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ABSTRACT 

A novel method which is simple but effective is proposed to estimate human skeleton ratios from 2D uncalibrated 
monocular data. Unlike the existing skeleton estimation methods where pre-defined models are used or 
identification of body segments with certain attributes is necessary, the proposed method utilizes only the 2D 
joint locations as the input source without posture estimation. In addition, the proposed method uses a real 
perspective camera model instead of the popularly-used scaled orthographic camera model. The proposed 
method is tested on monocular data from different camera motions and the estimation result is satisfactory. The 
reconstructed human skeleton model can be used in further research for full body reconstruction or motion 
reconstruction from monocular data. 
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1. INTRODUCTION 
Applications involving virtual human, such as digital 
movies, computer games and video surveillance, have 
become more and more popular with the rapid 
development of computer technology. There are 
many approaches to create a virtual human body. 
Common ways include employing 3D body scanners 
or using 3D modeling techniques based on 
understandings of human anatomy. Detailed 3D 
human body model can be acquired easily using such 
methods. However, 3D body scanning is expensive 
and clumsy, and more seriously, the person to be 
modeled might not be available for scanning. 
Meanwhile, human models based on human anatomy 
generally fall short in representing personalized 
individuals. 

Another approach recovers the human model using 
image(s). This approach can be divided into two 
groups: (1) reconstruction from static human figure 
and (2) reconstruction from human figure in motion. 

Most researchers in the first group employ multi-view 
images of a human figure in a specific posture 
[Hil98a; Lee00a; Vil03a]. There are strict 
requirements on the images which must capture 
certain specific views of the immobile human figure. 
The human figure is required to appear in certain 
standard immobile postures. Body reconstruction 
from image sequences containing human motion is 
another group in image-based human model 
reconstruction. Some researchers require the human 
figure to perform specified motions [Che03a; 
Kak95a] or limited arbitrary motions [Coh02a; 
Dap00a; Sta03a] under multiple cameras. No matter 
whether the static human figure or human motion is 
used, methods using multiple cameras share the same 
drawback: the person has to pose for the cameras at a 
specific location, normally in a fully-equipped 
laboratory or studio. In contrary, monocular video is 
conveniently available in various formats (e.g. DVD, 
VHS video tape, mpeg). However, monocular video 
is the most difficult source for body reconstruction, 
especially when the camera is uncalibrated which is 
mostly the case. Most reconstruction work based on 
monocular images ([Bar03a; Rem03a; Tay00a]) use 
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the so-called "scaled-orthographic" camera model, 
which amounts to a parallel projection, with a scale 
parameter added to mimic the effect that the image of 
the object shrinks with the distance. Obviously the 
scaled-orthographic camera model is very different 
from the real camera used to capture the video. The 
only exception is [Pen05a] who used a perspective 
camera model to handle the monocular images. 
Among these research effort, ([Bar03a], [Pen05a]) 
tried to reconstruct the human skeleton from 
uncalibrated monocular images, while others 
([Rem03a; Tay00a]) attempted to reconstruct the 
human motions with a pre-defined human skeleton 
model.  

Human body reconstruction from monocular image 
sequence is a very attractive idea due to the fact that 
monocular video is so conveniently available. For the 
appearance of the whole human body, the skeleton 
proportion is a dominant feature. Recovering the 
proper skeleton model is therefore the most important 
component for the reconstruction of human body. 
Due to the vast possibilities of human postures and 
camera settings, skeleton proportions usually cannot 
be simply calculated from the projected segments. To 
estimate such proportion, [Bar03a] requires the user 
to manually identify the body parts almost parallel to 
the image plane, or the skeleton segments having 
similar orientation with respect to the camera. From 
these manual identifications and under the scaled 
orthographic model, their algorithms are able to 
choose a suitable stick model from a group of pre-
defined models. It is very troublesome to identify the 
skeleton segments with certain properties. When the 
input source contains large number of frames, such 
identification becomes impossible. Further more, 
analysis without using real perspective camera model 
results in serious estimation error especially when the 
perspective effect is significant in the images. 
[Pen05a] proposed a method to extract the human 
skeleton model from a perfect synthesized data 
sequence with a perspective camera model. They 
assume the input data are perfect without any noise 
and the camera is fixed with no motions.  

It is clearly desirable to develop algorithms to 
estimate the skeleton proportions from only the 
landmark joints using a real perspective camera 
model which is more flexible. In this paper, we 
propose a novel method to extract the human skeleton 
proportion from uncalibrated monocular data. The 
human motion is unrestricted and a perspective 
camera model is used. Superior to [Pen05a], the 
proposed method allows the source data captured by 
the camera performing some simple motions, e.g., 
rotating, zooming. 

The rest of this paper is organized as follows: Section 
2 provides the overview of the system; Sections 3 and 
4 discuss the major parts of the proposed system; 
Section 5 demonstrates the results with discussion; 
and Section 6 concludes the paper. 

2. SYSTEM OVERVIEW 
Human skeleton system can be treated as skeleton 
segments connected at joints as shown in Figure 1. It 
can be represented hierarchically as a skeleton tree if 
one joint is taken as the root. To minimize the 
number of tree levels, the joint J1 is considered as the 
root joint. It is clearly impossible to derive the 
absolute lengths of any body segments from 
monocular images without the knowledge on camera 
setting and the distance of the human to camera. 
Hence the skeleton proportion of every skeleton 
segment is used to represent the skeleton model 
which is defined as the ratio of the individual length 
of every skeleton segment to the sum of the lengths of 
all segments. 

  
(a) Joint IDs (b) Segment IDs 

Figure 1. Skeleton joint IDs and segment IDs 

Due to the considerable diversity of camera types and 
media types, the images recording the real world may 
be different in image size and aspect ratio. The 
conventional film is 35mm film with the size of 
36mm×24mm. Camera parameters based on 35mm 
film, the basic film format, are commonly used as the 
standard. Therefore, without much generality loss, we 
scale any input image based on its original aspect 
ratio to fit and centering into a 35mm film for 
normalization.  

  

(a) strong (b) little 

Figure 2. Perspective effects 



To reconstruct the human skeleton from uncalibrated 
monocular images, [Bar03a] uses a scaled-
orthographic camera model. In that work, the user is 
required to identify the perspective effects in the 
image(s), and only those with very little perspective 
effect can be chosen as the input. Such limitation 
greatly reduces the range of usable input video. In 
contrary, the system proposed here accepts input 
video with any levels of perspective effect.  The user 
only needs to give an initial focal length to the system 
by identifying the perspective effects in the first few 
images. A reference guideline is provided for strong 
to little perspective effects, indicating the focal length 
range from 20mm (wide angle) to 300mm 
(telephoto). Figure 2(a) gives an example image 
displaying the strong perspective effect while Figure 
2(b) shows an example with little perspective effect. 
If the user is unable to determine the perspective 
effects in the first few images, a default initial focal 
length is given as 50mm, which has the perspective 
effects closest to those seen by normal human eyes 
[Ele05a]. 

Many video available are recorded by a mounted 
camera on a stationary tripod. The mounted camera 
may be static or performing certain motions such as 
zooming, panning etc. during the video capturing. 
The proposed system estimates the camera motions 
from the source input data and “undo” these motions 
to produce the modified 2D data. The modified 2D 
data can then be considered as always taken by a 
static camera. 

A human skeleton modeling algorithm is then used to 
estimate the proportions of the human skeleton from 
the 2D monocular data taken by a static camera.  

3. CAMERA MOTION AND STANCE 
FOOT 
Before applying the skeleton modeling algorithm for 
2D monocular data taken by a static camera, a system 
is proposed to estimate motions such as zooming, 
panning etc, of a mounted camera. Such information 
is then used to “undo” the camera motions to produce 
the modified 2D monocular data as if they are taken 
by a static camera.  

To estimate the camera motions from one frame to 
another, at least 3 pairs of corresponding points are 
required [Tan95a]. Each pair of corresponding points 
must be projected from the same stationary point. In 
fact, about 10 such pairs are needed for satisfactory 
estimation results [Tan95a]. Therefore, if the image 
background is featureless and no assistant stationary 
object is available, it is almost impossible to estimate 
the camera motions between two frames, since it is 
hard to find even one pair of stationary points.  

In this project, the only input information is the 
projections of the 17 skeleton joints. As the human is 
dynamic, none of these skeleton joints can be 
considered stationary at any time. Without a pair of 
corresponding points between two frames, it is 
impossible to calculate the camera motion. 
Fortunately in most human motion, there is always a 
foot to support the weight of the body at any moment. 
This foot is called the stance foot and usually remains 
at the same position for a short period of time. We 
make use of this small piece of information to 
estimate the camera motions.  

3.1 2D Data Rectification 
Human motions and camera motions usually exhibit 
certain coherence in time. Thus, the projection 
trajectory of each human skeleton joint within a few 
neighboring frames is usually smooth. Any 
inconsistencies are deemed to be brought in by the 
sampling error in data extraction. Therefore, the 2D 
data are first rectified by a smoothing filter. 

3.2 Sequence Segmentation 
When recording video with a mounted camera, the 
camera can either be static (motionless) or perform 
the following motions: (1) zooming: the camera's 
focal length changes; (2) panning: the camera rotates 
about the Y-axis; (3) tilting: the camera rotates about 
X-axis; (4) swinging: the camera rotates about the Z-
axis. (See Figure 3) 

 

Figure 3. Camera motions 

In practice, a mounted camera often remains static, 
occasionally performing one or both of the following 
motions: (1) directional rotating: a combination of 
panning and tilting in one direction, usually used 
when tracking a moving person; (2) zooming: usually 
used when keeping the full body of a person in the 
film range, if the person moves closer or further to 
the camera. This project assumes the camera 
performs only one of these motions at a time, and the 
camera would be motionless for at least 1 second in 
between any change of its motion. It is also assumed 
that the duration of each camera motion is over 0.5 
second. On the other hand, each stance foot can be 
reasonably assumed to be static for more than 1 
second. Under these assumptions, it is possible to 
find the frames when there is no camera motion, since 



the projection of the stance foot would be fixed 
during those periods. 

For the input data with frame rate p fps, the 
projection of a stance foot would remain fixed for at 
least (p/2) frames under the assumptions that the 
camera remains still for at least 1 second before any 
motion and the stance foot remains still for at least 1 
second. The extreme case is that, within 1.5 seconds, 
the camera moves during the first 0.5 second and 
remains still for the next 1 second, while the foot is 
only still for the first 1 second. In this case, the 
projection of the foot is static for the period from 0.5 
to 1 second, i.e. p/2 to p frames. Therefore, the 
accumulated value of the movement of each foot in 
every neighboring p/2 frames can be calculated. If the 
accumulated movement of any one foot in these 
frames is below a given threshold, these frames are 
considered to be taken by a static camera. 

In this way, the input 2D data is segmented into 
different sequence segments. These segments can be 
classified into two categories: data from static 
camera, and data from camera in motion.  

3.3 Camera Motion Estimation 
For video segments that come from dynamic camera, 
camera motion needs to be estimated in order to 
produce the modified 2D data. If the stance foot is 
known in each frame within the data segment, the 
camera motion estimation is pretty easy. However, 
most of the time it is not known which foot is the 
stance foot in these frames. An iteration method is 
hence proposed to determine the stance foot in each 
frame. 

It is assumed that the stance foot usually remains 
motionless for at least 1 second. For the input with 
frame rate p fps, the stance foot would not lift off 
within p frames after it first touches the ground. 
Therefore, for the video segment of n frames, there 
are minimum 0 time and maximum (n/p+1) times of 
stance foot swapping.  

Every possible case of foot swapping is tested to 
calculate the motion smoothness under the two 
possible camera motions mentioned in the previous 
subsection. The “motion smoothness” is calculated 
based on the standard deviations in the motion 
parameters: For “directional rotating”, the motion 
parameters are the panning and tilting angles between 
two neighboring frames; for “zooming”, it is the 
scaling difference in focal lengths between two 
neighboring frames. The smoother a camera motion 
is, the more likely that motion is correct.  

After testing all the cases, two possible cases can be 
discovered: one with the largest motion smoothness 
for “directional rotating”, another with the largest 

motion smoothness for “zooming”. The case with the 
large (above the threshold) motion smoothness is 
chosen as the solution. If both motion-smoothness are 
large (above the threshold), both camera motions are 
possible. In this case, the best way is to “undo” the 
camera motions in both cases. Significant 
enlargement/shrinking effects will appear in the new 
data if the camera motion is “undone” mistakenly and 
the right camera motion can be chosen 
correspondingly.  

3.4 Modified 2D Data Production 
After the camera motions are estimated for each 
segment from the dynamic camera, it is possible to 
“undo” the camera motions for the whole input 2D 
data segment by segment. The resulted modified data 
can be treated as taken by a static camera. This static 
camera also has the initial focal length chosen by the 
user. 

4. SKELETON MODELING 
The skeleton modeling process is based on the 2D 
data from static camera and the initial focal length 
selected by the user. It consists of two major steps: 
(1) virtual scale parameter estimation; (2) length of 
skeleton segment calculation. 

4.1 Virtual Scale Parameter 
 

 

Figure 4. Scaled human figure 

Any image can be considered as the projection of a 
virtual human figure whose root joint lies on the 
image plane. As shown in Figure 4, if the plane 
passing through the root joint J1 of the actual human 
figure has the distance d to the camera center, the 
scaling parameter of the human on the image can be 
calculated as s=f/d, where f is the camera’s focal 
length. However, the scaling parameter in each frame 
is impossible to establish since the actual distance d 
is unknown. Assume that such distance for every 
frame in the sequence are d1, d2, … , dn respectively. 
Assuming that the first frame has the unit scaling 
parameter (d1’=f ), we just need to find the relative 
distance to derive d1’ , d2’ , …, dn’ . If the distance 



relationships are correctly found, the distances d’ 
calculated would have the same trend as the actual d: 
d1’/d1= d2’/d2=…= dn’/dn. The virtual scale parameter 
is taken as s’=f/d’ , with the first frame having s1’=1 . 

To find the distance relationship for the joint J1, the 
standard perspective projection theory can be 
utilized. It is based on the fact that the projected 
length of any line segment parallel to the image plane 
has a linear relationship with its distance from the 
image plane - the further the segment is from the 
image plane, the shorter its projected length is. 
Obviously such knowledge cannot be directly used 
for joint J1, since it does not necessarily belong to a 
line segment parallel to the image plane.  

For this purpose, the projected length of the calf 
connected to the stance foot is studied. It is difficult 
to gauge the posture of the actual calf only from its 
projection. However, the frame containing the longest 
projection of that calf can be treated as taken at the 
moment when the calf is parallel to the image plane. 
Searching through the entire sequence, the projected 
lengths of the possible parallel calf from different 
stance foot can be obtained from the input.  

Such information can then be used to derive the 
distance relationship of the joint J1. During the 
swapping of the stance foot, the joint J1 is usually 
located on the same plane that passes through the two 
feet and is perpendicular to the ground plane. If a 
reference plane passing through J1 is parallel to the 
image plane, any point on the intersection line 
between this plane and the ground can be utilized for 
calculating the virtual distance of J1. One 
straightforward way to approximate such a point is to 
find the intersection between the vertical line passing 
through J1 and the line segment from one stance foot 
to the other. With this point, the virtual distance in 
this frame can be calculated. However, not all frames 
show the moment of stance foot swapping. The 
virtual distance in other frames are then interpolated 
linearly. The virtual scale parameter can then be 
derived from these virtual distances. 

4.2 Virtual Length Estimation 
Figure 5 shows the projection of a branch of the 
connected skeleton segments from the root joint. The 
virtual scale parameter has been derived for this 
image, and the image is captured by a camera with a 
known focal length f. P1’ is the projection of the root 
joint; line segment Pi’Pi+1’ represents the projection 
of the skeleton in the i th level of the skeleton tree; and 
the projection center is denoted as OC. It is assumed 
that this frame is projected from a virtual human 
figure whose root joint P1 locates on the image plane, 
as discussed in “Virtual Scale Parameter” part.  

The estimation of the length of the virtual skeleton is 
preceded hierarchically.  The estimation in the first 
level of the tree includes two steps: (1) lower 
boundary estimation for all possible virtual skeleton 
length in each frame and (2) virtual skeleton length 
selection. 

As shown in Figure 6(a), P1’P2’ is the projection of a 
skeleton segment in the first level of the tree while 
the root joint P1 of the virtual human figure is located 
on the image plane. P1’P2’ can be projected from an 
infinite number of possible skeleton segments with 
different lengths, due to the uncertainty of the actual 
joint that projects onto P2’.  

 

Figure 5. Projection of connected segments 

 
(a) first level 

 
(b) second level 

Figure 6. Estimation of lower boundary 

Fortunately, the lower boundary of these possible 
skeleton lengths can be calculated, e.g., 
P1P2,min⊥OCP2’, where |P1P2,min| is the shortest 
possible virtual skeleton length with end point P1 that 
has the projection P1’P2’. This shortest possible 
virtual length will always be shorter than the actual 
virtual skeleton length in this frame, and is called the 
lower boundary for this frame.  

With the virtual scale parameter in every frame 
established, the lower boundaries from all frames are 
comparable. Denote the virtual scale parameter in all 



frames as: s1’ , s2’ , …, sn’  , the lower boundary of the 
virtual skeleton length in each frame as: l1, l2, … ln 
respectively, and the skeleton length of the scaled 
human figure at the normalized size as L. According 
to the calculation of lower boundary in each frame, it 
is known that l i/si’≤L (1≤i≤n). Therefore, the largest 
value of these normalized lower boundaries in all 
frames Max{li/si’,1≤i≤n} is the best approximation of 
the virtual length L of the actual human at normalized 
size. 

Unlike the segments in the first level where one end 
joint is assumed to be on the image plane, both end 
joints of the segments in higher levels are 
undetermined. Hence, the position of one end joint 
must be estimated first in order to calculate the 
shortest possible virtual length. If the virtual lengths 
of the segments in the lower levels of the skeleton 
tree are known, there are at most 2i possible skeleton 
poses in the i th level. For example in Figure 6(b), P2,1 
and P2,2 are two possible positions that give the 
projection at P2’ in 2nd level. As a result, 2i shortest 
possible relative lengths in level i th can be calculated. 
The minimum value among them is selected as the 
shortest possible virtual length of this skeleton in this 
frame. Similar to the case in the first level, the largest 
value of the normalized shortest possible virtual 
lengths among all frames has the minimum difference 
from the actual length of that segment at the 
normalized size.  

In this way, the skeleton length for each segment can 
be estimated under the given focal length.  

5. RESULTS 
One of the most challenging tasks in any 3D 
reconstruction attempts from images is the 2D feature 
extraction from images. Up to date, the image 
processing techniques are still unable to provide 
sufficiently accurate 2D feature information from any 
images. In fact the extraction of 2D feature 
information and the 3D model reconstruction are two 
independent modules. They should be addressed 
separately and in parallel for the ultimate 
development of the complete system. In this project, 
the image processing step is not an emphasis. 2D 
extracted projections of human skeleton joints are 
assumed available as the input of our system.  

Computer synthesized input video is currently used to 
test our algorithm. The synthesized video is generated 
by computer with a 3D virtual skeleton model and a 
virtual camera. The 3D virtual skeleton model has 17 
joints with 16 skeleton segments. It is driven by BVH 
motion files [Ani05a]. The virtual camera is located 
at a fixed 3D position when capturing any frame of 
720*480 pixels, where the fixed 3D position of the 
camera is not restricted as long as the camera can 

capture the whole human motion. It can perform one 
of the following motions in between motionless 
periods: directional rotating (panning and/or tilting, 
but excluding swinging since it is hardly used in 
video production) and zooming. Each camera motion, 
including the motionless period, should be smooth 
and lasts for at least 0.5 second. Noises are added to 
the 2D data to make the application closer to actual 
practice. 

The proposed system first estimates the camera 
motions in the source 2D data. The modified 2D data 
is then produced which can be considered as taken by 
a static camera. The human skeleton model in 
different frame has different projected size. A virtual 
scale parameter is needed to resize the human model 
to a standard size. The supporting foot determined in 
each frame can help to estimate the virtual scale 
parameter. After that, the length of the same skeleton 
segment in each frame is estimated. By using the 
virtual scale parameter, these lengths can be 
compared and the length for that skeleton segment 
can be determined for the human model at the 
standard size.  

5.1 Camera Motion 
To estimate the camera motion, the data segments 
from a dynamic camera are detected from the source 
data. Two possible camera motions can be estimated: 
“directional rotating” and “zooming”.  

Figure 7 shows some sample frames comparing the 
source data and the modified data. The source data 
includes three camera motions: panning, tilting and 
zooming. With the initial focal length specified by the 
user, the proposed system successfully identified the 
data segments that taken by a dynamic camera. The 
camera motion for each of such segments is also 
automatically determined. 

5.2 Virtual Scale Parameter 
The proposed system utilized the estimations of 
stance foot and the recovered 2D data to calculate the 
relative distance for the position of each stance foot. 
With this relative distance, the relative distance of 
joint J1 in each frame is determined. The virtual scale 
parameter is estimated based on this relative distance.  
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Figure 8. Virtual scale parameter estimation 



Figure 8 shows the result comparing the estimated 
virtual scale parameter to the actual one. The vertical 
axis represents the virtual scale parameter while the 
horizontal axis represents the frame id. The red dots 
indicate the actual virtual scale parameter at each 
frame while the blue dots indicate the estimation. 
From the comparisons, it can be seen that the trend of 
scaling up and down can be successfully estimated. 

5.3 Skeleton Model 
The estimation of the skeleton proportion is shown in 
Table 1 which compares the actual and the estimated 
skeleton proportion in both numerical and graphical 
ways. The first column indicates the skeleton segment 
ID. The second column and third column show the 
skeleton proportion of that skeleton segment.  The 
skeleton proportion is calculated by comparing its 
length to the sum of all skeleton lengths. The fourth 
column shows the difference between the estimated 
and the actual proportion. The last column compares 
the skeleton proportion in an intuitive way: the red 
skeleton with blue joints is the actual skeleton model 
while the green skeleton with black joints shows the 
estimation. 

Skeleton Actual Estimation Error Comparison 

1 4.90% 5.97% 1.07% 

2 17.75% 19.86% 2.11% 

3 1.55% 2.28% 0.73% 

4 6.44% 6.89% 0.44% 

5 7.54% 7.69% 0.15% 

6 11.19% 12.17% 0.98% 

7 10.08% 9.58% 0.50% 

8 3.80% 4.66% 0.86% 

9 19.05% 17.50% 1.55% 

10 17.69% 13.40% 4.29% 

 

Table 1. Skeleton proportion estimation 

It can be easily seen from Table 1 that the estimated 
skeleton proportion resembles the actual skeleton 
proportion very closely. The errors between the 
estimation and the actual skeleton model are very 
small in lower hierarchical levels but increase in 
higher levels. In skeleton S10, the estimated error 
reaches its peak. The estimation accuracy of the 
skeleton in higher level decreases due to the 
algorithm’s hierarchical nature. 

6. CONCLUSION 
This paper presents a simple but effective method to 
estimate the human skeleton proportion from 
uncalibrated monocular data. The proposed method 
can estimate the human skeleton proportion without 
using any pre-defined skeleton information. It is not 
required to manually identify skeletal segments with 
certain properties, and no posture estimations are 

necessary. The proposed method is tested on the 
computer synthesized data captured by a mounted 
camera with motions. The reconstructed result is 
satisfactory. Future work includes the improvement 
on the estimation of skeletons in higher hierarchical 
levels. More cues are to be investigated in order to 
minimize the error propagated to higher hierarchical 
levels.  The algorithm will also be tested on real 
video to verify its applicability. 
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Figure 7. Camera motions and the modified 2D data 

 

 


