specified reference of the white, i. e. illumi- __. . . :
satisfiable results. We discovered that some important
nant, color, ani, Y, andZ are computed by . . . L
color differencies can get lost during clusterization.
{ X R This observation is due to the fact that algorithms
Y }
z

G such as median cut yield only average quality results.
B We achieved very good results while using k-means

For the quantization step, we first choose the nuriber and c-means clustering algorithms on some of our
of clusters to be generated, which is equal to the numbexamples.
of distinguishable values in the outputted scalar field. If We propose two novel clusterization methods for a
the number of unique colors in the image is less thamore adequate clustering. We first propose a genetic
the available output values, the quantization step caalgorithm that generates high-quality results and can be
be skipped. Each color defines its own cluster. Howdsed as a standard for other clusterization algorithms.
ever, for real data we are dealing with, this case dodsor the genetic algorithm, we have to define the genetic
never occur in practice when using byte-sized outpunaterial, its initialization, the update rules that are-ite
values. Since we are computing a scalar field rathetively applied, and the fitness function.
than a greyscale image, we are not limited to typical im- The genetic material of the individual is stored in a
age format sizes. Any number of output clusters can behromosome made up of basic genes which define the
chosen. An increasing number of output clusters onlphysical features of the individual. A previously pre-
affects the performance of the subsequent conversi@ented genetic clusterization algorithms [TAE98] takes
algorithm. the mapping of all sample colors to tiepalette col-

Given the numbeK of output colors, we execute ors as a genetic chromosome. This choice leads to an
some clusterization algorithm in order to generkite extremely high memory consumption, as each chromo-
clusters of colors and determine the representative cademe consists of a number of genes equal to the num-
ors for each cluster. The clusterization algorithms wéer of unique colors in the picture. In our algorithm, we
have developed are described in Section 4. take the centers of all cluster, i. e. points in thie"b*

The actual quantization of the picture is performecdtolor space, as a gene. Thus, a chromosome consists of
by substitution the initial color value by the value of theK genes only, wherK is the number of clusters.

1 1 : : ;
A zoo((\\((n)g—(z)é) ‘ and compare them to the clusterization techniques
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For the initial population generation we build the methe minimal Euclidean distance Lia*b* color space.
dian cut tree, take the cubes lying on the depth equal fthe color assigned to the new leaf is the average color
logz(K), whereK is the number of clusters, and deter-of the colors stored in the leaves that have been merged.
mine which unique colors of the image belong to whichThe average colary, is computed by
cube. Then, we find the average centers of each cluster L M
as it is done in the median-cut algorithm. The initial Cav = M'Zq : @
population is formed by the centers of each cube. -

We define an overall fitness functidh that charac- WhereM is the number of all leaves which belong to

terizes each individudlby this subtree, and; are the colors that have been stored
‘ in the leaves. We apply this step until the number of
F=3 {D(ém.,ém)ﬁr}gzg(D(i,J))} ; leaves is equal to the number of cluster centers.
m=1 N

In general, the decision which method to take de-

wher is the aver nter of the im lor
€réCm IS the average center ol the Image colo Spends on the initial data.

which belong to clustem, €y, is the cluster center cho-

sen by the genetic algorithnl) is the Euclidean dis-
tance function in thé.*a*b* color space, anéy is the S COLOR-TO-SCALAR CONVERSION

set of the colors that belong to cluster The most common way of convertirRGB images to
We minimize this function for the individuals by grayscale in terms of image processing or converting an

generating new populations using reproductions (MUt&kGB color data set to a scalar field in terms of visual-

tions, crossovers) and comparing the fitness functionszation, is to operate on the luminance. First, the image
On the test examples the genetic algorithm achievegy|ors are converted frorRGB to a color space with

a clusterization that distinguishes all important colorg, |yminance channel, for example, to thiea*b* color

?”d generates an equal distribution among the rem‘"‘igpace. Then, luminance values are taken as resulting

ing colors. o _scalar values. More sophisticated techniques for map-
Unfortunately, the computation times for the genetiging the 3D color space to one particular axis have been

algorithm tend to be rather high, such that itis not pracgeveloped, but all these methods are ineffective at pre-

tical to apply it to larger 3D data sets. Therefore, Weerying different colors orthogonal to the chosen axis.

will use this algorithms only as a standard, to which Weyfte the axis is oriented close to the luminance axis

compare the results generated by faster clusterizatiqqych that isochromatic colors are projected to similar

algorithms. The goal was to develop a clusterizatiorpegiOnS on the axis.

algorithm which is much faster than the genetic clus- T Color2Gray algorithm allows to take into ac-

terization algorithm and, at the same time, more adgsnt hoth luminance and chrominance differencies in
quate than median cut, k-means and c-means algorithins g rce image and construct an appropriate grayscale

in certain cases. _ _ _ image. It was introduced for the conversion of 2D im-
_ We developed the axe_s-a_llgned_ bln_ary-tre_e part|t|0na-lgeS, but could be generalized to voume data.

ing approach for clusterization. Like in median cut al- “hq ser can influence the output of the Color2Gray
gorithm our algorithm starts with an axes-aligned box 4 ithm using three simple and intuitive parameters.
that encloses all the different color values from the origrpq first paramete@ controls whether chromatic dif-

H H H * k¥ et "

inal Image in the."a b polor Space. The size” of the ferences are mapped to increases or decreases in lu-
box is given by the minimum and maximum of each ofinance value. The second parametedetermines
the color coordinates that enclose the box . For splittingo, much chromatic variation is allowed to change the

the box we have to decide, in which dimension we want, rce luminance value. The third parametiesets
to perform the splitting step. We choose the dimensiony, o eighbourhood size used for chrominance estima-
in which the box has its longest edges. The points ai& - 21 d juminance gradients.

sorted in this dimension. In_this or_der we are looking The color differences between pixels in the color im-
f_o_r the largest gap n the splitting Q|men5|on. The parége are expressed as a set of signed scalar values. The
titioning of the box into two h_alves Is done at .th.e IOWerdifferences are measured in the various channels of the
enq of that. largest gap. We iterate these spllt.tlng_ SRS ab* color space. Thus, both luminance and chromi-
u_ntll a!l unique coIor; that.have a representative n thFiance differences are computed. The generation of the
given Image are split. This procgdure forms a blnar\‘)utput in form of a grayscale version of the image is
tree with the unique colors stored in the leaves. As a '$ased on these differences. For each piaid each

sult, pairs of closest colors are the pairs stored in Ieav‘?ﬁéighbor pixelj, the signed distance scalif based on

with the same parent. Note that the binary tree is YPkuminance and chrominance differences is computed by
cally unbalanced.

In order to determin& clusters out of the binary- _ B
tree structure, we iteratively merge leaves of the tree. In . 9){ A, if- | ALl > erunch(]| AG; )

j crunch(|| AG; ), if crunch(|| AC;; ||)-Ve >0
each step, we merge the two leaves, whose colors have crunch(— || AG; ), otherwise



wherel; is the luminance aith pixel, ALjj =Li —Lj, O(N®) foraN x N x N volume image. Using local vari-
| AGj || is the Euclidean norm of the vectdxG;; = ants of the algorithm by adjusting paramegeis inap-
(AAj, ABij) with AA;j and AB;j being the differen- propriate for our purposes, as one color value should
cies between pixelsandj in the chrominance channels always be assigned to the same greyscale value, which
a* andb*, respectivelyVy = (cos8,sind) is a normal- is only assured by using a global version of the algo-
ized vector defined b§, andcrunch(x) = o «tanh(%).  rithm.
For a detailed derivation of the formula, we refer to the However, if we do the prior clusterization of the im-
original work on the Color2Gray algorithm [GOTG05]. age, the calculations can be reduced dramatically. After
Given a set of signed differencié for pixel pairs the quantization of the image we are left with arrays of
(i,j) of an ordered se§, a scalar fieldy is computed lengthK, whereK is the number of generated clusters.
such thag minimizes a target functiof(g). The target Let the output generated by the cluster be given in form

functionf (g) is given by of the color values of each cluster’s center stored in ar-
) o ray Centers, the number of occurrences of colors from
© 70.%(5((9, “9) ) each cluster stored in arr@ccurs, and the indices that

Hence, the minimization problem can be written in thSS1gn .to each p|?<el of the color the appropriate cluster
stored in arrayndices.

form of
For each clustek we can calculate by
min(f(g)) =min (% (UZEK (% —%j — bij)2> (2) di = J;t‘iﬂ- *Oceurs|j] — i;(:‘ik*Occurs[i] @)
where thex;, x;, andbij can easily be derived. This is a The &; andg are computed on the cluster colors only
least-squares problem of the form using the information stored in arr@enters. The cost
1 of this calculation i<O(K?). Thus, it only depends on
mi”<5<AX*b>T<AX*b)> ; the typically small number of clusters and is indepen-

dent of the number of pixels/voxels in the image. In
particular, it does not matter, of which dimension the
min(%xTATAp(AT)TH%bTb) , original image is. Our approach scales to arbitrary di-
mensions, as it only operates on the clusters and their
This equation is quadratic with a symmetric, positivecenters.
semi-definite Hessian. Therefore, m|n|m|Z|ng it is Fina”y, for each pixe| or voxel of the 0rigina| 2D
equivalent to satisfying the linear equation: or 3D image, we get the desired valdeby determin-
ATAx= ATh . ing the cluster it has been assigned to and using the re-
spective valuel,. Thus, we retrievel = D[l ndices]i]],
whereD is the array that stores thi we computed for

which can be rearranged to

Deriving the termsl, on the right-hand side of the equa-

tion, we obtain all clustersk. These valuesi are used, as before, to
de = [ATh], = Ek@, _EkakA compute theg from Equation 3.
= = By bringing down the computational costs for the
Because of the regular form of the HessiadAx =  bottleneck computation fro®(N®) to O(K?), we sig-
ATb expands to nificantly speed up the procedure, which makes it ap-

plicable to larger 3D data sets.

6 RESULTSAND DISCUSSION
Since the improvement of our approach over

N—1) x— =d
( ) - Xk I;(Xl k

with A being aN x N matrix. For any two indicesand

j, we obtain X .
J luminance-based conversion models can be docu-
di—dj = (N=1)-x —%j) = (N=1)-%j =) mented best by looking at 2D images, we first want
leading to to give some examples, where we convert individual
slices through a 3D color data set.
d— dj +N - Xj .
X=——g - ® For one of the examples we use a part of a horizontal

slice through the Visible Female data’séfhe data set
is obtained by taking cryosections of an entire female
human body. The firstimage of the Figure 2 shows a red

x — . So, the problem can be solved by settigg- 0 organ surrounded by a yellowish tissue. The luminance
alnd gettir;g all othex; from Equation 3. Then, the of the surrounding tissue varies, but the chrominance

found grayscale values are shifted to be as close to ti{g!ues of the surrounding yellow region are clearly dis-
source luminances as possible. tinguishable from the chrominance value of the red or-

The bottleneck of the algorithm is the calculation98":
of the coefficientsd,. The cost of the calculations is  !Data set courtesy of the National Institute of Health.

For anyx = c there is exactly one solution to Equa-
tion 2, which may be obtained by taking any known
minimal vectorx’, and shifting all of its elements by




Figure 2 shows a conversion of the slice to a greyscaticroscopy. The 3D cancer cell data set is used to ex-
image using a luminance-based approach on the lefract the yellow regions. The results are shown in Fig-
hand side and our approach on the right-hand side. Usre 4. Our conversion approach allows us to exactly ex-
ing the luminance-based approach, the boundary of thiact the yellow regions by using isosurface extraction
initially red region to the left gets lost. Using our ap-(middle), while the segmentation run on the luminance-
proach, the initially red region is still clearly distin- based converted scalar field (right) extracts much larger
guishable from the surrounding tissue. regions that also include many originally green and red

For generating the results of our approach throughouparts.
the paper, we used the axes-aligned binary-space parti-The results document that our color-to-scalar conver-
tioning or median cut clusterization and the followingsion method allows us to convert data sets with neigh-
Color2Gray parameters: parametet= 40 and param- bored isoluminant areas that can still be separated by a
eterd=Torg = 3T parametep always has to chosen standard segmentation method after conversion. Obvi-
such that the entire image is considered as a neighbdisly, when the original color data only contains colors
hood to obtain a global approach. that vary in their luminance, a luminance-based con-

For the generation of Figure 3 we applied a Segmery_ersion produces an optimal conversion that cannot be
tation algorithm to the images of Figure 2. For segimproved by our approach.
mentation purposes, we used a standard approach for
isosurface segmentation based on marching squares for CONCLUSIONS
2D images and marching cubes [LC87] for 3D imagesWe have presented an approach for conversidRGB
However, any other segmentation approaches such eslor data to scalar data that is amenable for subsequent
other isosurface extraction methods, level-set methodsggmentation of the scalar field. In particular, our con-
or region-growing approaches could be used instead. rersion method does not map isoluminant colors to the
Figure 3, the contours are shown in red. The figure ilsame scalar value, but allows us to preserve all impor-
lustrates that the segmentation algorithm was not abtant colors such that they are still distinguishable by a
to segment the initially red region when applied to thesegmentation algorithm after conversion. Moreover, the
image converted by the luminance-based approach @nder in luminance for isochrominant colors is main-
the left-hand side. When applied to the image genetained during conversion.
ated with our conversion algorithm, the region can be Our method operates in‘a*b* color space and uses
segmented well. clusterization algorithms for quantization. Afterwards,

In Figure 1 on the left-hand-side, we show a part of 4he quantized colors are mapped to the appropriate
slice of a cryosection of a Macaque monkey braifhe ~ scalar values. We have presented two novel clusteri-
brain slices have been digitized using high-resolutiodation methods based on a genetic algorithm and an
digital photography that allows to scan even very smafxes-aligned binary space partitioning. For the final
structures up to single neurons. We pick a region oissignment of the cluster colors to the scalar values we
interest with different tissues. The encircled tissue ofised ideas from the Color2Gray approach. By only
interest has a purple color and is surrounded by tiss@plying the algorithm to the clustered data, we were
with brownish color shades. able to achieve computation times that also allow for

The next two images of Figure 1 show greyscaldhe application of our methods to larger 3D data sets.
images after conversion using a luminance-based ap-"& presented results of 2D and 3D color data set
proach (second) and our approach (third). Again, oﬁ‘at document the improvements over other approaches
method manages to let the tissues distinguishable Whir/hen converting data'sets with different |solgm|nant
the boundary of the purple tissue gets lost when ,usi Blors. We have applied standard segmentation te_ch-

: i nrgiques to show how the subsequent segmentation im-
the luminance-based approach, as the luminance Va'%’r%ved when using our approach. Our approach allows
for the purple and the brownish tissue were about th@s to app|y the entire range of all Segmentation tech-
same. The last two images of Figure 1 show the resuliiques to color data via our conversion step. This is
when applying a segmentation algorithm to separate thebviously a more viable way than generalizing all ex-
two tissues. Segmentation after luminance-based coisting and useful scalar field segmentation approaches
version only leaves us with a segmentation of the blacte color volume data, which may not be straightforward
spots. The purple regions cannot be segmented. Sdgt many of them.
mentation after our conversion allows for segmentatio
of the purple tissue. ﬁEFERENCES
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