
Seamless Patches for GPU-Based Terrain
Rendering

Yotam Livny Zvi Kogan Jihad El-Sana
Department of Computer Science,

Ben-Gurion University of the
Negev, Beer-Sheva, Israel

livnyy@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the

Negev, Beer-Sheva, Israel
koganz@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the

Negev, Beer-Sheva, Israel
el-sana@cs.bgu.ac.il

ABSTRACT
In this paper we present a novel approach for interactive rendering of large terrain datasets which is based on
subdividing the terrain into rectangular patches at different resolutions. Each patch is represented by four
triangular tiles which can be at different resolutions; and four strips which are used to stitch the four tiles in a
seamless manner. As a result, our scheme maintains resolution changes within patches and not across patches.
At runtime, the terrain patches are used to construct a level of detail based on view-parameters. The selected
level of detail only includes the layout of the patches and the resolutions at boundary edges. Since adjacent
patches agree on the resolution of common edges, the resulted mesh does not include any cracks or degenerate
triangles. The GPU generates the meshes of the patches by using scaled instances of cached tiles and
assigning elevation for each vertex from the cached textures. Our algorithm manages to achieve quality
images at high frame rates while providing seamless transition between different levels of detail.

Keywords: Terrain visualization, view-dependent rendering, and level of detail

(a) (b) (c) (d)

Figure 1: Terrain rendering using seamless patches. (a) A selected view; (b) The wire-frame of (a), where the
green region marks one patch; (c) Top view of (a); (d) The wire-frame of (c) with the same marked patch.

1. INTRODUCTION
Interactive visualization of landscapes and outdoor
graphics environments is important for graphics
applications such as computer games, flight
simulators, and virtual exploration of remote planets.
Terrains and height field geometry are vital
components of these virtual environments.

The rapid development in acquisition of topographic
maps and cartography has led to the generation of
large terrain datasets that contain billions of samples.
Such terrains exceed the rendering capability of
available graphics hardware, thus reducing the
geometric complexity of these datasets is mandatory
for interactivity. Adjusting the terrain triangulation
in a view-dependent manner is a common approach
for interactive terrain rendering. Furthermore,
adaptive level-of-detail rendering not only simplifies
the geometry, but also manages to reduce aliasing
artifacts that may result from rendering uniform
dense triangulation.

The challenges of interactive terrain rendering have
attracted the interest of researchers for several
decades and extensive research has been done (see
Section 2). Classic level-of-detail rendering schemes
generate, usually off-line, multiresolution hierarchies
which are used at runtime to guide the selection of
appropriate levels of detail based on view-
parameters. Some of these approaches utilize
temporal coherence among consecutive frames by
adaptively simplifying or refining the geometry of a
frame to produce the next frame's geometry. Other
approaches generate the geometry for each frame
independent of its previous frames. These
approaches have managed to accelerate the rendering
of large terrains, but they were not able to maintain
the improvement rate as the GPUs grow faster. In
addition, generation of the frame's geometry is
performed by executing refine and simplify
operations on the CPU, which often fails to complete
these computations within the duration of one frame.
This geometry, which is transferred to the graphics
hardware at each frame, often exceeds the bandwidth

of the communication channel and results in
unacceptably low frame rates.

Figure 2: An image of one patch (left) and its
wire-frame showing the stitching strips (right).

To reduce computation load on the busy CPU,
several approaches partition the terrain into patches
at different resolutions. At runtime these patches are
stitched together to generate the appropriate levels of
detail, which are then transmitted to the graphics
hardware. Stitching these patches in a seamless
manner is the main challenge for these approaches.
Introducing degenerate triangles and dependencies
among patches are used to handle these problems.
However, these solutions may introduce visual
artifacts or require additional random-access
memory references.

To reduce data transmission between CPU and GPU,
several algorithms use cached templates and quadric
terrain elevation maps to generate geometry within
the GPU. These algorithms often rely on triangular
templates, which do not fit the rectangular texture
interfaces and, hence, impose additional complexity
in maintaining and storing textures.

In this paper we present a novel approach for
interactive rendering of large terrain datasets, which
is designed to prevent the above limitations of
previous algorithms. Our approach subdivides the
terrain into rectangular patches at different
resolutions as shown in Figure 1. Each patch is
represented by four triangular tiles that can be at
different predetermined discrete resolutions and are
stitched together by four strips as shown in Figure 2.
Since the number of different resolutions is very
small, the number of required patterns of stitching
strips is also very small.

At runtime, these patches are used to construct the
appropriate level of detail based on view-parameters.

The selected levels of detail do not include any
geometry; instead they only include the layout of the
patches and the resolutions along their boundaries.
The resolutions along the boundaries are used to
guide the selection of the adequate tiles and strips to
cover each patch without the need to query adjacent
patches. Since adjacent patches agree on the
resolution of the shared edges, the generated mesh
does not include any cracks or degenerate triangles.
Scaled templates of the cached tiles are used to
generate the geometry, within the GPU, based on the
boundary resolution. The vertex and fragment
processors fetch and assign elevation and color for
each vertex using the cached textures. To handle
large terrain datasets, we provide external texture
memory support that caches the necessary
displacement and color maps in the GPU's memory.

Our approach provides a number of advantages over
previous terrain rendering schemes. The level of
detail in each patch is determined without querying
adjacent patches. Such a scheme saves unnecessary
random-access memory references. The rendered
mesh does not include any degenerate or sliver
triangles, since our approach assures the same
triangulation on the two sides of each boundary
edge. In addition, it uses an implicit hierarchical
representation that maintains the structure of the
different patches in runtime. Furthermore, it reduces
communication overhead as a result of transmitting
only the layout of patches to the GPU at each frame,
and using predetermined planar triangular tiles,
which are cached in texture memory, to generate the
selected level-of-detail representation. Therefore,
only elevation values are transmitted to the graphics
hardware in each frame.

In the rest of this paper we briefly overview related
work in terrain rendering. Then we discuss our novel
approach, followed by implementation details and
experimental results. Finally, we draw some
conclusions and suggest directions for future work.

2. RELATED WORK
In this section we briefly overview related work in
level-of-detail terrain rendering. We focus on
approaches that utilize the special properties of
height-field datasets.

General level-of-detail rendering algorithms
represent terrains as triangulated meshes. They
usually utilize temporal coherence and manage to
achieve the best approximation of the terrain for
given view-parameters and triangle budget.
However, these algorithms require the maintenance
of mesh adjacency and validation of refinement
dependences at each frame.

Level-of-detail algorithms for height-field datasets
are based on regular grid representation. They utilize

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

the longest edge bisection scheme to simplify
memory layout by using a restricted quadtree
triangulation [Bao04a, Paj98a], triangle bintrees
[Duc97a, Lin96a], or hierarchies of right triangles
[Eva01a, Lin02a]. However, updating the mesh at
each frame prevents the use of efficient rendering
schemes, such as geometry caching.

To utilize efficient rendering schemes, several
approaches partition the terrain into square patches
at different resolutions. At runtime the appropriate
patches are selected, stitched together, and rendered
[Hit93a, Paj98a, Pom00a]. Cignoni et al. [Cig04a]
and Yoon et al. [Yoo05a] have developed similar
approaches for general 3D models. The main
challenge for these approaches is to stitch the
boundaries of the appropriate patches seamlessly.

To overcome this communication bottleneck several
algorithms have utilized cached geometry. Various
approaches cache triangulated regions in texture
memory [Cig03a, Cig03b, Lar03a, Lev02a], while
others exploit the geometric locality to maximize the
efficiency of the cache [Hop99a]. Terrains usually
compensate small geometric details by textures and
as a result, they are often accompanied by huge
texture maps. Tanner et al. [Tan98a] have introduced
the texture clipmaps hierarchy, and Döllner et al.
[Dol00a] have developed a more general hierarchy
to handle large texture maps. Caching techniques
enable fast transfer of geometry and texture to
graphics hardware. However, cache memory is
limited, thus large datasets may still involve an
overhead in communication between CPU and cache
memory.

Cook [Coo84a] introduced the displacement maps
that represent elevation maps as vertex textures.
Other frameworks for displacement maps on
programmable graphics hardware have been
suggested by [Dog00a, Gum99a, Los04a, Mou02a].
Although these approaches are not implemented at
GPU, they are based on designs which prefer many
simple computations over a few complicated ones.

The advances in graphics hardware and its
programmability have driven the development of a
new generation of level-of-detail rendering
algorithms. Losasso et al. [Los03a] and Bolz and
Schröder [Bol05a] used the fragment processor to
perform mesh subdivision. Southern and Gain
[Sou03a] and Larsen and Christensen [Lar03a] used
the vertex processor to interpolate different
resolution meshes in a view-dependent manner.
Wagner [Wag04a] and Hwa et al. [Hwa04a] used
GPU-based geomorphs to render terrain patches of
different resolutions. Dachsbacher and Stamminger
[Dac04a] used GPU programmability to generate
and render procedural details for terrains at runtime.

Schneider and Westermann [Sch06a] suggested
progressive transmission to reduce the data transfer
between CPU and GPU.

Geometry clipmaps algorithm [Asi05a] stores the
surface triangulation layout in a view-dependent
manner. In each frame, the visible part of the
triangulation is sent to the GPU and modified
according to the uploaded elevation and color maps.
However, this algorithm does not perform local
adaptivity, and the transition between levels of detail
is not smooth and may result in cracks. The cracks
problem is resolved by inserting degenerate
triangles, but such triangles may generate visual
artifacts.

3. OUR APPROACH
In this section we present our novel algorithm for
interactive terrain rendering. It partitions the terrain
into rectangular patches and utilizes advanced
features of graphics hardware, such as
programmability, displacement mapping, and
geometry caching. Our algorithm involves a light
preprocessing stage, in which it generates hierarchies
of elevation maps and color textures and stores them
in main memory. In our patch scheme, the
coexistence of different discrete geometry
resolutions within the same patch enables seamless
stitching (without cracks or degenerate triangles) of
adjacent patches. In each frame our algorithm uses
an implicit patch hierarchy to select a set of
appropriate patches (for rendering) and determine
the resolution on their boundaries based on view
parameters. The resolution of each patch is
determined based on its four boundary edges and
without the need to query its adjacent patches.

Patch Scheme
Previous terrain rendering algorithms use either
triangular or rectangular patches for view-dependent
level-of-detail rendering. On one hand, algorithms
that use rectangular patches assign constant
resolution over the entire patch, and hence prevent
local adaptivity and impose severe difficulty in
stitching adjacent patches. On the other hand,
algorithms that use triangular patches enable easier
stitching schemes and provide better local adaptivity,
but they suffer incompatibility with texture
rectangular interface and complicate texture
management. Our patch scheme combines the
advantages of the two approaches; it subdivides the
terrain into rectangular patches which consist of
triangular tiles that allow different resolutions to
coexist within one patch. Such a scheme provides
limited local adaptivity and enables the stitching of
adjacent patches in a seamless manner.

In our scheme, a patch is arranged as four tessellated
triangular regions which are determined by the two
diagonals of the rectangular patch (see Figure 3). We
shall refer to these tessellated triangular regions as
triangular tiles (or simply tiles). The four tiles can
have different resolutions which are selected from a
predefined set of uniform resolutions. One could
treat these tiles as discrete levels of detail of the
same tile. Within a patch, the triangular tiles are
stitched together by using predefined strips (refer to
Figure 4). Since the number of different resolutions
for the tiles is usually small – 2 to 4 – the number of
different stitching strips is also very small. Six strip
types are required to stitch tiles at three different
resolutions.

We have chosen to adopt tile resolutions at
consecutive powers of two to comply with the
mipmap resolutions and meet the requirement of
Claim 1 (see Level of Detail section below).

Patch Hierarchy
The patch hierarchy is constructed top-down by
subdividing each patch into R×R children patches,
where R is the branching factor of the hierarchy. The
branching factor is determined by the number of
different resolutions for tiles and equal to the ratio
between the smallest and largest resolutions. For
example, 2 and 3 resolutions require branching
factors of 2 and 4, respectively. This relation ensures
seamless stitching among adjacent patches and
absence of cracks.

The patch hierarchy does not store any geometry;
instead it stores the position and dimension of each
patch with respect to the terrain. Therefore, it easily
fits in local memory, even for very large terrains. In

practice, there is no need to implement the hierarchy
explicitly, and therefore in our current
implementation we use implicit hierarchy.

Runtime Rendering
At runtime, the patch hierarchy is used to guide the
selection of the various levels of detail based on
view-parameters. In each frame, the patch hierarchy
is traversed in a top-down manner to select a set of
active patches that form the appropriate level of
detail. The traversal process starts from the root and
for each visited patch τ an error metric is computed.
If the error is too large, with respect to the view-
parameters, the children of the patch τ are traversed.
Otherwise, the resolutions of boundary edges are
computed and the patch is added to the stream of
active patches.

Figure 5: A terrain view with a wire-frame on
top. The meshes of triangular tiles appear in
white color and the strips appear in red.

Single-unit-size meshes that represent each
resolution of the tiles and stitching strips (3 tiles and
6 strips for three different resolutions) are cached in
texture memory. In each frame, the active patches
are streamed to the graphics hardware for rendering.
The light representation of active patches by their 2D
enclosing rectangle contributes to the dramatic
reduction on the CPU-GPU communication load.
The resolutions at boundary edges (of patches) are
discretized to match the resolution of the predefined
triangular tiles. The resolution at the boundary edges
is enough to determine the tiles and strips required to
cover the patch τ in a straight forward manner (see
Figure 5). The cached instances of the selected tiles
and strips are transformed to match the enclosing
rectangle of the patch, which selects its tiles without
querying any of its adjacent patches. Since each two
adjacent patches agree on the resolution of the
common edge, the stitching of adjacent patches is
smooth and does not include cracks or degenerate
triangles.

Tiling a patch with triangular tiles produces a planar
mesh without elevation or color components. These
components are assigned (for each vertex) by the

(a) (b)
Figure 3: The components of one patch. (a) The
image of four tiles. (b) The image of four strips.

Figure 4: Triangular tiles at two different
resolutions and the required stitching strips.

vertex and fragment processors, which use x and y
coordinates of a received vertex to fetch and assign
the appropriate elevation/color from cached textures.

Level of Detail
The level of detail of a patch is represented by the
resolutions of its tiles which are determined by the
resolution at boundary edges. The resolution of an
edge is computed based on its length l and the
distance d from the viewpoint by using Equation 1,
where ρ is a precision factor. If ε is larger than 1, the
patch is split to its children, otherwise the resolution
of the edge is determined by εRmax rounded up to the
closest resolution, where Rmax is the highest available
resolution.

d
lρε = (1)

The scaling factor is used to resize a tile to match the
patch's enclosing rectangle and select the appropriate
texture level from which the elevation and color
values are fetched.

Claim 1: The generated mesh does not include
cracks, which means that any two adjacent tiles
agree on the resolution of the common edge.

Proof: Without loss of generality we prove the claim
for two resolutions and quadtree subdivision. We
distinguish between two cases:

I. The two adjacent patches have the same
dimensions: Since the two patches have the same
dimensions, they have the same enclosing
rectangle and share a common edge along an entire
side. By selecting the same tile on the two sides of
the shared edge, the two patches are stitched
seamlessly.

II. The two adjacent patches are in different
dimensions, which means that the edge belongs to
one patch on one side and two patches on the other
side (see the edge AB in Figure 6):
We first show that the tile ABJ gets the highest
resolution R2. The patch ABCD has split to four
children, which means that one of its edges has
required a resolution higher than R2 (beyond the
available resolution); let this edge be CD . Let l be
the length of the edge AB and the distances of the
edges AB and CD from the viewpoint are dfar and
dnear, respectively. Based on Equation 1,

neardl >⋅ρ holds as a result of assuming that the
patch ABCD has split into its four children, then:

nearfar
farnearnear

dld
d

l
dl

l
d

l
+≤>

⋅
⇒>

+
⋅

⇒>
⋅ ;

2
1

2
11 ρρρ

Therefore, the edge AB is assigned the resolution
R2, and the edges AE and EB are assigned the
resolution R1. Our algorithm assigns resolution R1

to edges with error values ε in the range [0, 0.5]
and R2 to those with error values in the range (0.5,
1.0]. For that reason, the difference between
adjacent patches is at most one level (in the case of
two different resolutions).

Figure 6: Stitching tiles at two different levels
of detail.

Texture Pyramid
Terrain datasets are usually represented by elevation
maps and color textures, which store the properties
of vertices in the original terrain. We use multiple-
level texture pyramids at successive powers of two
(similar to mipmaps) to support level-of-detail
rendering. These texture pyramids are used at
runtime to achieve faithful sampling of the textures
for the vertices of each tile. Since these multiple-
level pyramids are similar to mipmaps, we could let
the hardware construct them. Then at runtime, the
vertex processor determines from which level to
select the values. However, such an approach does
not work when the terrain size exceeds the capacity
of the base level of the mipmaps [Los04a].

For large terrains, the multiple-level texture
pyramids are constructed once by the CPU before
being transferred for caching in the texture memory.
We start with the original texture, which represents
the most detailed level, and each new level is
generated from the previous one by reducing the
resolution by half at each dimension. The pixels in
the generated level are computed by interpolating the
four corresponding pixels of the previous level.

Note that elevation and color values of a vertex are
selected from different levels of the hierarchies
based on the geometric level of detail of the
processed tile.

4. IMPLEMENTATION DETAILS
In our current implementation we do not construct
the patch hierarchy explicitly; instead, an implicit
representation is used. The root of the hierarchy is
the coarsest level of detail that fits in texture memory
and matches the interactive rendering capability of
the graphics hardware. Therefore, the height of the
hierarchy can be easily determined based on the
hardware capabilities and the predefined branching
factor. Note that the 2D bounding rectangle of the
root is the same as that of the original terrain. Also

recall that the patch hierarchy does not store any
mesh geometry or pixel information. The
subdivision of a patch into its children is performed
by several shift instructions within the CPU. The
traversal of the implicit patch hierarchy is performed
similar to the explicit one and is often more efficient
as a result of avoiding random memory access to
fetch the children patches. We found that traversing
the patch hierarchy is negligible compared to the
rendering time as shown in the CPU column on
Table 2.

View-frustum culling is performed by the CPU
during the traversal which determines the set of
active patches. For each patch τ which requires
further subdivision to reach the appropriate level of
detail, we test its children patches against the view-
frustum only if τ intersects the boundary of the view-
frustum. If the patch τ is entirely included within the
view-frustum, then all its children patches are also
within the view-frustum. If τ intersects the view-
frustum's boundary, we test and mark each of its
children patches as to whether it is inside, outside, or
intersecting the view-frustum. Outside patches are
culled and they are not processed further.

The meshes that represent the different resolutions
tiles and strips are cached in texture memory. At
runtime, these meshes are used to tile the selected
patches. Since the number and the size of these
meshes are small (3 tiles and 6 strips are required to
support three different resolutions within a patch),
we store four orientations of each tile and each strip
to avoid rotation and mirroring of these meshes at
runtime.

To handle large terrain datasets we have
implemented an out-of-core support similar to the
one proposed by Losasso and Hoppe [Los04a]. This
scheme stores the texture pyramids in main memory
and caches in texture memory only the portions
necessary for rendering. The updates of the cached
textures are performed in an active manner by
loading "L-Shape" regions into texture memory, as
early as they are required.

In earlier algorithms, the CPU needs to send three
coordinates for an uncached vertex to place it in the

model space. Our algorithm utilizes hardware
supported displacement mapping, and thus the CPU
sends only the elevation value for each vertex. The
other two coordinates are generated by the GPU in a
parametric manner using the terrain grid structure.
This technique reduces the data transfer at runtime
from three coordinates to one coordinate for each
vertex. The elevation components are uploaded into
the vertex texture using Fragment Buffer Object
extensions (FBO).

5. RESULTS
We have tested our implementation on an AMD
Athlon 3500 with 1GB memory, and an nVidia
GeForce 7800 GTX graphics card with 256M texture
memory using Puget Sound and Grand Canyon
terrain datasets. In this section we report and analyze
selected entries of these results.

The performances of our algorithm are summarized
in Table 1. For each dataset we view different
regions of the terrain to capture the various
processing patterns. In each row we report the terrain
size, viewed region, precision factor, and
performance with and without view-frustum culling.
We record two options for the viewed regions: edge
and middle, which refer to flying near an edge and
inside the terrain, respectively. The precision factor
(see also Equation 1) 2ρ0 selects more detailed levels
than the levels selected by ρ0. In the performance
columns we report the number of rendered triangles
(Triangle column), the number of traversed patches
(Traversed column), the number of rendered patches
(Rendered column), the number of culled patches
(Culled column), and the frame rates. The view-
frustum culling doubles the performances when
flying on the edge of the terrain and triples it in
general. Our algorithm manages to achieve quality
images at high frame rates, as can be seen in Table 1.
The frame rates depend mainly on the number of
triangles. The first row shows 156 FPS without view
frustum culling for about 330K triangles and 91
rendering patches, and the sixth row reports the same
FPS with view frustum culling and 56 patches. Such
observation reveals that patch selection is negligible
with respect to the total rendering time. Note that

With Frustum Culling Without Frustum Culling Dataset
Size

View
Region

ρ
Factor Triangles Traversed Rendered Culled FPS Triangles Traversed Rendered FPS

4Kx4K Edge ρ0 172696 109 46 36 283 331428 121 91 156
4Kx4K Middle ρ0 138668 109 33 49 380 403896 141 106 138

16Kx16K Edge ρ0 180731 100 50 27 271 338240 123 93 153
16Kx16K Middle ρ0 148200 126 39 58 354 389197 151 107 135
4Kx4K Edge 2ρ0 354248 137 66 37 138 763864 189 142 69
4Kx4K Middle 2ρ0 330480 133 56 44 156 1133796 265 199 52

16Kx16K Edge 2ρ0 422358 179 82 74 112 915190 213 160 56
16Kx16K Middle 2ρ0 414966 152 70 63 112 1359642 340 231 43

Table 1: Runtime performance.

patch selection also includes view-frustum culling
and transmission of active patches list.

Figure 7: View-frustum culling: A shaded view
(left) and its wire-frame representation (right).

We compared the results of our algorithm with the
results of three known terrain rendering algorithms.
To bring all the results to a common base, we have
estimated the expected performance of these
algorithms on our machine based on the reported
results and the used machine's hardware. To present
a reliable approximation, we measure only triangles
that are actually processed by the graphics hardware.
On comparable hardware we expect that BDAM
[Cig03a], Clipmap [Asi05a], and the algorithm
suggested in [Hwa04a] will achieve about 46M,
44M, and 43M textured triangles per second,
respectively. Our algorithm manages to achieve 53M
textured triangles per second on average. These
numbers show that the simplicity of our GPU code
with the advantages of displacement map
functionality provides encouraging performance.

Table 2: Hardware performance analysis

The contribution of the CPU and the GPU to the
performance of the algorithm is shown in Table 2.
The first three columns of each row represent the
configuration of a frame, which includes the number
of rendered triangles, rendered patches, and culled
patches. The fourth and fifth columns report the
CPU and the GPU processing time, respectively. The
CPU load is tiny and has almost no influence on the
frame rates for two main reasons – the selection of
the active patches (by the CPU) is very light and the
CPU runs parallel to the GPU. These conclusions are
also supported by the results shown in Table 2.
These results also show that our algorithm will
benefit from the current trend in improving GPU
rates.

Figure 7 shows the shaded and wire-frame
representations of a terrain view after applying view-
frustum culling. Figures 8 and 9 were generated
from a Puget Sound terrain dataset using our

algorithm at different precision factors ρ. In each
figure, image (a) shows a shaded view that depicts
image quality, image (b) shows the wire-frame
representation that illustrates the triangular tiles in
white color and the stitching strips in red.

Figure 8: A terrain view at ρ = ρ0. (a) A shaded
surface. (b) Tiles in white and strips in red.

6. SUMMARY AND FUTURE WORK
We have presented a novel approach for

interactive terrain rendering that reduces the load on
the CPU, utilizes texture memory, and leverages
advanced features of the GPU. The terrain is
subdivided into rectangular patches on the fly. Each
patch is represented by four triangular tiles at
different resolutions which are stitched together
using four strips. At runtime the CPU selects the
appropriate patches based on view-parameters and
determines the resolution at their boundaries. The
different tiles and stitching strips are cached in
texture memory and used to tile each patch
according to its boundary resolution. Multiresolution
levels of color textures and displacement maps are
also cached in texture memory and used by the
vertex and fragment processors to assign the
elevation and color for each vertex.

Our approach balances computation load among the
CPU and GPU and dramatically reduces the
communication between them. Adjacent patches are
stitched in a seamless manner without cracks or
degenerate triangles, since they agree on the
resolution of the common edge. Furthermore, each
patch determines its own resolution without querying
its adjacent patches; it simply selects the different
tiles that comply with its boundary resolution. The
use of tiles provides limited local adaptivity which
contributes to the smoothness of the generated mesh.

Figure 9: A terrain view at ρ=2ρ0. (a) A shaded
surface. (b) Tiles in white and strips in red.

Our algorithm performances are strongly influenced
by the speed of vertex pipelines. The algorithm relies

Configuration Time
Triangles Rendered Culled CPU (μs) GPU (ms) FPS
 88986
 96246
119054
148200
180731
230372

18
22
27
39
50
47

34
13
18
58
27
23

17.54
22.57
26.88
30.67
34.84
39.06

1.85
1.98
2.58
3.04
3.98
5.68

583
545
418
354
271
190

on the vertex fetch operation which enables the
vertex processor to access texture memory.
However, the fetch operations within vertex
processors are not yet optimized. We predict that
future development in vertex processor hardware
will lead to impressive improvement on the
performance of our algorithm.

We see the scope of future work in extending the
idea of independent patches to general 3D models.
Such development will provide view-dependent
rendering for large datasets in a seamless manner
without imposing dependencies among adjacent
patches. Moreover, our suggested approach
generates patch geometry within the GPU, and hence
can not utilize temporal coherence among
consecutive frames. Utilizing temporal coherence
within the GPU could contribute to further
performance improvements.

7. ACKNOWLEDGMENTS
Our research and particularly this work are

supported by the Lynn and William Frankel Center
for Computer Sciences, the Israel Ministry of
Science and Technology, and the Tuman fund.

8. REFERENCES
[Asi05a] Asirvatham A. and Hoppe H. Terrain rendering using
GPU-based geometry clipmaps. GPU Gems 2, pages 27–45, 2005.
[Bao04a] Bao X., Pajarola R., and Shafae M., Smart: An efficient
technique for massive terrain visualization from out-of-core. In
Proceedings of Vision, Modeling and Visualization ’04, pages
413–420, 2004.
[Bol05a] Bolz J. and Schröder P. Evaluation of subdivision
surfaces on programmable graphics hardware. Submitted, 2005.
[Paj98a] Pajarola R., Large scale terrain visualization using the
restricted quadtree triangulation. In Proceedings of Visualization
’98, pages 19–26, 1998.
[Cig03a] Cignoni P., Ganovelli F., Gobbetti E., Marton F.,
Ponchio F., and Scopigno R. BDAM – batched dynamic adaptive
meshes for high performance terrain visualization. Computer
Graphics Forum, 22(3):505–514, 2003.
[Cig03b] Cignoni P., Ganovelli F., Gobbetti E., Marton F.,
Ponchio F., and Scopigno R. Planet-sized batched dynamic
adaptive meshes. In Proceedings of Visualization ’03, pages 147–
155, 2003.
[Cig04a] Cignoni P., Ganovelli F., Gobbetti E., Marton F.,
Ponchio F., and Scopigno R. Adaptive tetrapuzzles: efficient out-
of-core construction and visualization of gigantic multiresolution
polygonal models. ACM Trans. Graph., 23(3):796–803, 2004.
[Coo84a] Cook L., Shade trees. Computer Graphics, 18(3):223–
231, 1984.
[Dac04a] Dachsbacher C., and Stamminger M. Rendering
procedural terrain by geometry image warping. In Eurographics
Symposium in Geometry Processing, pages 138–145, 2004.

[Dog00a] Doggett M., and Hirche J. Adaptive view dependent
tessellation of displacement maps. In HWWS ’00: Proceedings of
the workshop on Graphics hardware, pages 59–66, 2000.
[Dol00a] Döllner J., Baumann K., and Hinrichs K. Texturing
techniques for terrain visualization. In Proceedings of
Visualization ’00, pages 227–234, 2000.
[Duc97a] Duchainear M., Wolinsky M., Sigeti D., M. Miller, C.
Aldrich, and Mineev-Weinstein M., ROAMing terrain: Real-time
optimally adapting meshes. In Proceedings of Visualization ’97,
pages 81–88, 1997.
[Eva01a] Evans S., Kirkpatrick D., and Townsend G. Right
triangulated irregular networks. Algorithmica, 30(2):264–
286,2001.
[Lin96a] Lindstrom P., Koller D., Ribarsky W., Hodges L., Faust
N., and Turner G. Real-time, continuous level ofdetail rendering
of height fields. In SIGGRAPH ’96,pages 109–118, 1996.
[Lin02a] Lindstrom P. and Pascucci V. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE Transactions on Visualization and Computer
Graphics, 8(3):239–254, 2002.
[Gum99a] Gumhold S. and H¨uttner T. Multiresolution rendering
with displacement mapping. In HWWS ’99: Proceedings of the
workshop on graphics hardware, pages55–66, 1999.
[Hit93a] Hitchner L. and McGreevy M. Methods for user-based
reduction of model complexity for virtual planetary exploration. In
SPIE 1913, pages 622–636, 1993.
[Hop99a] Hoppe H. Optimization of mesh locality for transparent
vertex caching. In SIGGRAPH ’99, pages 269–276, 1999.
[Hwa04a] Hwa L. M., Duchaineau M., and Joy K. I.. Adaptive 4-8
texture hierarchies. In Proceedings of Visualization 2004, pages
219–226, 2004.
[Lar03a] Lario R., Pajarola R., and Tirado F. Hyper-block
quadtree based triangulated irregular networks. In Proceedings of
IASTED VIIP, pages 733–738, 2003.
[Lev02a] Levenberg J. Fast view-dependent level-of-detail
rendering using cached geometry. In Proceedings of Visualization
’02, pages 259–266, 2002.
[Los03a] Losasso F., Hoppe H., Schaefer S., and Warren J.
Smooth geometry images. In Eurographics Symposium in
Geometry Processing, pages 138–145, 2003.
[Los04a] Losasso F. and Hoppe H. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Trans. Graph.,
23(3):769–776, 2004.
[Mou02a] Moule K. and McCool M. Efficient bounded adaptive
tessellation of displacement maps. In Proceedings of Graphics
Interface, pages 171–180, 2002.
[Pom00a] Pomeranz A. Roam using triangle clusters (RUSTiC).
Master’s thesis, 2000.
[Sch06a] Schneider J. and Westermann R. Gpu-friendly high-
quality terrain rendering. Journal of WSCG, 14(1-3):49–56, 2006.
[Sou03a] Southern R., and Gain J., Creation and control of real-
time continuous level of detail on programmable graphics
hardware. Computer Graphics Forum, 22(1):35–48, 2003.
[Tan98a] Tanner C., Migdal J. and Jones M. The clipmap: a
virtual mipmap. In Proceedings of SIGGRAPH ’98, pages 151–
158, 1998.
[Wag04a] Wagner D. Terrain geomorphing in the vertex shader.
Shader Programming Tips & Tricks with DirectX 9, 2004.
[Yoo05a] Yoon, S. Salomon, B. and Gayle, R. Quick-VDR: Out-
of-core view-dependent rendering of gigantic models. IEEE
Transactions on Visualization and Computer Graphics, 11(4):369–
382, 2005.

