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Abstract

Progressive mesh is a data structure that encodes a continuous spectrum of mesh approximations. Sliding window pro-
gressive meshes (SWPM) minimize data transfers between CPU and GPU by storing mesh data in static on-GPU memory
buffers [For01]. The main disadvantages of the original SWPM algorithm are poor vertex cache usage efficiency, and big
resulting datasets. Connectivity-based algorithm [KT04] achieves a good vertex cache coherence but it does not address the
problem of high memory utilization. In this paper, we describe estimates for the size of memory buffers, and describe methods
to reduce the index datasets. We achieve 20% reduction due to the use hierarchical data structures (clustered patches); further
reduction (50% or more) is possible if one can optimize connectivity of input meshes, or is willing to decrease the number of
mesh approximations stored in the progressive mesh.
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1 INTRODUCTION
Progressive mesh data structure encodes a continuous
spectrum of mesh approximations [LRC∗02, pp.70–
72]. Efficient hardware rendering of the progressive
meshes is discussed in a number of papers. Many pro-
posed methods do not depend on mesh simplification
procedure; they address only creation and maintenance
of GPU-optimal sequences of triangles, such as trian-
gle strips, while permitting the use of an arbitrary sim-
plification algorithm (see e.g. [LRC∗02, pp.168–169],
[Ste01, BG01, SP03]). These methods process the data
on CPU, and then transfer the results to GPU via gen-
erally slow procedure. Since the use of progressive
meshes implies frequent LOD changes, the data trans-
fers will be a bottleneck in most cases.

The problem of CPU-GPU data transfers is addressed
in some view-dependent schemes, which partition a
mesh into the set of triangle patches, e.g. [YSG05,
CGG∗05]. Each patch is updated once per several
frames, thus the cost of updating the entire model is
distributed over time. However, these schemes impose
significant overheads when rendering smaller meshes
(e.g. <100K triangles) with multiple instances, which
are found in many applications, such as videogames.

Sliding window progressive meshes (SWPM) allow
both efficient rendering of the instantiated meshes, and
fast geomorphing that exploits frame-to-frame coher-
ence. SWPM simplification algorithm partitions a mesh
into the set of patches, which are sequentially replaced
with simpler triangulations in a view-independent fash-
ion. Unlike the view-dependent schemes, SWPM use
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very small patches (about six triangles each), so the typ-
ical difference between two subsequent mesh approxi-
mations is two triangles. The patches are stored in static
on-GPU memory buffers that tend to be relatively large;
this problem is augmented by the fact that simplifica-
tion with higher quality requires even larger buffers.

This paper is organized as follows. Sec. 2 describes
preliminaries about SWPM algorithm. Sec. 3 contains
contribution of this paper; we derive estimates for the
size of memory buffers, and propose methods to reduce
memory consumption.

2 SLIDING WINDOW ALGORITHM
Simplification operators. In this paper, we consider
half-edge collapse and vertex removal operators. Let
M = (V,T ) be a 2-manifold triangle mesh, where V =
{vi|vi ∈ R3} is a set of vertices, and T = {4`|4` =
(vi,v j,vk),vi,v j,vk ∈V} is a set of triangles. Vertex re-
moval operator R(vi) deletes from the mesh the vertex
vi and all incident triangles, and then re-triangulates the
resulting hole with a triangulation algorithm. Half-edge
collapse operator H (vi,v j) replaces the vertex vi with
the vertex v j in all triangles of the mesh M and then re-
moves the resulting degenerate edge and corresponding
degenerate triangles from the mesh. One can interpret
H as a vertex removal with the specific triangulation
algorithm.

Mesh simplification algorithm builds a sequence of
mesh approximations M = {M0,M1, . . . ,Mn} from the
initial mesh M0. An approximation Mk+1 ∈M is the re-
sult of applying the operator H (vi,v j) (or R(vi)) with
some vi,v j ∈ V to Mk ∈ M (the vertices vi and v j are
chosen according to the value of an error metric).

Sliding window algorithm. Sliding window scheme
was described in [For01] as an efficient method for
rendering of instantiated geometry. Consider a mesh
M = (V,T ). Let S(vi) be the set of the triangles incident



to the vertex vi ∈V , i.e. S(vi) = {4`|4` 3 vi,4` ∈ T}
(S(vi) is also called star of the vertex vi). We say that a
subset P(vi) of the set T is a patch, if S(vi)⊆ P(vi)⊆ T ;
here vi is the inner vertex.

Let P = {P1,P2, . . . ,Pn} be a list of patches, where
P1 ∪P2 ∪ ·· · ∪Pn = T , and any triangle belong to only
one patch. The inner vertices of such patches be-
long to an independent set. We define a list of sim-
plified patches Q = {Q1,Q2, . . . ,Qn}. Each simpli-
fied patch Qi ∈ Q is obtained by applying a simplifi-
cation operator to the corresponding patch Pi ∈ P, i.e.
R(v j) : Pi(v j) 7−→ Qi, or H (v j,vk) : Pi(v j) 7−→ Qi,
where vk ∈ Pi(v j). We stress that a simplification opera-
tor removes the inner vertex only. Thus, we can replace
any Pi with Qi while maintaining conformity (i.e. no
cracks or T-joints) of the mesh.

Let || denote the lists concatenation operator. A||B
builds the list that contains the elements of A followed
by the elements of B, i.e. {a1, . . . ,an}||{b1, . . . ,bm} =
{a1, . . . ,an,b1, . . . ,bm}. We construct the index buffer
(which is a memory buffer that holds triangles connec-
tivity information) from the list of patches P and the
corresponding list of simplified patches Q as follows

I(P,Q) = P1||P2|| · · · ||Pn||Q1||Q2|| · · · ||Qn. (1)

The important outcome of obtaining such I is that we
can render a LOD simply by choosing the appropriate
window in I, e.g. the original mesh M0 is rendered us-
ing the window P1||P2|| · · · ||Pn, M1 is rendered using the
window P2||P3|| · · · ||Q1, M2 is rendered using the win-
dow P3||P4|| · · · ||Q1||Q2, etc. No memory update is re-
quired to change mesh LOD; the index buffer may be
shared among all mesh instances.

Geomorphing. The sliding window scheme enables
efficient geomorphing to smooth LOD transitions.
Consider M0 → M1 transition; only the patch P1
changes and actually needs morphing. In the case of
an arbitrary Mi → M j transition (i < j), the patches
Pi+1,Pi+2, . . . ,Pj, which require morphing, form a
continuous subsequence that may be rendered sepa-
rately from the patches, which do not need morphing.
One can expect that the majority of patches may be
processed without morphing because in practice i is
ofen close to j due to the frame-to-frame coherence.
Since the morphing via linear interpolation effectively
doubles the amount of data transferred per vertex, the
sliding window scheme reduces by a factor of two the
memory bandwidth consumed by geomorphing.

Vertex caching. One have to construct the list
of patches P in such a way that any two subsequent
patches Pi ∈ P and Pi+1 ∈ P share via a vertex cache as
many vertices as possible [KT04]. Thus, the sequence
of simplified patches Q is also cache-optimized.
Therefore, vertex cache hit rate remains high for any
mesh LOD. Alternatively, one can optimize patches
order for efficient Z-culling [NBS06].

3 SWPM INDEX DATASET
Consider a mesh that contains 60K triangles and 30K
vertices. Below we show that SWPM index dataset
takes about 2Mb of memory; on the other hand, only
0.7Mb buffer is required for storing two 3-vectors (e.g.
position and normal) per vertex. Thus, reduction of the
index dataset, which is described in this section, may
be the main tool to reduce the size of geometric data for
memory-limited applications.

Cascade simplification. Suppose, we have obtained
the list of patches P0 (and the corresponding list of
simplified patches Q0) on the mesh M0. We construct
SWPM index buffer B0 := I(P0,Q0). Let Mn be the
simplest mesh approximation that can be rendered us-
ing the buffer B0. It is possible to derive the limits
(7) for the number of triangles Mn contains. How-
ever, many application may require simpler approxima-
tions. Thus, the simplest approximation Mn must be
simplified further; we have to construct the buffer B1 :=
I(P1,Q1) where Mn serves as an initial mesh. Gener-
ally, we construct the buffers B0,B1, . . . ,Bz, where the
buffer Bz contains a sufficiently coarse mesh.

We denote |Bi| the number of triangles, which are
stored in the SWPM buffer Bi. Let β be the total num-
ber of triangles in all SWPM buffers

β :=
z

∑
i=0
|Bi|. (2)

Under certain assumptions it is possible to derive a sim-
ple estimate (10) for the minimum value of β . The
mesh-dependent parameter d is a mean degree of the
vertices of the maximum independent set. Using this
estimator, one can expect that SWPM index dataset is
at least 3–5 times larger than the index buffer of the
original mesh (since typically d ∈ [4;6]).

The factor of error control. A drawback of the sim-
plification algorithms that remove independent vertices
is their limited ability to adapt mesh triangulation ac-
cording to the original surface geometry. Consider the
mesh shown in Fig. 5a. Conservatively, we start sim-
plification by reducing complexity of the flat upper part
of the mesh while leaving the curved bottom part un-
touched as shown in Fig. 5c. However, we delete ver-
tices uniformly from the top and the bottom when re-
moving the maximum independent set.

One possible solution is as follows. First, we sort all
vertices of the mesh M = (V,T ) according to the er-
ror induced by the removal of each vertex. Then we
prohibit removal of k vertices with the largest error;
any such vertex may not become an inner vertex. Let
µ = k/|V | be a user-defined fraction of the vertices that
may not be removed. Typical relations between µ and
the simplification error are shown in Fig. 1. In prac-
tice, setting µ ∈ [0.05;0.2] is often sufficient to achieve
plausible simplification results. Similar argumentation
concerning large meshes can be found in [FS01].



0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

RMS Error SWPM
QSlim 2.0
DirectX D3DX 9.0

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

RMS Error SWPM
QSlim 2.0
DirectX D3DX 9.0

a) t72 mesh is simplified from 2450 to 640 triangles b) cessna mesh is simplified from 7446 to 580 triangles

µµ

Figure 1: Relationship between the simplification error and the fraction of non-removable vertices µ
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Figure 2: a) the patches on regular triangulation b) the result of applying Optimize procedure to the mesh shown
in Fig. 2a c) the result of Optimize when d is limited to d ≥ 4 d) the latter procedure is applied to Bunny mesh
(the model is courtesy of Stanford Computer Graphics Lab)

When µ > 0, the following estimator tends to be rel-
atively accurate

β = |T0|(d−1)(µ +1). (3)

Thus, one can expect that SWPM index dataset is 4–7
times larger than the index buffer of the original mesh
(since typically d ∈ [4;6] and µ ∈ [0.05;0.2]).

3.1 Mesh connectivity optimization
It follows from (10) and (3) that the size of index dataset
is proportional to the mean degree of the inner vertices.
At the same time, we notice that a greedy search for
the maximum independent set, which is based on the
minimum-degree heuristics, tends to include the ver-
tices of lower degree to the independent set. There-
fore, one way of minimizing d is creating low-degree
vertices in the mesh artificially, e.g. at the prepro-
cessing step that precedes the simplification process.
One may perform such preprocessing by applying a se-
quence of edge swap operators. Edge swap operator
E (vk,v`,vm,vn) replaces two triangles 4i = (vk,v`,vm)

and4 j = (v`,vk,vn), which share the edge (vk,v`), with
the triangles4′

i = (vk,vn,vm) and4′
j = (v`,vm,vn). As

a result, degrees of the vertices vk and v` decrease.

One simple strategy is applying the operator E itera-
tively until the degree of any vertex cannot be reduced
any further.

function Optimize(M)
X ←{v1}, Y ←{vn}, where vn is connected to v1
for each vi ∈ X
find the edge (vi,vm) such that vm ∈ Y
for each edge (vi,v j) starting with (vi,vm) in ccw order
if v j /∈ Y and vk,v` /∈ X then
M ← E (vi,v j,vk,v`)M
X ← X ∪{v j}
Y ← Y ∪{vk,v`}

return M

For example, Optimize produces the triangulation
shown in Fig. 2b from the triangulation shown in
Fig. 2a. It decreases the mean degree d down to three,
which is the lowest value. However, it is easy to see
that such optimization also dramatically worsens mesh



quality in planar mesh regions since the majority of
resulting triangles would have obtuse angles. There-
fore, one have to implement a check for planarity;
if a curvature in a vertex is below some threshold,
then degree of this vertex should not be decreased
below four. Such modification of the algorithm is
straightforward; we omit its details. The modified
optimization produces the mesh with diamond pattern
(see Fig. 2c) from the regular triangulation shown in
Fig. 2a. Optimized Bunny model is shown in Fig. 2d.

3.2 Clustered patches

In this subsection we describe an improvement to the
algorithm of SWPM dataset creation. In order to re-
duce the size of index dataset, we reuse the simplified
patches to construct a new set of the patches via clus-
tering.

We demonstrate the idea of clustering on a simple
example. We define the list of seven patches P =
{P1,P2, . . . ,P7} and the corresponding list of simplified
patches Q = {Q1,Q2, . . . ,Q7}. The simplified patches
are shown in Fig. 3b. The simplified patches contain
28 triangles; the numbering of triangles is shown in
Fig. 3a. By X denote the fragment of the index buffer
X := Q1||Q2|| · · · ||Q7 = {41,42, . . . ,428}. The frag-
ment X is shown in Fig. 4a; it is located at the end of
index buffer I(P,Q).

Using a clustering algorithm, we construct a new
list of patches Ph = {Ph

1 ,Ph
2 , . . . ,Ph

n }, where each
patch Ph

i ∈ Ph is a concatenation of one or more
consecutive simplified patches of the list Q. In our
example, we define two patches Ph

1 = Q1||Q2||Q3 and
Ph

2 = Q4||Q5||Q6||Q7 (see Fig. 3c), thus Ph = {Ph
1 ,Ph

2 }.
Then, we build the corresponding list of simplified
patches Qh = {Qh

1,Q
h
2}, and the index buffer I(Ph,Qh)

in the same way as we do it for the basic sliding window
algorithm. The index buffer starts with the fragment
Y := Ph

1 ||Ph
2 = Q1||Q2|| · · · ||Q7 = {41,42, . . . ,428}

(see Fig. 4b), which coincides with the frag-
ment X located at the end of index buffer
I(P,Q) (see Fig 4a). The memory buffer
D := I(P,Q)||I(Ph,Qh) = P1||P2|| · · · ||P7||X ||Y ||Qh

1||Qh
2

contains a large amount of duplicated data because
X ≡ Y . However, instead of D we can use the buffer
Dh := P1||P2|| · · · ||P7||X ||Qh

1||Qh
2 that contains both

I(P,Q) and I(Ph,Qh). The buffer Dh is smaller than D
because the repeated subsequence is omitted.

The goal of clustering is building the lists of patches
in such a way, that two or more index buffers are par-
tially coincident, thus we can construct their compact
memory representation, which is smaller than simple
union of the buffers. As shown in Appendix, the size
of SWPM index dataset decreases as the number of
patches increases. In order to increase the number of
patches, we introduce a notion of linked patches.

In our example, define patches P`
1 = Q1||Q2||{49 ∈

Q3}, P`
2 = (Q3 \ {49})||Q4||{417 ∈ Q5}, and P`

3 =
(Q5\{417})||Q6||Q7 (see Fig. 3d). We call P`

i and P`
i+1

linked patches when they both include triangles of the
same simplified patch. Linked patches P`

1 and P`
2 share

the simplified patch Q3; P`
2 and P`

3 share Q5. We build
the list of patches P` = {P`

1 ,P`
2 ,P`

3} and its correspond-
ing list of simplified patches Q` = {Q`

1,Q
`
2,Q

`
3}. Again,

a fragment P`
1 ||P`

2 ||P`
3 of the index buffer I(P`,Q`) (see

Fig. 4c) coincide with the fragment X ⊂ I(P,Q), thus
we can construct more compact memory representation
of these index buffers.

Linked patches have to be subsequent in the
list P`. As a counterexample, consider such list
P` = {P`

2 ,P`
1 ,P`

3}, where linked patches P`
2 and P`

3
are not subsequent. Any continuous triangles subse-
quence of I(P`,Q`) cannot coincide with Q5; thus,
I(P`,Q`) and I(P,Q) cannot partially coincide, and the
advantage of the use of clustering is lost.

Agglomerative clustering algorithm. The input of
clustering algorithm is the set of simplified patches Q0
and the simplest mesh Mn = (Vn,Tn) produced as a re-
sult of simplification of the mesh M0. The only clus-
tering criterion is maximization of the number of clus-
ters. We can formulate this problem as a maximum
independent set problem on a graph Gh. Each vertex
vi of the independent set is the inner vertex of a patch
Ph(vi), which is formed by the simplified patches that
include the vertex vi. By G(T ) denote the connectivity
graph of the triangulation T . The graph Gh is initialized
with G(Tx); then for each simplified patch Q j ∈Q0 we
find the additional edges, which connect all previously
unconnected vertices of Q j (i.e. the edges required to
make G(Q j) complete), and insert them to Gh.

In order to find the maximum independent set on Gh,
one may use the greedy search described in [SvK97]).
First, we mark high-error vertices (the number of such
vertices is controlled by the user-defined parameter µ),
then we delete all marked vertices by decrementing the
degrees of their neighbors. While unmarked vertices
remain, we choose a vertex of lowest degree for the in-
dependent set and delete it and its neighbors by marking
them and decrementing the degrees of their neighbors.

Additionally, we implement a single-step lookahead
to search for linked patches. For example, suppose the
patch P`

1 = Q1||Q2||Q3 is found in the first iteration of
the greedy search. Then we attempt to find a patch P`

2 ,
which shares Q1, Q2, or Q3 with P`

1 . This is a local
search since the linked patches are in the neighborhood
of P`

1 . If several candidates are found, we choose the
one of the lowest inner vertex degree. If the linked
patch P`

2 is found, we attempt to find a patch P`
3 , which

is linked to P`
2 , etc. When no more linked patches can

be constructed, we proceed with the basic greedy search
for a next independent vertex.
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3.3 Patches with multiple inner vertices
Consider the patch Ph

1 = Q1||Q2||Q3 and its correspond-
ing simplified patch Qh

1. As we simplify the mesh, the
following sequence of replacements occurs: P1 → Q1,
P2 → Q2, P3 → Q3, Ph

1 → Qh
1. To reduce the size of

index dataset, we may choose not to store Q1, Q2, and
Q3; we directly replace P1||P2||P3 → Qh

1 during render-
ing. Thus, we can reduce the size of index data at the
expense of storing fewer approximations. In order to
describe such process we have to extend our previous
definition of a patch.

We define a patch with multiple inner vertices
P∗(vi,v j, . . . ,vk) as a list of triangles, such that
S(vi) ∪ S(v j) ∪ ·· · ∪ S(vk) ⊆ P∗. We construct
the corresponding simplified patch Q∗ by se-
quentially applying simplification operator R
(or H ), which removes the inner vertices, e.g.
Q∗ = R(vi)R(v j) · · ·R(vk)P∗(vi,v j, . . . ,vk). Given the
list of patches P∗ = {P∗1 ,P∗2 , . . . ,P∗n } and its correspond-
ing list of simplified patches Q∗ = {Q∗

1,Q
∗
2, . . . ,Q

∗
n},

we build the index buffer I(P∗,Q∗) and render the
mesh approximations as described in Sec. 2.

A patch with several inner vertices is simplified
more aggressively than a patch with single inner
vertex. Thus, the patches with multiple inner vertices
are particularly useful for the overtesselated models
that contain a lot of redundant coplanar triangles.
Suppose the entire flat upper part of the mesh shown

in Fig. 5a is included into a single patch P∗. Fig. 5c
shows that we avoid simplifying the curved bottom
part by simplifying P∗ only, and reduce the size of
index data. A planarity measure (e.g. dual quadratic
metrics [GWH01]) may be used to select the patches
that are suitable for having more than one inner vertex.

c) λ = 2.4b) λ = 5.7a)
Figure 5: a) original mesh, b) simplification using sin-
gle inner vertex per patch (µ = 0.25), c) the entire flat
upper part is simplified as a patch with several inner
vertices

One method to build the patches with multiple inner
vertices is the clustering algorithm; we simply discard



the patches Ph as described above. This can be done in
run-time when there is not enough videomemory avail-
able in the system. Alternatively, a mesh partitioning
algorithm may be used to directly obtain the patches
with several inner vertices.

Generally, the patches with multiple inner vertices
provide to the user a way to trade the number of mesh
approximations in SWPM for the smaller index dataset.

4 NUMERICAL RESULTS
Rendering performance. One popular method for ren-
dering of instantiated geometry is the discrete LOD
method where several discrete mesh approximations are
created using a simplification software, such as QSlim.
Then each approximation is optimized for the efficient
hardware processing (we use NVTriStrip package for
this purpose). In run-time, the system selects the most
appropriate mesh approximation to display for an ob-
ject. We compare discrete LOD and SWPM in an ap-
plication that renders 7000 diffusely lit instances of t72
mesh on the system with Athlon64 2.2Ghz and GeForce
7800GTX. The application is not shader-bounded since
we use relatively simple vertex shader (diffuse lighting
only). Two 3-vectors (position and normal) are defined
per vertex. In this test, the camera moves with varying
velocity over the scene that contains regularly spaced
mesh instances. The results are shown in Fig. 6. LOD
selection function is the same for all methods. When
geomorphing is not in use, performance of the discrete
LOD (a) and SWPM (b) is the same because their ren-
dering paths coincide. However, geomorphing causes
a notable slowdown of the discrete LOD rendering (c)
since it doubles the bandwidth required for the vertex
data (note that its impact may be less serious for shader-
bounded applications since geomorphing is arithmeti-
cally inexpensive). Geomorphing in the sliding window
scheme (d) is not expensive due to the use of frame-to-
frame coherence (as discussed in Sec. 2). This advan-
tage disappears when the frames are highly incoherent.
For example, a fast camera movement lasts for 8 sec-
onds starting from 9th second of the timedemo; both
methods (c) and (d) demonstrate similar performance
during this period. The curve (e) shows performance
of CPU-based progressive meshes implementation (as
found e.g. in DirectX D3DX 9.0) that streams the list
of indices from CPU to GPU each frame; the applica-
tion generates approx. 500Mb of indices per second,
which makes such scheme impractical.

Index dataset reduction. Table 1 demonstrates the
results of dataset reduction techniques. The parame-
ter λ in (9) relates the size of resulting SWPM index
dataset to the number of triangles in the original mesh.
In Table 1, the coefficient λ corresponds to the pro-
gressive mesh obtained using the basic sliding window
algorithm; dataset reduction techniques decrease this
value according to the percentages (a)–(d). The values
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Basic SWPM Index dataset reduction, %
Mesh |T0| λ (a) (b) (c) (d)

Regular 49920 5.4 39% 18% 41% 58%
TIN 77632 5.2 28% 16% 31% 51%

Hugo 16374 5.1 23% 18% 29% 51%
Bunny 69451 5.4 19% 15% 27% 49%
Cessna 7446 5.3 9% 19% 27% 53%

Cow 5804 5.5 11% 18% 26% 49%
t72 2450 3.8 12% 19% 29% 50%
Elf 1274 4.6 6% 20% 31% 57%

Table 1: Index dataset reduction via connectivity op-
timization (a), clustering (b), the combination of opti-
mization and clustering (c), or the combination of opti-
mization and the patches with three inner vertices per
patch (d)
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Figure 7: ACMR (vertex cache size is 16 entries) for
all resolutions of t72 and cessna SWPM created with or
without clustering

(d) are obtained by discarding some simplified patches
(as discussed in Sec. 3.3) from the progressive meshes
obtained for the case (c); this normally produces the
patches with approximately three inner vertices.

Following [BG01], we use the average number of
cache misses per triangle (ACMR) as a measure of ver-
tex cache usage efficiency. The clustering is an addi-
tional factor (in addition to vertex cache coherence),
which is taken into account when the order of patches is
determined. Thus, the clustering may cause an increase
in ACMR in some cases (see Fig. 7).



Simplification quality. We use quadratic error met-
rics [LRC∗02, pp.133–134] and half-edge collapse op-
erator to create SWPM. Fig. 8 shows t72 mesh sim-
plified with help of various algorithms. Generally, al-
though SWPM is an ad-hoc algorithm for efficient ren-
dering, it typically produces mesh approximations com-
parable with the results of conservative mesh simplifi-
cation algorithms.

CONCLUSIONS
Proposed methods for datasets reduction extend appli-
cability of SWPM algorithm for memory-limited ap-
plications. The use of SWPM may be an interest-
ing extension to batch-processing view-dependent LOD
schemes, such as [YSG05, CGG∗05].

References
[BG01] BOGOMJAKOV A., GOTSMAN C.: Universal ren-

dering sequences for transparent vertex caching of progres-
sive meshes. In Proceedings of Graphics Interface 2001
(2001), Watson B., Buchanan J. W., (Eds.), pp. 81–90.

[CGG∗05] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Batched multi
triangulation. In Proceedings IEEE Visualization (2005),
IEEE Computer Society Press, pp. 157–164.

[For01] FORSYTH T.: Comparison of vipm methods. In
Game Programming Gems 2 (2001), DeLoura M., (Ed.),
Charles River Media, pp. 363–376.

[FS01] FRANC M., SKALA V.: Parallel triangular mesh
decimation without sorting. In SCCG’01: Proceedings of
the 17th Spring conference on Computer graphics (Wash-
ington, DC, USA, 2001), IEEE Computer Society, p. 22.

[GWH01] GARLAND M., WILLMOTT A., HECKBERT

P. S.: Hierarchical face clustering on polygonal surfaces.
In SI3D ’01: Proceedings of the 2001 symposium on In-
teractive 3D graphics (New York, NY, USA, 2001), ACM
Press, pp. 49–58.

[KT04] KOROTOV S., TURCHYN P.: Topology-driven pro-
gressive mesh construction for hardware-accelerated ren-
dering. Computer Graphics and Geometry (Internet) 6, 3
(2004), 100–119.

[LRC∗02] LUEBKE D., REDDY M., COHEN J., VARSH-
NEY A., WATSON B., HUEBNER R.: Level of Detail for
3D Graphics. Computer Graphics and Geometric Model-
ing. Morgan Kaufmann, 2002.

[NBS06] NEHAB D., BARCZAK J., SANDER P. V.: Tri-
angle order optimization for graphics hardware computa-
tion culling. In SI3D ’06: Proceedings of the 2006 sym-
posium on Interactive 3D graphics and games (New York,
NY, USA, 2006), ACM Press, pp. 207–211.

[SP03] SHAFAE M., PAJAROLA R.: Dstrips: Dynamic tri-
angle strips for real-time mesh simplification and render-
ing. In Proceedings Pacific Graphics Conference (2003).

[Ste01] STEWART A. J.: Tunneling for triangle strips
in continuous level-of-detail meshes. In Proceedings of
Graphics Interface (2001), Watson B., Buchanan J. W.,
(Eds.), pp. 91–100.

[SvK97] SNOEYINK J., VAN KREVELD M. J.: Linear-
time reconstruction of delaunay triangulations with appli-
cations. In ESA ’97: Proceedings of the 5th Annual Eu-
ropean Symposium on Algorithms (London, UK, 1997),
Springer-Verlag, pp. 459–471.

[YSG05] YOON S.-E., SALOMON B., GAYLE R.: Quick-
vdr: Out-of-core view-dependent rendering of gigantic
models. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4 (2005), 369–382. Member-Dinesh
Manocha.

A THE BOUNDS FOR SWPM INDEX
DATASETS

Consider the buffer B0 := I(P0,Q0), where the approxima-
tions M0,M1, . . . ,Mn are stored. First part of the buffer, which
contains the non-simplified patches from the list P, forms
the set of triangles T0 of the initial mesh M0 = (V0,T0), i.e.
T0 = P1 ∪P2 ∪ ·· · ∪Pn. Remaining part of the buffer, which
contains the simplified patches from the list Q, forms the
triangles of the approximation Mn = (Vn,Tn), where Tn =
Q1∪Q2∪·· ·∪Qn. Then, the number of triangles in the buffer
B0 is a sum of the number of triangles in T0 and the number
of triangles in Tn, i.e. |B0| = |T0|+ |Tn|. In what follows we
assume that the meshes are 2-manifolds without holes. Thus,
the operator H (or R) removes exactly two triangles from a
patch, so

|Tn|=
n

∑
i=1
|Qi|=

n

∑
i=1

(|Pi|−2) = |T0|−2n, (4)

where n is the number of patches. Hence, one have to max-
imize n in order to minimize |B0|. It follows from the defi-
nition of a patch that maximization of n requires solving the
maximum independent set problem on a mesh connectivity
graph (the set of inner vertices is a maximum independent set).
This is a classical NP-hard problem. There exist polynomial-
time algorithms for finding its approximate solution with a
good accuracy. One greedy algorithm for planar graphs is de-
scribed in [SvK97]. The algorithm’s lower bound for the size
of independent set is n > |V0|/6. It follows from the Euler’s
relation that

n >
|V0|

6
>
|T0|
12

(5)

On the other hand, we note that each patch contains at least
three triangles, so

n 6 |T0|
3

. (6)

Combining (4)–(6), we obtain the bounds

1
3
|T0|6 |Tn|< 5

6
|T0|. (7)

Using Mn as an initial mesh, we construct another SWPM
buffer. Denote this buffer B1. The simplest triangulation
within the buffer B1 may not be sufficient for the applica-
tion. Thus, one has to continue constructing SWPM buffers
B2,B3, . . . ,Bz until the required mesh complexity is achieved.
Our main interest is estimating the parameter β in (2), which
determines the amount of memory required for storing these
buffers.

The approximation Mn serves as an initial mesh when we
construct the buffer B1. Let Mm = (Vm,Tm) be the simplest



approximation of the buffer B1. Following the same reason-
ing, which is used to obtain (7), we have

1
3
|Tn|6 |Tm|< 5

6
|Tn|.

In order to obtain the upper bound for |Tm|, for |Tn| we take
the upper bound provided by (7). Then

|Tm|< 5
6
|Tn|<

(
5
6

)2
|T0|,

so

|B1|= |Tn|+ |Tm|< 5
6
|T0|+

(
5
6

)2
|T0|.

Generally,

|Bi|<
(

5
6

)i
|T0|+

(
5
6

)i+1
|T0|.

By summing up the inequalities for every |Bi|, we obtain up-
per bound for β

β < |T0|+2
(

5
6

)
|T0|+ · · ·+2

(
5
6

)z−1
|T0|+

(
5
6

)z
|T0|.

We can interpret the right hand side as a converging geometric
series. This is justified since in practice z is relatively big.
Thus, we conclude that

β < 11|T0|.
It is possible derive the lower bound for β using a similar
reasoning. Finally, we arrive to the following inequalities

2|T0|6 β < 11|T0|. (8)

It is natural to express β as a size of initial mesh triangulation
multiplied by a coefficient

β = |T0|λ , (9)

where λ ∈ [2;11) according to (8). We derive the bounds for
the coefficient λ under relatively general assumptions about
the input mesh. However, memory-limited applications re-
quire more precise estimation of λ for specific meshes. Thus,
we have to derive an estimate for λ that exploits properties of
a particular mesh.

A degree of a mesh vertex is the number of triangles in-
cident to this vertex. Let d be a mean degree of the mesh
vertices of maximum independent set. The value of d depends
mainly on the structure of triangulation. We assume that
1. the choice of simplification operators and their parame-

ters preserves the structure of initial triangulation, so d is
approximately the same for any approximation Mi;

2. the size of a patch is approximately equal to the degree of
its inner vertex, thus d is a mean patch size.

Under these assumptions, the number of patches is a ratio of
total number of triangles to d. Applying this relation to (4), it
is easy to show that

|Tn|= |T0|(1−2/d),

|B0|= |T0|+ |Tn|= |T0|(2−2/d),
|Bi|= |T0|(2−2/d)(1−2/d)i.

Again, β is expressed as a converging geometric series

β = |T0|(d−1). (10)

Thus, the size of resulting dataset is proportional to d, which
is a mesh-dependent parameter.

a) original mesh

b) DirectX D3DX 9.0

c) VizUp 1.7

d) QSlim 2.0

e) SWPM (µ = 0.2)
Figure 8: t72 mesh is simplified from 2450 to 640 tri-
angles using different simplification algorithms. As dis-
cussed in Sec. 3, the parameter µ determines tradeoff
between the size of SWPM index dataset and the sim-
plification quality; relations between µ and RMS sim-
plification error are shown in Fig. 1.


