
Generation of Shadows in Scene Graph based VR
Bjoern Kuehl

University of Hamburg, Germany

9kuehl@informatik.uni-hamburg.de

Kristopher J. Blom
University of Hamburg, Germany

blom@informatik.uni-hamburg.de

Steffi Beckhaus
University of Hamburg, Germany

steffi.beckhaus@uni-hamburg.de

Abstract

In this paper, we present our experience implementing shadows in Scene Graph based Virtual Reality systems. Shadows
are an important part of the human perception of both shape and depth and, yet, are a largely missing component in Virtual
Environments. In this work, we investigate extending standard Scene Graphs to automatically produce shadowed scenes.
This paper presents our experience embedding two popular real-time shadow methods, Shadow Mapping and Stencil Shadow
Volumes, in a popular Scene Graph system, OpenGL Performer. Our experience has shown both ways in which they can be
used and also a number of weakness in the current state of both Scene Graph systems and shadow methods. Based on our
experiences, we present suggestions for the user desiring to include shadows in their Virtual Environment and highlight areas,
where further development would benefit users significantly.

Keywords: Scene Graph, Virtual Reality, Stencil Shadow Volumes, Shadow Mapping

1 INTRODUCTION

A well known German figure of speech says: "There is
shadow where there is light." This omnipresent effect of
light occlusion makes "the shape and relative position
of objects in such scenes more comprehensible" [11]
and helps us to identify the distribution of light sources.
However, in the realm of computer graphics, this figure
of speech does not necessarily apply, because this fa-
miliar effect doesn’t appear automatically, but must be
imitated. The extra effort is useful, because the usual
uniform illumination of computer graphics is easy to
identify as artificial, amongst other things due to "fly-
ing" objects.

The perceptual cues provided by shadows are pre-
sumably even more important in the field of Virtual
Reality (VR). VR focuses on both immersive environ-
ments and providing the illusion of depth; Shadows
deliver important information about depth to the user.
Given these foci, it is remarkable that shadows are un-
usual to find in the most VR environments. Perhaps,
the biggest reason for this is the lack of integrated sup-
port in the graphics generation tools that VR systems
typically use, Scene Graphs; Scene Graph(SG) systems
used have only just begun to support shadows.

In recent years, two techniques have emerged as stan-
dards in the real-time computer graphics community
for shadows generation. The first, used in the major-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Re-
public.

ity of cases, is Shadow Mapping. [11] Shadow Map-
ping uses a texture of the scene generated from the
lights point of view, in combination with a special al-
gorithm, to determine the portions of the scene that are
not visible from the light and, therefore, in the shadow.
The second shadow technique is Stencil Shadow Vol-
umes. [2] This method marks objects as lying within
the shadow if they are contained within a volume pro-
duced by extending the silhouette of a shadow caster
with respect to a light.

In this paper we present the results of our investi-
gation of integrating automatic shadow generation into
Scene Graph based VR. In our work we have focused
on SGI’s OpenGL PerformerTM [6] - a popular SG,
used in numerous VR systems - and the VR system,
AVANGO. [10] We present here how shadows, both
Shadow Mapping and Stencil Shadow Volumes, are in-
tegrated into AVANGO and describe the implementa-
tion of them briefly. However, a large portion of this
work’s importance lies rather in the experience col-
lected during this exploration. We present much of that
experience here, in the form of a number of suggestions
for the user of such a system. In this discussion we
also bring to the forefront many of the shortcomings of
the shadow techniques for general usage and describe
a number of points, where improvements to the tech-
niques would be advantageous.

In the next sections, we present background informa-
tion on Virtual Reality and Scene Graphs, followed by
a small overview of the Shadow Mapping and Stencil
Shadow Volume methods. In Section 4 we present de-
tails on the implementation of both shadow techniques
in a SG-based VR system. In Section 5, we present the
outcomes of this work, including giving advise how to
use automatic generation of shadowing and discussion
of the shortcomings of both the SG implementation and
the shadow techniques. Section 6 discusses future di-

rections for research we have identified that would im-
prove shadow usage in the VR context.

2 VIRTUAL REALITY

In this section we provide some necessary background
information on Virtual Reality, by contrasting it with
other, more standard computer graphic areas. A special
focus is placed on the generation of graphics in VR sys-
tems, performed by underlying Scene Graph (SG) sys-
tems. Finally, we give a brief overview of the related
work in VR and similar areas on shadows.

VR, like computer games, builds highly upon the
real-time computer graphics community. VR and com-
puter games share many similarities; However, VR dif-
ferentiates itself on a number of fronts. VR is highly
focused on immersion, roughly the illusion of being
present in the virtual environment. This is achieved
through various means. For this feeling of presence,
one factor is a high quality image. The "connectedness,
continuity, consistency, and meaningfulness of the per-
ceptual stimuli presented" [5] is denoted as "Pictorial
Realism" and this realism can be increased by shadows.

The hardware normally used in VR can also increase
this feeling of presence. Common components include
surrounding (immersive) displays, such as large pro-
jection systems or Head Mounted Displays (HMDs),
stereoscopic imagery. Another component that differ-
entiates VR from computer games is that the user’s
position is usually tracked, having the user’s physi-
cal movement affect the display of virtual environ-
ment. The resulting motion parallax effect "’provide
important information about the depth of objects in the
field." [5] Stereoscopic imagery and the paralax effect
enabled with head tracking have significant effects on
depth perception. These also have impacts on VR sys-
tems’ structure. Large scale projection systems require
multiple projections, implemented either with special
multi-piped systems or implemented using distributed
systems. Head-tracking leads most VR to use a "the
world moves" metaphor instead of the common camera
movement metaphor.

In contrast to computer games, VR exhibits two big
disadvantages in regards to the modeled 3D environ-
ment. Among the VR community, it is uncommon to
have dedicated modelers. Commonly, available mod-
els and models created by programmers and students
with little or no experience must be used. A further fac-
tor is that many games, particularly those with shad-
ows, take place within closed environments, such as
buildings with small rooms. Conversely, the environ-
ments of VR are often very large and quite often consist
of open spaces, both of which become critical factors
when dealing with shadows.

2.1 Scene Graph Based Systems

A Scene Graph is used by most VR systems for
organizing the scene. A Scene Graph (SG) is a
directed, acyclic graph consisting of a hierarchical
structure of nodes designed for the simplification of
the display and management of graphical environ-
ments. SGs are typically tree structures, where the
root node is a "scene node," on which the rest of
the scene is hung. The nodes of the graph specify
information about the scene and its properties, such as
transformations, state properties, material properties
and geometrical primitives. In this work we have
focused specifically on OpenGL PerformerTM, referred
to throughout simply as Performer. However, the
work we present here is largely applicable, outside
of implementation details, to the two other popular
SGs in the VR community. A large majority of the
VR systems use one of the three. OpenSceneGraph
(OSG: http://www.openscenegraph.org/) is a large
community project and has an API very similar to
OpenGL Performer. OpenSceneGraph (OpenSG:
http://opensg.vrsource.org/trac) is built on the same
principles, but presents a highly different API.

To render the scene, the scene graph is traversed, ren-
dering all visible objects. A traverser traverses the
scene graph, typically originating from the scene node
and proceeding to the leaf nodes, which contain the ac-
tual geometry. In between the root node and the leaf
nodes are nodes that transform and change the scene
layout. In Performer, the leaf nodes are of type pf-
Geode and contain one or more pfGeoSets, which hold
the actual geometry primitives. To be able to position
the geometry in the scene, the pfGeode is hung on a
transform node, the pfDCS node. The final major com-
ponent, pfGeoState, is responsible for influencing the
graphical state of an object and is attached to individual
pfGeoSet’s.

The AVANGO VR system is built as a layer on top
of Performer. AVANGO is an object oriented frame-
work for creating distributed, interactive VR applica-
tions, with an interface that is similar to Open Inven-
tor. [10] It supports using many different input devices
and also supports various types of displays. As with
most VR systems, AVANGO handles this by abstract-
ing from the underlying devices. This abstraction is a
boon to application writers, but also makes implemen-
tation of some advanced concepts difficult as access to
necessary components may be denied.

The main components of AVANGO are the scene
graph and an orthogonal dataflow Field Container con-
cept. The state of a node or object is encapsulated
in Fields. Fields can be connected to other fields to
synchronize values between them. In this manner a
dataflow graph is constructed, combining Performer
derived nodes with pure AVANGO Field Containers.

To get the best performance possible, all classes in
AVANGO are coded in C++. To achieve increased flex-
ibility and run-time coding capabilities, a binding to
scheme is built in, including an interpreter for run-time
command execution.

2.2 Related Work
Literature in regards to shadows in VR is very limited.
The only paper directly related to our work is early
work from Slater et al. [7] Their research was based on
a custom Shadow Volume system and was focused on
presence research. Unfortunately, the results were dis-
couraging, but presumably are due to the very primitive
technology they used.

The related areas of Augmented Reality and Mixed
Reality have been more focused on shadows, particu-
larly dealing with mixed real and virtual content casting
shadows. Both shadow generating method were used
to in the related literature. For example, in [3] Stencil
Shadow Volumes are used, while in [9] Shadow Map-
ping is used to create the shadows. These works focus
highly on the underlying graphical manipulations. Prior
work could not be found, in which shadows were inte-
grated into scene graph systems. However, all three of
the major SG systems have created some implementa-
tion of Shadow Mapping.

The gaming community is the one area that uses both
Shadow Mapping and Stencil Shadow Volumes. Ex-
amples are commercial game engines and also state-of-
the-art graphic engines, for example the popular Ogre
(http://www.ogre3d.org/). Unfortunately, these engines
are difficult to adapted to usage in VR systems, most
notably because of multi-threading issues.

3 SHADOW TECHNIQUES
In this section, we briefly present the theoretical foun-
dations of the two main shadow techniques used in real-
time graphics, Shadow Mapping and Stencil Shadow
Volumes. This overview is purposely general and im-
plementation details will be handled as required in Sec-
tion 4. Where appropriate, references to more thorough
resources are provided.

3.1 Shadow Mapping
The most popular shadow technique, used by a large
number of today’s games and simulation applications,
is Shadow Mapping. [11] It is based on the idea that
all geometry visible from the light must be lit, and all
geometry that can not be seen from the light’s point of
view lies in the shadow. Shadow Mapping is capable of
casting shadows on arbitrary surfaces and also supports
self-shadowing and inter-object shadows.

For Shadow Mapping, a two-pass algorithm must be
used. In the first pass, the scene is rendered from the
light’s point of view. The depth values are then written

to an already prepared depth texture. To use this tex-
ture in the second pass, which is from the view of the
camera, it must be projected onto the scene from the
light’s point of view by calculating appropriate texture
coordinates.

Using the generated texture coordinates, created us-
ing OpenGL’s automatic texture coordinate generation,
the distance between the fragment and the light source
can then be compared with depth stored in the r compo-
nent of the corresponding texel(s) of the shadow map.
If both values are equal, then the corresponding frag-
ment is the same as the one seen from the camera’s
point of view. However, if the r component of the
fragment’s texture coordinate is greater than the corre-
sponding texel, then the fragment can not be seen from
the lights point of view. This indicates that there is an-
other object between the fragment and the light source.
Therefore, this fragment lies in a shadow.

3.2 Stencil Shadow Volumes
The idea to use volumes to calculate shadows was in-
troduced by F. Crow. [2] The volume that the shadow
encloses is calculated for each light and object combi-
nation. It can then be used to determine what geometry
is located inside the shadow. The silhouette of an ob-
ject is formed from precisely the edges, for which one
adjacent plane is facing the light and the other is fac-
ing away. To check if a plane is facing the light, one
has to calculate the angle between the faces normal and
the incoming light ray. If this angle is > 90◦, the plane
is facing toward the light source. To create a shadow
volume, as seen in Figure 1(a), he extended the recov-
ered silhouette by displacing copies of each silhouette’s
vertices in the direction opposite to the incoming light
ray.

In order to use the later introduced GPU’s inherit ver-
tex processing power in calculating shadow volumes a
new method had to be developed. Since vertex shaders
are not capable of producing new vertices, objects have
to be enhanced with new vertices, which can later be
displaced by the vertex shader. To do that, all the ob-
ject’s edges are replaced by newly created quads. Two
of the quad’s vertices receive the normal of one adja-
cent face and the other two vertices the normal of other
face. These quads are called "degenerate quads," since
they don’t contain any surface area at creation time. To
create a shadow volume from the extended object, we
use the vertex shader to displace all vertices that aren’t
facing the light source. Through the displacing process
the degenerate quads are stretched so they get their own
surface area. The created shadow volume consists of
the newly emerged quads together with the displaced
and the non-displaced triangles capping it.

To get shadows from the calculated shadow volumes,
as seen in Figure 1, the counting capability of the sten-
cil buffer is used to find these objects. [4] Heidmann

(a) A scene with a visible shadow
volume

(b) the shadow is visible, where
the volume intersects geometry

(c) stencil shadows in a real envi-
ronment

(d) stencil shadows in a real envi-
ronment

Figure 1: Stencil Shadow Volumes

followed Crow’s method for determining which objects
are shadowed, by counting the order of the objects and
volumes surfaces, today known as z-Pass or depth pass.
It is a method, in which the front and back faces are suc-
cessively rendered. If a fragment of the front faces can
be drawn, the associated stencil value is incremented.
Afterwards, the back faces are rendered and, for every
fragment that isn’t covered by another object, the as-
sociated stencil value is decremented. Fragments with
an associated stencil value > 0 after all faces are ren-
dered indicate that there is an object within the volume;
Therefore, it lies in the shadow. After completing this
step for all fragments, the stencil buffer contains values
that divide the scene into lit and shadowed regions.

Unfortunately, z-Pass inverts the lit and shadowed re-
gions if the camera is located inside the shadow volume.
To avoid this problem, the order of operations can be re-
versed, known as Carmack’s reverse [1] or simply as
z-Fail. Using this method, the stencil buffer must be in-
cremented, if it was not possible to draw the volume’s
back face, and decremented, if the front face cannot be
rendered. In contrast to z-Pass, it is necessary to cap the
volume, making z-Fail a bit slower. The results are al-
most the same, but enables entering a shadow volume,
without producing inverted shadows.

There are two ways in which the stencil buffer’s
mask can be used to render shadows. One can use
either "modulative shadows" or "additive light mask-
ing." Using modulative shadows, we overlay the scene
with a quad, colored with a semi-transparent shadow
color. Doing this exclusively in the regions masked in
the stencil buffer, the scene’s color is darkened inside
the shadowed region. This method is comparatively
fast and easy to use, but can produce errors within the
shadow if there is specular highlighting inside the shad-
owed region. The "additive light masking" approach
produces more realistic shadows and handles highlights
the correct way, but it is noticeably slower, since the im-
age must be drawn twice. In the first pass, the scene is
rendered only with weak ambient light. After determin-
ing the shadowed regions, the scene is rendered again to
the regions outside the shadowed regions with fully en-
abled lighting.

4 IMPLEMENTATION
The goal of our work was to make standard shadow
methods available in the scene graph based VR sys-
tem AVANGO, such that they were automatically cre-
ated throughout the entire scene. This goal was based
on an outsider’s view that the shadow methods were, at
this point "plug ’n play," and it should be just a sim-
ple matter of adapting the processes to work with SG
based systems. In this section we present the imple-
mentation details of how both Shadow Mapping and
Stencil Shadow Volumes can be implemented into SG
based VR systems, specifically OpenGL Performer and
AVANGO. In the following section we discuss the re-
sults of our implementations.

4.1 Shadow Mapping
Integrating Shadow Mapping into a VR system isn’t
necessarily easy, due to it being implemented as a two
pass algorithm. While the first pass is only necessary
when the light sources moves, VR systems use a "the
world moves" metaphor instead of moving the camera,
which means the light sources move every frame.

In Performer multi-pass algorithms can be imple-
mented using two or more channels, conceptually a
view of the scene that is part of the underlying "pipe." In
many VR systems, including AVANGO, the underlying
windowing, Performer’s pipes/channels, is hidden from
the user. This makes it difficult to create a second per-
spective needed for the Shadow Mapping method, as
the underlying VR system must be modified.

Fortunately, it turned out that creating our own
Shadow Mapping implementation wasn’t necessary.
Our initial investigations on integrating Shadow
Mapping lead us to look at the Performer’s own imple-
mentation, which was supported officially only under
Windows and AVANGO functions only under Linux,
to see how it was dealt with there. This investigation
showed that the Performer method, supported through
the class pfLightSource, did indeed function under
Linux as well. Instead of reimplementing Shadow
Mapping ourselves, we proceeded with the version
available and describe here how it functions and how it
is then integrated into AVANGO.

These light sources are SG nodes, which means that
the position, from where the scene is lit, is determined

by placing them in the SG. Because Shadow Mapping
doesn’t support omnidirectional shadows, it is impor-
tant to specify the light’s direction. The field-of-view
(fov) of the light source is an important factor affect-
ing the quality of the shadow; A smaller fov can bet-
ter take advantage of the texture resolution, which re-
sults in smoother borders of the shadow. For the pre-
cision of the shadows, the two clipping planes must
lie as close together as possible. In AVANGO, these
configurations can be changed at run-time, since all at-
tributes of the class fpLightSource are represented as
fields. The following code snippet shows the sequence
of scheme scripting commands required to use Per-
former’s Shadow Mapping in AVANGO:
(define newLight (make-instance-by-name "fpLightSource"))
(fp-set-value newLight ’Name "newLight")
(fp-set-value newLight ’Position (make-vec4 0 0 0 1))
(fp-set-value newLight ’SpotDir (make-vec3 0 0 -1))
(fp-set-value newLight ’SpotCone (make-vec2 0 180))

(fp-set-value newLight ’ShadowEnable 1)
// resolution of the shadow texture:
(fp-set-value newLight ’ShadowSize 512)
(fp-set-value newLight ’ShadowFrustum

(make-vec4 -0.5 0.5 -0.5 0.5))
(fp-set-value newLight ’ShadowNearFar (make-vec2 0.01 100))

4.2 Stencil Shadow Volumes
As Stencil Shadow Volumes are found neither in Per-
former nor AVANGO, we describe here all of the im-
plementation details from our implementation. We ex-
tended AVANGO with a new node, "fpStencilShadow,"
which is directly inherited from the node fpDCS. The
realization of this extension, as a transform node, makes
it capable of being positioned within the scene graph
and also has the advantage of collecting all the required
objects for this method under one node. The task of
this node class is to extend loaded objects by degenerate
quads and manipulate the way the underlying geometry
is drawn.

To extend an object by new quads, it must be com-
mitted to the extension’s most important field, "Caster."
This field holds a node or complete sub-tree, allowing
the inclusion of any geometry set consisting of trian-
gles or triangle strips. When the field update mecha-
nism finds that the Caster field has received a new ob-
ject, a function is called that creates a custom recursive
pfuTraverser, which traverses the object of the field,
searching for geometry nodes. When a geometry node
is found, the contained GeoSets are extracted to create
the new quads from them. Since GeoSets can contain
only one primitive type, the new quads are put into a
newly created GeoSet.

To create the shadow volume, the newly created
GeoSet and a copy of the original one are placed as
children of two newly created geometry nodes. This
is done, so that the front and back faces can obtain
different Draw-Traverser functions, describing the
different behaviour for passing or not passing the depth
test. These two nodes are then attached to the instance
of the fpStencilShadow class.

Figure 2: An object consisting of one triangle-geoset is
hung under the ShadowNode. After modification per-
formed by the traverser, another geode is created ref-
erencing both the triangle and the quad geosets.

The resulting Scene Graphs can be seen in Figure 2.
In order to be able to displace the vertices of the new
GeoSets later, all GeoSets have a special GeoState that
is comprised a shader program that displaces vertices,
dependant on the light’s position. Further state requires
are discussed later.

In Performer, it is possible to use OpenGL commands
directly, so we can change the systems state. Unfortu-
nately, changing the systems state this way is critical,
because the changes are hidden from Performer. This
means that Performer acts on the assumption that the
state isn’t touched, so completely unwanted effects can
occur. That is why we have to save the OpenGL state
on our own, so we can undo the changes later.

To be able to undo these changes, the first command
stores the current state. In the Post-Draw-Function, this
saved state can be loaded again. In order to perform
the depth test without changing the depth entries, the
depth test is enabled and the associating mask is "false."
The Pre-Draw-Function shown below is designed for
the front faces, so the back faces are culled away. Now,
the stencil test can be enabled and configured, such that
it is incremented when it is possible to render the cur-
rent fragment. Using z-Pass, the Pre-Draw-Traverser
for the front faces follows:
int fpStencilShadow::pfdPreDraw1(pfTraverser *trav, void *data)
{

glPushAttrib(GL_ALL_ATTRIB_BITS);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0xffffffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP);

return PFTRAV_CONT;
}

After attaching the shadow volumes to the scene
graph, they are rendered, with the color buffer dis-
abled. This is done in order to create a mask in the
stencil buffer that separates lit regions from shadowed
ones. As mentioned previously, there are two ways of
using this mask for creating real shadows. We have
implemented "modulative shadows," in order to avoid
the multi-pass issues discussed in Section 4.1. There-
fore, a node containing a quad is held in the field
ShadowQuad. The ShadowQuad functions as a semi-
transparent film, through which the whole scene can be

(a) 32x32 (b) 128x128 (c) 256x256 (d) 1024x1024

Figure 3: Depiction of a typical outdoor scene, a marketplace in Germany with different sizes of depth texture.

seen, darkening the shadowed regions. For this function
to behave correctly, it is necessary that the film is al-
ways positioned between the camera and the scene. For
this function to behave correctly, it is necessary that the
film is always positioned between the camera and the
scene. For that reason, a transformation node, above
the geometry node, positions the film in front of the
camera.

Furthermore, if the field that contains the Shad-
owQuad is modified, the field update mechanism calls
a function that creates a new traverser. It then traverses
the geometry subtree searching for geometry nodes to
attach the Draw-Traverser functions to them. These
functions configure the drawing of the ShadowQuad,
such that it is drawn dependent on the values in the
stencil buffer. In this manner, the film is laid over
the scene only on the shadowed regions. In order to
avoid having the shadow quad simply covering objects
behind it, the Draw-Traverser activates the blending
mode, darkening the shadow regions by blending its
color with a black color whose alpha value is 0.5. The
code of the Draw-Traverser function is as follows:
int fpStencilShadow::pfdPreDraw3(pfTraverser *trav, void *data)
{

glPushAttrib(GL_ALL_ATTRIB_BITS);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, 0xffffffff);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glColor4f(0.0f, 0.0f, 0.0f, 0.5f);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
return PFTRAV_CONT;

}

5 RESULTS
In this section, we discusses our experience of using
the implemented shadow methods. We also provide the
user with much of the information that they will require
in order to successfully introduce shadows into their en-
vironment. We have divided this into three parts, han-
dling of the two method individually and a short state-
ment on using both methods simultaneously.
Shadow Mapping The Shadow Mapping routine
works much as advertised, working with arbitrary sur-
faces and performing self-shadowing. As seen in the
code in Section 4.1, it is easy to enable in AVANGO.
It is, however, not a "plug ’n play" method. As will be
discussed in the following paragraphs, there are numer-
ous points to tweak to the individual scene. One of the

main points that requires careful consideration from the
user is the texture resolution vs. the area to which it is
applied. The second area of importance relates to the
depth comparison and its inherit inaccuracy. Luckily,
the AVANGO implementation assists the user highly in
this endeavour, as they can modify all relevant values at
runtime using the scheme interface or a GUI interface.

Depending on the resolution of the shadow texture,
the shadow is, more or less, blocky. Although it is pos-
sible to assign an arbitrary value for the resolution of
the shadow texture, it must be a square of a power of
2 to be accepted as a valid value. To get a correct tex-
ture mapping, the texture resolution can be no larger
than the window size and the TFT monitor used had a
maximum resolution of 1280x1024, so already a tex-
ture resolution of 1024x1024 could only be used in full
screen mode. Naturally, larger textures take longer to
generate and can cause texture swapping problems, so
always selecting a large texture may not be appropriate.

As one can see in Figure 3, any resolution <=
128x128 results in such a blocky shadow that it is
better to leave the scene shadowless than use a shadow
that can be identified as artificial on the first view.
We recommend the use of the maximum resolution
available, or at least 512x512 as a resolution for
the shadow texture. The results are still blocky, but
Performer tries to soften the edges, so it is tolerable.

The other half of the resolution problem is dependent
on the chosen field-of-view and, in practice highly, in-
fluences the "blockyness" of the shadows. The smaller
the field-of-view is, the better the resolution is utilized.
In VR, where it is common to simulate a world size of
square kilometres, it is not recommend to use a shadow
field-of-view including the whole scene like it would
be used for a sun to casts shadows. Instead, local light
sources lighting need to be used, shadowing only a
small area with each.

Additionally, it is possible that the depth value of
a fragment in the depth texture differs from the one
stored in the frame buffer for the same object, since
the depth values of the frame buffer and the ones of
the shadow texture descend from different rasters. This
produces artefacts and incorrect self-shadowing when
they are compared and are detected as different. The
steeper the slope of the surface in depth and the lower

(a) polygon offset is: too high (b) polygon offset is: too low (c) polygon offset is: just right (d) both techniques in combina-
tion

Figure 4: Generating and tweaking shadows using the implementation.

the resolution it is, the more such errors appear. The
special values PFLS_SHADOW_DISPLACE_SCALE
and PFLS_SHADOW_DISPLACE_OFFSET reduce
such mistakes by adding a small offset, which is
dependent on the surface’s depth slope, to the sampled
depth value. Usual values are 1.0 for the displace scale
and 0.001 for the displace offset, but they are scene
dependent. Customizing them for the current scene
must be done manually. The effect of an incorrect
offset, either too great or too small, can be seen in
Figure 4. An important thing to mention is that it often
occurs that when a good value for an specific object in
the scene is found, it will result in improper results for
other objects. It may be the case that there is no value,
with which all objects are properly shadowed!

Stencil Shadow Volumes The Stencil Shadow Vol-
umes implementation integrated well in AVANGO and
seemed to be a solution that would be highly effective
for our use. The implementation process was made
more complex due to Performer’s handling of state.
Objects in Performer that do not possess their own
GeoState inherit the current GeoState. This is done to
reduce OpenGL context switches, but leads to problems
if extra care is not taken in the shadow programming.
That is why the GeoSet of the shadow quad also gets
an empty GeoState to avoid inheriting the current one.
With this implementation issue taken care of, we had
expected the user to get their "plug ’n play" shadows,
if only for limited objects due to the processing load of
the method.

While implementing the Stencil Shadow Volumes,
we discovered fully unexpected problems with regard to
the shadow casting objects. Although it was known that
such objects must be closed, 2-manifold, and consisting
only of triangles (or triangle-strips), the problems these
limitations brought up were not foreseen.

Most of the objects available on the internet are not
constructed carefully enough to be usable for shadow
volume generation, because the modelers didn’t create
them for this purpose. Similarly, the models created by
students and computer scientists are often inadequate.
If the model is only displayed, it seems to be all right,
but if further processing of the model is performed, it
causes problems. Shared vertices of neighboring sur-

faces that have differing positions and are bordered by
more than two surfaces could result in holes. This leads
to incorrect results, not only for shadow volume calcu-
lation, but also for techniques like Non-Photorealistic
Rendering. A single incorrect vertex is enough to get
a completely wrong shadow volume, which results in
visible parts of the shadow volume.

This problem is unfortunately compounded by the
SG systems and, in particular, Performer. When load-
ing objects, the Performer loader tries to optimize the
model for faster processing, converting it into its own
native format. This leads to a re-triangulation of the ob-
ject, which, in turn, isn’t implemented carefully enough
to create shadow volumes from this. Many times, after
this "optimization," incorrect planes are included in the
object or other planes are missing, so there are holes in
the object. Mostly, these faults are not visible on the
object itself, but the models can no longer be used for
shadow generation. To avoid such problems, it is possi-
ble to convert the object to the Performer format in ad-
vance by using the program "pfConv." This application
can be configured such that the triangulation remains
untouched. If the converted object is loaded by the
shadow-application, the loader will never re-triangulate
it again.

Combined Usage Both the Stencil Shadow Volume
and Shadow Mapping techniques and implementations
have strengths and weaknesses. The quality of pictures
strongly depends on the environment they are used on.

Most often, Shadow Mapping’s implementation is
faster than Stencil Shadow Volumes, since most of the
calculations can be done on the specialized GPU of
modern graphic cards. The dependency on textures and
their limited resolution are two limitations on Shadow
Mappings ability to produce beautiful shadows. On the
other hand, it is not dependent on the scene’s complex-
ity as shadow volumes are, so it can be used as a more
general solution, particularly for complex scenes. The
Shadow Mapping implementation is also much more
robust in terms of handling arbitrary objects, but re-
quires fine adjustments with polygon offset over all
components. Adjusting the polygon offset of the scene
can be performed for static scene; However, for mov-
ing objects, changing position and form, the use Sten-

cil Shadow Volumes do not require adjusting it to the
current situation and scene, making potentially better
suited for this usage.

Due to the completely different concepts used, it is
possible to use both shadow methods in combination.
The only thing that should be observed is the use of
different light sources for each shadow method to avoid
having the resulting shadows overlap. An example of
the combined usage can be seen in Figure 4(d), where
the brighter shadow is produced by Shadow Mapping.
The darker coloring of the Stencil Shadow in the figure
is purposely done to differentiate the two shadows.

6 FUTURE WORK
Our experiences have shown that the biggest problem
with Stencil Shadow Volumes in the SG are objects
with wrong surfaces or holes in them. To avoid these
problems completely, methods to automatically check
and repair the objects would be optimal. Such tools
embedded in the modeling program would be of great
help for modelers, particularly those amateur modelers
VR often uses. Additionally, a model loader that is ca-
pable of reducing automatically the complexity of the
GeoSets to accelerate the volume calculations would be
desirable. In many Stencil Shadow Volume applications
there is, next to the original object, a reduced version;
The original is displayed in the scene and the reduced
version is used for calculating the shadow volume.

Future investigations of interest would be the imple-
mentation of advanced Shadow Mapping approaches.
There are many proposals that avoid or reduce the
dependency on the texture resolution, for example the
"Perspective Shadow Mapping." [8] Unfortunately,
to use them in our setup would require customizing
the available pfLightSource, which is not available
in source code. Instead, like the fpStencilShadow
extension, a new node or object must be created.
This would require a multi-pass rendering algorithm,
which needs to access the underlying channel to be
implemented. Dependent on the VR system being
used, this could be difficult to implement, as is the case
with AVANGO.

7 CONCLUSION
In this paper we have presented how two popular
shadow techniques, Shadow Mapping and Stencil
Shadow Volumes, can be implemented in a Scene
Graph based VR system, in pursuit of a system for
automatic generation of shadows. We presented how
we implemented these in the OpenGL Performer Scene
Graph and the AVANGO VR system, using methods
viable for other systems. Based on our experience, we
have discussed both the implementation and usage of
the systems. As a portion of this discussion, we have

presented advice to the potential user of such a system
on the different aspects that the user must be aware of,
such as model issues with Stencil Shadow Volumes and
tweaking Shadow Mapping parameters for typical VR
environments. Finally, we have identified a number of
areas of further research and development, which could
help deliver the goal of truly automatic generation of
shadows in SG based VR.

REFERENCES
[1] John Carmack. John carmack on shadow vol-

umes. http://developer.nvidia.com/object/robust-
shadow-volumes.html, 2000.

[2] Franklin Crow. Shadow algorithms for com-
puter graphics. Proceedings of SIGGRAPH 77,
11(2):242–248, 1977.

[3] Michael Haller, Stephan Drab, and Werner Hart-
mann. A real-time shadow approach for an aug-
mented reality application using shadow volumes.
In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, pages 56–65,
2003.

[4] Tim Heidmann. Real shadows real time. IRIS
Universe, 18:28–31, 1991.

[5] Wallace Sadowski and Kay Stanney. Handbook
of Virtual Environments: Design, Implementation,
and Applications, chapter Presence in Virtual En-
vironments, pages 791–796. Lawrence Erlbaum
Associates Inc,US, 2002.

[6] SGI. OpenGL Performer Programmer’s
Guide. http://techpubs.sgi.com/library/tpl/cgi-
bin/browse.cgi?coll=0650&db=bks&cmd=toc&
pth=/SGI_Developer/Perf_PG/, 2004.

[7] M. Slater, M. Usoh, and Y. Chrysanthou.
The influence of dynamic shadows on presence
in immersive virtual environments. In cite-
seer.ist.psu.edu/slater95influence.html, 1995.

[8] Marc Stamminger and George Drettakis. Perspec-
tive shadow maps. In John Hughes, editor, Pro-
ceedings of ACM SIGGRAPH 2002. ACM Press/
ACM SIGGRAPH, July 2002.

[9] Andrei State, Gentaro Hirota, David T. Chen,
William F. Garrett, and Mark A. Livingston. Su-
perior augmented reality registration by integrat-
ing landmark tracking and magnetic tracking.
Computer Graphics, 30:429–438, 1996.

[10] Henrik Tramberend. Avocado: A Distributed Vir-
tual Environment Framework. PhD thesis, Uni-
versität Bielefeld, 2003.

[11] Lance Williams. Casting curved shadows on
curved surfaces. Proceedings of SIGGRAPH 78,
5:270–274, 1978.

