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Abstract

Understanding when a cloud of points in three-dimensional space can be, semantically, interpreted as a surface,
and then being able to describe the surface, is an interesting problem in itself and an important task to tackle in
several application �elds. Finding a possible solution to the problem implies to answer to many typical questions
about surface acquisition and mesh reconstruction: how one can build a metric telling whether a point in space
belongs to the surface? Given data from 3D scanning devices, how can we tell apart (and eventually discard)
points representing noise from signal? Can the reached insight be used to align point clouds coming from di�erent
acquisitions?
Inside this framework, the present paper investigates the features of a new dimensional clustering algorithm.
Unless standard clustering methods, the peculiarity of this algorithm is, using the local fractal dimension, to
select subsets of lower dimensionality inside the global of dimension N .
When applied to the study of discrete surfaces embedded in three dimensional space, the algorithm results to
be robust and able to discriminate the surface as a subset of fractal dimension two, di�erentiating it from the
background, even in the presence of an intense noise. The preliminary tests we performed, on points clouds
generated from known surfaces, show that the recognition error is lower than 3 percent and does not a�ect the
visual quality of the �nal result.
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1 INTRODUCTION

In the last few years, the di�usion of 3D data ac-
quisition devices and scanning systems, boosted the
use of huge volumes of point samples to model and
represent real world objects [18]. At the same time,
a big e�ort has been done, from the computational
point of view, to improve algorithms and analytic
techniques for point clouds processing, surface re-
construction, and semantic interpretation [11, 17].
In this context, the contribution of this paper re-

gards the relations between a surface and the points
cloud de�ning it. Particularly, we investigate on
the possibility that there is some intrinsic feature of
a points cloud, allowing us to discriminate a dataset
de�ning a surface from the acquisition noise or any
other uncorrelated point subset. We de�ne intrin-
sic feature something that is independent from any
particular reconstruction we can arrange, and can
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be evaluated directly on the points set. Some im-
portant topics are strictly related to this problem:
given a points cloud de�ning a surface, can we �g-
ure out whether a new point belongs to the same
set of the others or not (is a point on the surface
or not)? Can we select, and discard, mismatched
points (error outliers)? How many points can we
remove from a surface, without damaging its in-
trinsic existence (decimation)?

As a research starting point, we can observe that
the essential peculiarity of a surface is to be a sub-
set of intrinsic dimension two. Several clustering
methodologies has been proposed lately for the de-
tection, inside a higher-dimensional dataset, of sub-
sets of points whit lower intrinsic dimensionality
[10, 4, 16]. These techniques are then capable to
discover, into the global set, points arranged along
lines (1D subsets), over surfaces (2D subsets) or
hypersurfaces (nD subsets).

A recently proposed algorithm, the Dimensional
Induced Clustering algorithm (DIC), appears to be
very e�ective at doing this [10]. Based upon the
evaluation of the intrinsic fractal dimension and
the local point density, it is able to discriminate
between subsets of di�erent dimensions, and also
of the same dimension but di�erent density.
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In this paper, we investigate on the use of DIC
for the discrimination of points clouds in three di-
mensional space, and on its consequences. The rest
of this work is organized as follows: in Section 2
we brie�y go over the previous work done in points
clouds processing and clustering techniques; in Sec-
tion 3 we illustrate the Discrete Induced Cluster-
ing Method; then, we describe the use of DIC for
the study of surface points clouds, introducing the
general investigation framework and going into de-
tails in Section 4; in Section 5 we show the results
obtained using the algorithm on several meshes
widely used in literature; �nally in Section 6 we
draw our conclusions and describe the future evo-
lutions of this work.

2 PREVIOUS WORK

Several techniques have been proposed for the re-
construction of surfaces from oriented point sam-
ples.
The problem of reconstructing a surface obtained

from 3D scans is mainly reduced to the registration
of the set of regular maps (the points are placed on
the vertices of a regular grid) since the relative po-
sitions of the single maps is known by the acquisi-
tion planning [9]; under normal conditions there is
low digital noise and it is interesting to understand
where the map superpositions are.
The most di�used approaches when dealing with

a set of really1 unorganized points are based on
topology. They use alpha shapes [12] or three-
dimensional Voronoi diagrams of the point set, and
then use the facets of the tessellation for the recon-
struction of the surface [2]. The latter technique
was recently reformulated to be also able to �lter
out small perturbations (noise) near to the target
surface [7].
Density-based clustering methods uses local den-

sity information in order to partition a dataset (it
could be a point set). In this context, Hierarchi-
cal Single Linkage is a widely di�used technique,
implemented in common packages as DBSCAN [8],
OPTICS [3] and CLIQUE [1].
The intrinsic fractal dimension has been success-

fully used in numerous database selection prob-
lems, as the nearest-neighbor queries [19] and spa-
tial query selective estimation [5]. Recently, also
some partitioning and clustering methods based
upon this technique have been proposed [4].

3 THE DIC ALGORITHM

Clustering methods search for patterns and reg-
ularities in data, to perform partitions in homo-
geneous sets. The Dimension Induced Clustering

1 We mean that there is no implicit information on the adja-
cencies as in 3D scanning.

algorithm (DIC) [10] carries this out computing
the intrinsic dimension and the point density. It
is therefore designed to detect, inside a higher-
dimensional dataset, subsets of points whit lower
intrinsic dimensionality, such as lines (1D subsets)
or surfaces (2D subsets). Moreover, the use of local
point density information makes the method being
able to discriminate between subsets of the same
intrinsic dimension.

3.1 Fractal Dimension

Behind the word dimension of a set there are actu-
ally two di�erent meanings that may not be coin-
cident. The �rst one is the number of independent
coordinates used to locate, in unambiguous way, a
point of the set. The second one is the relative
growing rate of the point set, that is to say, the
speed the point set �ll the space with. This is in
fact the fractal dimension. This concept can be ex-
plained using the drawing of Figure 1. Consider
the seed A and count the number of points of the
set inside the ball of radius R: doubling the ball ra-
dius, we expect to �nd twice the number of points,
so the �ll rate grows linearly with the radius and
thus the fractal dimension of the point set around
A is one. If we consider, instead, the seed B, we
expect to have a quadratic �ll rate and thus the
fractal dimension of the point set around B is two.
We can also have a non-integer fractal dimension:
using, for instance, as seed the point C we obtain
a fractal dimension of 1.5.

Figure 1: Fractal dimension interpreted as the relative
growing rate of a point set.

Consider now the dataset X ⊂ Rm and assume
that the number of points n of X tends to in�nity.
Let choose a distance function on X and let B(x, r)
be the ball of radius r centered at x; let |B(x, r)|
be the number of points inside the ball. We de�ne
the local growth function for the point x as:

Gx(r) = lim
n→∞

1
n
|B(x, r)|

The local growth function represents the density
of the subset B ⊂ X for a �xed r; it contains in-



Figure 2: The DIC algorithm is able to discriminate between: (i) datasets of di�erent dimensions; (ii) datasets
of the same dimension but di�erent densities.

formation about the growth rate of the number of
neighbors of x. The local fractal dimension dx of a
point x is de�ned as:

dx = lim
r,r′→0

log Gx(r)
Gx(r′)

log r
r′

Since we deal with �nite sets, to evaluate the frac-
tal dimension dx we de�ne the local growth curve
as the fraction of points inside the ball for a cho-

sen radius, Gx(r) = |B(x,r)|
n , and compute dx of a

point x as the slope of the curve Gx(r) in log-log
scale. Practically we can do that assuming a linear
model for the curve, and �nding the line that �ts
it best, using a least squares method. To obtain
a correct local �t we need to consider the function
Gx(r) in a region not too much distant from the
center x (for details see [10]). Using the symbol Lx

to denote the curve, our linear model produces a
�tting curve of the form:

Lx(log r) = dx log r + bx

3.2 Local Density

For any value of x there is a particular value r∗ for
the radius leading to the de�nition of the coe�cient
cx:

cx = Lx(log r∗x) = dx log r∗x + bx

We can take cx as a measure of the density of the
dataset in a ball of radius r∗ centered on x and thus
the radius r∗, varying from point to point, is the
unique value minimizing the correlation between dx

and cx and therefore maximizing the information
contained in the couple of coe�cients. It is possible
to prove that this condition is obtained choosing:

log r∗x =
∑

(dx − d)(bx − b)∑
(dx − d)

where d and b are the arithmetic means of the co-
e�cients dx and bx computed on the whole dataset.

3.3 Local Representation

Using this procedure, we can thus de�ne a mapping
f : X → R2 from the m-dimensional dataset X to
the plane: we call it the Local Representation (LR)
of X. This mapping projects each element of the
set into the 2D plane using the couple of coe�cients
(d, c), that are, respectively, the fractal dimension
and the local points' density. Once projected the
starting dataset X to its LR, the partitioning task
becomes de�nitely easier: we can, in fact, analyze
and partition the LR and then project back the ob-
tained results to the original dataset. The partition
on the LR can be automatic, applying some stan-
dard clustering algorithm like Expectation Maxi-
mization (EM) [13], or interactive by visual inspec-
tion.

3.4 DIC Trials

Using the co-operating descriptors (d, c), DIC ap-
pears to be very e�ective since it is able not only
to discriminate between subsets of di�erent dimen-
sion, but also to distinguish subset of the same
dimension but di�erent densities. An example is
given in Figure 2. The starting 2D dataset (left)
is a mixture of three di�erent types of regions: a
1D line (region A) a 2D dense cloud (B) and di�use
ground noise (C). B and C have the same dimension
while A and B have the same density.

As a result of the application of the DIC algo-
rithm, the set is projected to its LR (right). Notice
the presence of 3 well separated clouds of points:
two of them show a fractal dimension d ≈ 2 while
the third shows d ≈ 1. The back projection shows
that the clouds correspond, respectively, to the sub-
sets A, B and C in the original point set. Using only
the fractal dimension information, it is not possible
to tell B and C apart; instead, using only a measure
for the density, subsets A and B are not separable.



4 SURFACE RECOGNITION

Now we want to focus our attention on the main
contribution of this paper: how to use the DIC
algorithm for surface recognition and decimation.
One possible scenario is as follows: consider to

have to deal with a 3D points dataset of possible
unknown origin sampling a surface in space, that
can also be a�ected by a high experimental error or
be completely intermixed with ground noise points.
You want to be able, �rst, to reconstruct the sur-
face, then to capture its saliencies using possibly
unsupervised methods. Another alternative sce-
nario can instead be the alignment of several range
maps coming from 3D scans. We will see how we
can use DIC for both these purposes.
To experiment on the use of the DIC algorithm

we �rst modi�ed well known benchmark datasets
adding arti�cial noise to them. We embedded the
datasets in a space region in which is present white
noise constituted by a set of points, without any
special regularity, randomly distributed with ho-
mogeneous density. The noise was produced using
a standard random number generator.
To represent a correlate set of points, as for ex-

ample a surface, a subset of the dataset should have
some intrinsic features allowing us to distinguish it
from the ground noise. Particularly, using the DIC
approach, we want:

• DIC to be able to separate the data set from the
ground noise, using dimension and/or density;

• The local fractal dimension of the data set points
be correct (for a surface, d ≈ 2).

This point of view is analogous to a signal-noise
ratio evaluation. The starting data set being the
signal, that we suppose to be two-dimensional,
and the added points being the background noise,
three-dimensional by construction.
Let now step over the di�erent tasks performed

on the dataset.

4.1 Surface Finding

In Figure 3 we represent a point set embedded in
a noisy 3D space region. We constructed the point
set using the vertices of a triangle mesh commonly
used as a benchmark mesh (Oilpump, on the left).
Starting from a surface, we know for sure that the
points cloud does de�ne a surface. We then in-
troduced random noise, adding a number of points
equal to half the points on the surface, chosen at
random inside a box twice the volume of the sur-
face's bounding box (on the right).
The global set of points, (surface + noise), has

been processed with DIC, producing its Local Rep-
resentation LR (in Figure 4). The possibility to

Figure 3: The Oilpump data set. The original surface
on the left, the point set with white noise added on
the right.

separate the signal from the noise, and the com-
putational techniques used to do it, depends on
the features of LR. In the diagram we can notice
the presence of two well separated clusters, and of
some outliers. The cluster named N, with a lower
value of c, is centered around d ≈ 3; the cluster S,
with greater c, is centered around d ≈ 2. S and N
have spheroidal shape, are well separated from each
other and overlap just in the outlier region. Under
these conditions, it is possible to subdivide the LR
plot in clusters, project them back on the 3D points
generating them, and then use the clusters to parti-
tion the original 3D dataset. This procedure can be
completely unsupervised using a standard partition
method. We adopted, in this case, the K-Medoids
algorithm [14].
A backtrace check for clusterization procedure is

possible, because the membership for the points,
surface or noise, is known by construction. It shows
that DIC discriminates correctly the noise cloud
(N) from the surface point set (S). In fact, N has a
mean fractal dimension d ≈ 3 and lower density c
and it is contains almost only noise points. S has
dimension d ≈ 2 and higher density and it is mainly
constituted of surface points. In our experiments,
as it will be explained in further detail in Section 5,
uncorrect assignments are bounded by less than 3
percent for false negatives and by 6 percent for false
positives.

4.2 Noise Raising

The surface �nding procedure has been applied on
datasets with di�erent noise levels, changing the
noise density. The back projections show a remark-
able capability of DIC to discriminate the surface
point set, also in challenging environmental condi-
tions.
It's worth to remember that the signal stabil-

ity, when the level of background noise raises, is



Figure 4: The Local Representation for the Oilpump
dataset: in red the medoids M (d = 2.156, c =
−2.038, signal) and H (d = 2.764, c = −5.025,
noise).

a measure of the consistency and the reliability of
the signal itself. Applied to our problem, it means
that the likelihood that the point set de�nes a sur-
face is directly correlated to the background noise
level. We can evaluate this property for every sin-
gle point of the data set. Embedding the data set
in 3D white noise, some points will be mingled with
the ground jelly, these points will be easily not clas-
si�ed as belonging to the surface by a reconstruc-
tion algorithm. On the contrary, the points that
are classi�ed as surface points even for high level
of ground noise are the subset of strongly attached
points, that is the intrinsic skeleton of the surface.

4.3 Points Decimation

In the last years, modelling and visualization tech-
niques using points as primitives, emerged as in-
teresting alternatives to traditional triangle mesh-
based processing [22, 23, 15, 21]. In this frame it
becomes important to set up algorithms capable
to conveniently reduce the number of point sam-
ples while keeping the underlying shape features
unchanged. Recently some methods has been pro-
posed, based upon the intrinsic feature of the points
cloud, mainly related to sample distribution and
density [2, 6, 20].
We investigated the use of the DIC algorithm as a

tool to perform a point selection based on intrinsic
features like the fractal dimension d and the local
density c.
To do this we adopted the following scheme: the

clusterization method K-Medoids, used to separate
the clouds on LR plot, works selecting a seed for
each cluster, named medoid, that is representative
of the cluster itself. The method assigns each el-
ement to the right medoid, minimizing the expec-
tation value of the distance, with respect to some
metric functions [13]. We can then select, for a
cluster in the LR plot, a set of points closer to the

relative medoid; for instance, inside a ball of some
radius r.
Performing this procedure for the cluster repre-

senting the signal, the points we select by construc-
tion are:

• Representative of the surface;

• Homogeneous in density;

• Homogeneous in intrinsic dimension;

• Well separated from the noise.

We show an example for the Oilpump dataset
in Figures 4 and 5. Using the information from
the LR plot, we select a set of points of the signal
by �tting a ball around the medoid M. The point
density, as function of the distance from M (in Fig-
ure 5), shows that the most part of the surface, over
99%, is contained inside a ball of radius r = 1.5.

Figure 5: The normalized relative density of the points
plot in Figure 4, as function of the distance from M.

In Figure 6 there are four examples of point sub-
sets obtained using balls of di�erent radius to select
points from the dataset.

4.4 Superposition and Alignment

While reconstructing surfaces from 3D scans, dif-
ferent views need to be correctly aligned and over-
lapped in the common borders regions [9]. This
task is complicated by the acquisition errors that
are a further unknown of the problem.
Even if the type of error introduced by the acqui-

sition process is not the random white noise that
our method is best suited for, the DIC algorithm
can still provide a support to existing techniques.
Consider the really trivial example shown in Fig-
ure 7. Two planar surfaces orthogonal to z, with
the same point density, are embedded in a 3D noisy
region. Initially the surfaces are partially over-
lapped on xy, but distant in z (top left). Modi-
fying the position in z of one plane, we generate a
clouds overlap (top right). The LR plots relative
to the two di�erent cases are shown in the same



Figure 6: Oilpump points decimation, obtained using
the medoid distance technique. From left to right
and top to bottom, the subsets are generated using,
respectively, r = 0.3, r = 0.5, r = 0.8, and r = 1.1.

picture (down left), where red means the overlap
case and blue the non-overlap one. When there is
no overlap the LR shows just two clusters since the
planes have the same intrinsic dimension and the
same density. In this case, DIC can discriminate
them from the background noise but cannot create
any link from one to another.

In the second case, instead, the points density in
the overlapping region is twice the density of each
plane. In this situation, DIC is capable to �gure
out if there is a superposition and also to �gure
out where the overlapping region is, as one could
expect when they represent the same swatch of sur-
face scanned twice. As one can see in the two di-
agrams, the LR plot for overlapping surfaces (red
points) shows a third cluster, with the same fractal
dimension of the blue signal cloud but higher den-
sity. As the analysis points out, this cluster is made
of points in the superposition region. Being able to
separate the signal from the noise, this mechanism
correctly characterize the overlapping region tak-
ing into account just the points on the surfaces,
and discarding the values a�ected by errors.

In this case the cluster separation is not simple
using the K-Medoids method and user intervention
is needed. It is, anyway, the only case we found in
which the method needs to be supervised.

Figure 7: Two planes embedded in background noise.
Not overlapped (top left), overlapped (top right).
The related LR (in the middle, red for overlapped
and blue for non overlapped) and a detail of the boxed
region (bottom).

5 RESULTS AND DISCUSSION

In Table 1 we summarize the results of the dis-
crimination between surface and noise, performed
for di�erent meshes. Noise was randomly generated
adding points in an amount of 50% the number of
points of the original mesh, inside a box eight times
the volume of the mesh bounding box. We list, in
the order, the name of the mesh, the number of
its points and the number of added points. With



Table 1: Noise/Surface discrimination for eight dif-
ferent datasets: in column V there is the number of
points from the surface and in column N the number
of added points.

Dataset V N α α% β β%

Screw 904 452 14 1.5 55 6.0
Bunny 1015 507 2 0.2 155 1.5
Face 2278 1139 0 118 5.1
Ahead 3123 1561 89 2.8 124 3.9
Teapot 4255 2127 56 1.3 163 3.8
Cat 4539 2269 0 198 4.3
Fandisk 6475 3237 0 293 4.5
Oilpump 10274 5137 97 0.9 276 2.6

α we indicate the false negatives (surface points
assigned to the noise set) and with β the false pos-
itives (noise points assigned to the surface). In
columns α% and β% we list the error percentages.
We can notice that the number of uncorrect as-

signments is small for both error types. It is very
important that the number of false negatives is
bounded by 3% and is, on average, much less. This
implies that almost all the points to be used for
the surface recognition are selected. The false posi-
tives are much more, because while dropping points
at random in the bounding box the probability to
choose spatial locations very close to the surface is
not negligible.
In Table 2 we listed α% and β% as function of the

noise points density, for the Oilpump and Teapot
datasets. The noise (�rst column) is expressed in
a relative way: we start putting in a box, linearly
twice the mesh bounding box, an amount of 50%
the points of the mesh; then, we shrink the noise
box to increase its density. Assuming 1 as a ref-
erence starting density value, the other values rep-
resent the relative growth. We can notice that α%

is not related to the noise density; this means that
the e�ciency of the method is high also in chal-
lenging conditions. On the other hand, β% grows
more than linearly with the density. This is due to
the fact that, reducing the noise box, the probabil-
ity to generate random points located on, or very
close to, the surface increases. In some sense then,
a part of β% is not really an error!

6 CONCLUSIONS AND FUTURE

WORK

We presented in this work the application of a clus-
terization method to the recognition of surfaces
from point clouds. The algorithm is based on the
computation of the fractal dimension and local den-
sity for each point in the cloud (its LR map).
The main advantages of the method are: it can

be used in an unsupervised mode using a standard

Table 2: Variations of α% and β% when changing the
noise density.

Noise Oilpump Teapot
density α% β% α% β%

1.00 0.96 1.22 1.39 1.57
1.18 0.98 1.47 1.27 2.11
1.42 0.98 1.94 1.29 2.84
1.72 0.94 2.69 1.32 3.83
2.12 0.94 3.51 1.36 4.61
2.65 0.91 5.53 1.18 6.56

clustering algorithm; it can be used interactively
allowing for visual inspection of the characteristics
of the dataset; based on the LR map a point dec-
imation is direct and simple; a straightforward ex-
tension of the technique can be used for computing
the superposition of di�erent range maps coming
from a 3D object scan.

The results, even if preliminary, are very promis-
ing, especially those regarding the point decimation
aspect. We still need to work on several aspects
of the method, the most important being: rework
the implementation to be able to deal with larger
datasets; make experiments on real sets of unor-
ganized points instead of benchmarking on points
clouds derived from meshes.

Nevertheless we are con�dent that it can already
be useful for the purposes exposed.
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