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ABSTRACT

A novel method which is simple but effective is posed to estimate human skeleton ratios from 2@librated
monocular data. Unlike the existing skeleton ediibma methods where pre-defined models are used or
identification of body segments with certain atlitds is necessary, the proposed method utilizes thel 2D
joint locations as the input source without postastimation. In addition, the proposed method wsesal
perspective camera model instead of the populadyluscaled orthographic camera model. The proposed
method is tested on monocular data from differamera motions and the estimation result is satisfacThe
reconstructed human skeleton model can be usedrihef research for full body reconstruction or imot
reconstruction from monocular data.
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1. INTRODUCTION Another approach recovers the human model using

Applications involving virtual human, such as digit ~image(s). This approach can be divided into two
movies, computer games and video surveillance, havedroups: (1) reconstruction from static human figure
become more and more popular with the rapid and (2) reconstruction from human figure in motion.

development of computer technology. There are yjost researchers in the first group employ mukivi
many approach_es to create a virtual human bOdy-images of a human figure in a specific posture
Comm(_)n ways include _employlng_SD body scanners [Hil98a; Lee00a; Vilo3a]. There are strict
or using 3D modeling techniques based 0N requirements on the images which must capture
understandings of human anatomy. Detailed 3D certain specific views of the immobile human figure
human body model can be acquired easily using suchrpe hyman figure is required to appear in certain
methods. However, 3D body scanning is expensivegiandard immobile postures. Body reconstruction
and clumsy, and more seriously, the person t0 befom jmage sequences containing human motion is
modeled_ might not be available for scanning. gnother group in image-based human model
Meanwhile, human models based on human anatomyeconstruction. Some researchers require the human
ger_le_rally fall short in representing personalized figure to perform specified motions [Che03a;
individuals. Kak95a] or limited arbitrary motions [Coh02a;

Permission to make digital or hard copies of alpart of Dap00a; StaOSa] under mu_ltlple cameras. No rnatt_er
this work for personal or classroom use is gramitiout| ~ Whether the static human figure or human motion is
fee provided that copies are not made or distribifte used, methods using multiple cameras share the same
profit or commercial advantage and that copies blem|  drawback: the person has to pose for the cameias at
notice and the full citation on the first page. Topy specific location, normally in a fully-equipped
otherwise, or republish, to post on servers oetbstributel  |aboratory or studio. In contrary, monocular vidso

to lists, requires prior specific permission andidee. conveniently available in various formats (e.g. DVD
VHS video tape, mpeg). However, monocular video
is the most difficult source for body reconstruntio
WSCG'2006, January 30-February 3, 2006 especially when the camera is unpalibrated which is
Plzen, Czech Republic. mostly the case. Most reconstruction work based on
Copyright UNION Agency — Science Press monocular images ([Bar03a; Rem03a; Tay00a]) use
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the so-called "scaled-orthographic" camera model, The rest of this paper is organized as followstiSec
which amounts to a parallel projection, with a scal 2 provides the overview of the system; Sectiona® a
parameter added to mimic the effect that the intdge 4 discuss the major parts of the proposed system;
the object shrinks with the distance. Obviously the Section 5 demonstrates the results with discussion;
scaled-orthographic camera model is very different and Section 6 concludes the paper.

from the real camera used to capture the video. The

only exception is [Pen05a] who used a perspective2. SYSTEM OVERVIEW

camera model to handle the monocular images.Human skeleton system can be treated as skeleton
Among these research effort, ([Bar03a], [Pen05a]) segments connected at joints as shown in Figute 1.
tried to reconstruct the human skeleton from can pe represented hierarchically as a skeleteniftre
uncalibrated monocular images, while others gne joint is taken as the root. To minimize the
((Rem03a; TayOOa]) attempted to reconstruct the numbper of tree levels, the joint J1 is consideretha
human motions with a pre-defined human skeleton oot joint. It is clearly impossible to derive the
model. absolute lengths of any body segments from
Human body reconstruction from monocular image mor_10c:ular images.without the knowledge on camera
sequence is a very attractive idea due to thetfett setting and the distance of .the human to camera.
monocular video is so conveniently available. fer t Hence the skeleton proportion of every skeleton
appearance of the whole human body, the skeletorS€dment is used to represent the skeleton model
proportion is a dominant feature. Recovering the which is defined as the ratio of the individual dém
proper skeleton model is therefore the most importa  Of every skeleton segment to the sum of the lengfths
component for the reconstruction of human body. &ll segments.

Due to the vast possibilities of human postures and
camera settings, skeleton proportions usually danno
be simply calculated from the projected segmerts. T
estimate such proportion, [Bar03a] requires the use
to manually identify the body parts almost paratitel
the image plane, or the skeleton segments having
similar orientation with respect to the camera.nro
these manual identifications and under the scaled
orthographic model, their algorithms are able to
choose a suitable stick model from a group of pre-
defined models. It is very troublesome to identifg
skeleton segments with certain properties. When the
input source contains large number of frames, such (a) Joint IDs (b) Segment IDs
|dent|f|_cat|c_)n beco_mes |mpOSS|bIe._ Further more, Figure 1. Skeleton joint | Ds and segment | Ds
analysis without using real perspective camera iode ) ) )

results in serious estimation error especially wihen ~ Due to the considerable diversity of camera types a
perspective effect is significant in the images. Media types, the images recording the real worlgd ma
[Pen05a] proposed a method to extract the humanPe different in image size and aspect ratio. The
skeleton model from a perfect synthesized dataconventional film is 35mm film with the size of
sequence with a perspective camera model. They36mmx24mm. Camera parameters based on 35mm

assume the input data are perfect without any noisefilm, the basic film format, are commonly used s t
and the camera is fixed with no motions. standard. Therefore, without much generality loss,

. ] . scale any input image based on its original aspect
It is clearly desirable to develop algorithms t0 (atio to fit and centering into a 35mm film for
estimate the skeleton proportions from only the normalization.

landmark joints using a real perspective camera
model which is more flexible. In this paper, we
propose a novel method to extract the human skeleto
proportion from uncalibrated monocular data. The
human motion is unrestricted and a perspective
camera model is used. Superior to [Pen05a], the _——
proposed method allows the source data captured by ]
the camera performing some simple motions, e.g., (a) strong (b) little

rotating, zooming. Figure 2. Per spective effects




To reconstruct the human skeleton from uncalibratedIn this project, the only input information is the
monocular images, [Bar0O3a] uses a scaled- projections of the 17 skeleton joints. As the hursan
orthographic camera model. In that work, the user i dynamic, none of these skeleton joints can be
required to identify the perspective effects in the considered stationary at any time. Without a péir o
image(s), and only those with very little perspexti  corresponding points between two frames, it is
effect can be chosen as the input. Such limitationimpossible to calculate the camera motion.
greatly reduces the range of usable input video. InFortunately in most human motion, there is always a
contrary, the system proposed here accepts inpufoot to support the weight of the body at any momen
video with any levels of perspective effect. Temu  This foot is called the stance foot and usuallyass
only needs to give an initial focal length to tlystem at the same position for a short period of time. We
by identifying the perspective effects in the fifstv make use of this small piece of information to
images. A reference guideline is provided for gjron estimate the camera motions.

to little perspective effects, indicating the fotaigth e .

range from 20mm (wide angle) to 300mm 312D Dat_a Rectification ] o
(telephoto). Figure 2(a) gives an example image Hum:?m motions and.camera motions usually _exhlblt
displaying the strong perspective effect while Fégu cer_taln coherence in time. Thus_, _the . p_rOJecuon
2(b) shows an example with little perspective dffec tra;ectory of each humqn skeleton joint within @ fe

If the user is unable to determine the perspectiveneighboring frames is usually smooth. Any
effects in the first few images, a default inifatal ~ inconsistencies are deemed to be brought in by the
length is given as 50mm, which has the perspectivesampl'“g error in _data extractlon.. Thgrefore, the 2
effects closest to those seen by normal human eye§lata are first rectified by a smoothing filter.

[Ele05a]. 3.2 Sequence Segmentation

Many video available are recorded by a mounted When recording video with a mounted camera, the
camera on a stationary tripod. The mounted cameracamera can either be static (motionless) or perform
may be static or performing certain motions such asthe following motions: (1) zooming: the camera's
zooming, panning etc. during the video capturing. focal length changes; (2) panning: the cameraeastat
The proposed system estimates the camera motiongbout the Y-axis; (3) tilting: the camera rotatbsat
from the source input data and “undo” these motions X-axis; (4) swinging: the camera rotates aboutZhe

to produce the modified 2D data. The modified 2D axis. (See Figure 3)
data can then be considered as always taken by a

static camera. v =
Z
A human skeleton modeling algorithm is then used to e
estimate the proportions of the human skeleton from - -
the 2D monocular data taken by a static camera. R
CC::P “\m
3. CAMERA MOTION AND STANCE AN

FOOT

Before applying the skeleton modeling algorithm for
2D monocular data taken by a static camera, argyste _ ) )
is proposed to estimate motions such as zooming,!N Practice, a mount_ed camera often remains static,
panning etc, of a mounted camera. Such informationoccasionally performing one or both of the follogin

is then used to “undo” the camera motions to preduc Motions: (1) directional rotating: a combination of

the modified 2D monocular data as if they are takenPanning and filting in one direction, usually used
by a static camera. when tracking a moving person; (2) zooming: usually

) ) used when keeping the full body of a person in the
To estimate the camera motions from one frame tofjjm range, if the person moves closer or further t

another, at least 3 pairs of corresponding poirts & the camera. This project assumes the camera
required [Tan95a]. Each pair of corresponding moint performs only one of these motions at a time, #ed t
must be projected from the same stationary pomt. | camera would be motionless for at least 1 second in
fact, about 10 such pairs are needed for satistacto petween any change of its motion. It is also assume
estimation results [Tan95a]. Therefore, if the i®ag that the duration of each camera motion is over 0.5
background is featureless and no assistant stajiona second. On the other hand, each stance foot can be
object is available, it is almost impossible tareate reasonably assumed to be static for more than 1
the camera motions between two frames, since it iSsecond. Under these assumptions, it is possible to

hard to find even one pair of stationary points. find the frames when there is no camera motiomesin

Figure 3. Camera motions



the projection of the stance foot would be fixed motion smoothness for “zooming”. The case with the
during those periods. large (above the threshold) motion smoothness is
chosen as the solution. If both motion-smoothness a
large (above the threshold), both camera motioas ar
possible. In this case, the best way is to “unde’ t
camera motions in both cases. Significant
enlargement/shrinking effects will appear in thevne
data if the camera motion is “undone” mistakenlg an
the right camera motion can be chosen
correspondingly.

For the input data with frame ratp fps, the
projection of a stance foot would remain fixed &br
least p/2) frames under the assumptions that the
camera remains still for at least 1 second befage a
motion and the stance foot remains still for astel
second. The extreme case is that, within 1.5 sex;ond
the camera moves during the first 0.5 second and
remains still for the next 1 second, while the faot

only still for the first 1 second. In this caseeth 3.4 Modified 2D Data Production

projection of the foot is static for the periodfi®.5  After the camera motions are estimated for each
to 1 second, i.ep/2 to p frames. Therefore, the segment from the dynamic camera, it is possible to
accumulated value of the movement of each foot in«yndo” the camera motions for the whole input 2D
every neighboring/2 frames can be calculated. If the gata segment by segment. The resulted modified data
accumulated movement of any one foot in thesecan be treated as taken by a static camera. Titis st

frames is below a given threshold, these frames arecamera also has the initial focal length chosethby
considered to be taken by a static camera. user.

In this way, the input 2D data is segmented into
different sequence segments. These segments can & SKELETON MODELING
classified into two categories: data from static The skeleton modeling process is based on the 2D

camera, and data from camera in motion. data from static camera and the initial focal langt
. . . selected by the user. It consists of two major sstep
3.3 Camera Motion Estimation (1) virtual scale parameter estimation; (2) length

For video segments that come from dynamic camera,skeleton segment calculation.
camera motion needs to be estimated in order to

produce the modified 2D data. If the stance foot is 4.1 Virtual Scale Parameter
known in each frame within the data segment, the

camera motion estimation is pretty easy. However,
most of the time it is not known which foot is the g
stance foot in these frames. An iteration method is \
hence proposed to determine the stance foot in each
frame.

It is assumed that the stance foot usually remains _
motionless for at least 1 second. For the inpuh wit P
frame ratep fps, the stance foot would not lift off
within p frames after it first touches the ground.
Therefore, for the video segment mfframes, there
are minimumoO time and maximumn{p+1) times of T
stance foot swapping.

Reference
plane ‘

Figure 4. Scaled human figure

Every possible case of foot swapping is tested to ANV i b idered th ecti ¢
calculate the motion smoothness under the two’\Y IMage can be considered as the projection of a
virtual human figure whose root joint lies on the

possible camera motions mentioned in the previous.

subsection. The “motion smoothness” is calculated 'M29¢ plane. As shown.|rl1 Figure 4, if the plane
based on the standard deviations in the motionPaSSiNg through the root joint J1 of the actual som

parameters: For “directional rotating”, the motion figure has the distancé to the camera center, the

parameters are the panning and tilting angles lestwe scaling parame_ter of the h“’.“a“ on the |mz,slge can be
two neighboring frames; for “zooming’, it is the calculated ass=f/d, wheref is the camera’s focal

scaling difference in focal lengths between two !er!gth. quever, the sgaling parameter in eaphéram
neighboring frames. The smoother a camera motion'> impossible to establish since thg actual disiahc
is, the more likely that motion is correct. is unk_nown. Assume that such distance fpr every
frame in the sequence adg d,, ... , ¢ respectively.
After testing all the cases, two possible casesbean Assuming that the first frame has the unit scaling
discovered: one with the largest motion smoothnessparameter d;’=f), we just need to find the relative

for “directional rotating”, another with the lardes distance to deriva,’, d,, ..., d,. If the distance



relationships are correctly found, the distancks  The estimation of the length of the virtual sketets
calculated would have the same trend as the adtual preceded hierarchically. The estimation in thstfir

dy/d=dy/d>=...=d,/d,. The virtual scale parameter level of the tree includes two steps: (1) lower
is taken as’=f/d’, with the first frame having,’'=1. boundary estimation for all possible virtual skefet
length in each frame and (2) virtual skeleton langt

To find the distance relationship for the joint #ie
standard perspective projection theory can be
utilized. It is based on the fact that the projdcte As shown in Figure 6(a),.fP,’ is the projection of a
length of any line segment parallel to the imagmpl  skeleton segment in the first level of the treelevhi
has a linear relationship with its distance frome th the root joint R of the virtual human figure is located
image plane - the further the segment is from the on the image plane.;'?,’ can be projected from an
image plane, the shorter its projected length is. infinite number of possible skeleton segments with
Obviously such knowledge cannot be directly used different lengths, due to the uncertainty of theuak
for joint J1, since it does not necessarily beltmg joint that projects onto P

line segment parallel to the image plane.

selection.

For this purpose, the projected length of the calf

connected to the stance foot is studied. It iSadiff

to gauge the posture of the actual calf only frésn i

projection. However, the frame containing the I®stge

projection of that calf can be treated as takethat

moment when the calf is parallel to the image plane

Searching through the entire sequence, the prajecte

lengths of the possible parallel calf from diffetren

stance foot can be obtained from the input. .

Such information can then be used to derive the

distance relationship of the joint J1. During the Figure 5. Projection of connected segments
swapping of the stance foot, the joint J1 is usguall Proin P
located on the same plane that passes througivthe t : -

feet and is perpendicular to the ground plane. If a
reference plane passing through J1 is parallehe¢o t
image plane, any point on the intersection line
between this plane and the ground can be utilined f
calculating the virtual distance of J1. One
straightforward way to approximate such a poirtbis
find the intersection between the vertical linegieg
through J1 and the line segment from one stande foo
to the other. With this point, the virtual distanice
this frame can be calculated. However, not all #am
show the moment of stance foot swapping. The
virtual distance in other frames are then interfgala
linearly. The virtual scale parameter can then be
derived from these virtual distances.

4j2 Virtual L ength ESt,lm,atlon Figure 6. Estimation of lower boundary
Figure 5 shows the projection of a branch of the ,
connected skeleton segments from the root joine. Th Fortunately, the lower boundary of these possible
virtual scale parameter has been derived for thisSKeleton Ie,ngths can be calculated, e.g.,
image, and the image is captured by a camera with &1P2minldOcP2’, where [RP; | is the shortest
known focal lengt. Py’ is the projection of the root ~ POssible virtual skeleton length with end pointiirat
joint; line segment #P..,’ represents the projection has the projection ;. This shortest possible
of the skeleton in thi” level of the skeleton tree; and  Virtual length will always be shorter than the attu
the projection center is denoted ag @ is assumed virtual skeleton length in this frame, and is caltbe
that this frame is projected from a virtual human !ower boundary for this frame.
figure whose root joint Plocates on the image plane, \ith the virtual scale parameter in every frame
as discussed in “Virtual Scale Parameter” part. established, the lower boundaries from all franmes a
comparable. Denote the virtual scale parametel in a

(b) second level



frames ass/’, s, ..., S , the lower boundary of the capture the whole human motion. It can perform one
virtual skeleton length in each frame &s:l,, ... I, of the following motions in between motionless
respectively, and the skeleton length of the scaledperiods: directional rotating (panning and/or ridfj
human figure at the normalized sizelasAccording but excluding swinging since it is hardly used in
to the calculation of lower boundary in each fraihe, video production) and zooming. Each camera motion,
is known thatli/s’<L (1<i<n). Therefore, the largest including the motionless period, should be smooth
value of these normalized lower boundaries in all and lasts for at least 0.5 second. Noises are aded
framesMax{li/s’,1<i<n} is the best approximation of the 2D data to make the application closer to &ctua
the virtual length. of the actual human at normalized practice.

size. The proposed system first estimates the camera

Unlike the segments in the first level where ond en motions in the source 2D data. The modified 2D data
joint is assumed to be on the image plane, both ends then produced which can be considered as taken b
joints of the segments in higher levels are a static camera. The human skeleton model in
undetermined. Hence, the position of one end joint different frame has different projected size. Al
must be estimated first in order to calculate the scale parameter is needed to resize the human model
shortest possible virtual length. If the virtuahdghs to a standard size. The supporting foot determined

of the segments in the lower levels of the skeletoneach frame can help to estimate the virtual scale
tree are known, there are at m@'spossible skeleton  parameter. After that, the length of the same sbele
poses in thé" level. For example in Figure 6(b)., P  segment in each frame is estimated. By using the
and B, are two possible positions that give the virtual scale parameter, these lengths can be
projection at B in 2™ level. As a result? shortest  compared and the length for that skeleton segment
possible relative lengths in leviél can be calculated. can be determined for the human model at the
The minimum value among them is selected as thestandard size.

shortest possible virtual length of this skeletorthis ]

frame. Similar to the case in the first level, tigest 5.1 Camera Motion

value of the normalized shortest possible virtual To estimate the camera motion, the data segments
lengths among all frames has the minimum difference from a dynamic camera are detected from the source
from the actual length of that segment at the data. Two possible camera motions can be estimated:

normalized size. “directional rotating” and “zooming”.

In this way, the skeleton length for each segmant ¢ Figure 7 shows some sample frames comparing the

be estimated under the given focal length. source data and the modified data. The source data
includes three camera motions: panning, tilting and

5 RESULTS zooming. With the initial focal length specified the

One of the most challenging tasks in any 3D USe the proposed system successfully identified t
reconstruction attempts from images is the 2D featu dat@ segments that taken by a dynamic camera. The
extraction from images. Up to date, the image camera_monon for _each of such segments is also
processing techniques are still unable to provide 2utomatically determined.

sufficiently accurate 2D feature information fromya
images. In fact the extraction of 2D feature
information and the 3D model reconstruction are two

independent modules. They should be addresse relative distance for the position of each starom. f

separately and in parallel for the ultimate . . : . . )
development of the complete system. In this project W|th this relative distance, the relative distarafe

the image processing step is not an emphasis 2|jointJl in each frame is determined. The virtualle
extracted projections of human skeleton joints are parameter is estimated based on this relativerttista

5.2 Virtual Scale Parameter
The proposed system utilized the estimations of
0stance foot and the recovered 2D data to calcthate

assumed available as the input of our system. s

Computer synthesized input video is currently used | 12| 4

test our algorithm. The synthesized video is gerdra 1 ZERN —
by computer with a 3D virtual skeleton model and a | > — Actual
virtual camera. The 3D virtual skeleton model has 1 | o,

joints with 16 skeleton segments. It is driven byHB 02

mOtlon flles [Anlosa] The Vlrtual Camera IS |O(ﬁ'te ° 1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

at a fixed 3D position when capturing any frame of
camera is not restricted as long as the camera can



Figure 8 shows the result comparing the estimatednecessary. The proposed method is tested on the

virtual scale parameter to the actual one. Thaoart
axis represents the virtual scale parameter whie t
horizontal axis represents the frame id. The red do

computer synthesized data captured by a mounted
camera with motions. The reconstructed result is
satisfactory. Future work includes the improvement

indicate the actual virtual scale parameter at eachon the estimation of skeletons in higher hieramhic

frame while the blue dots indicate the estimation.
From the comparisons, it can be seen that the wénd
scaling up and down can be successfully estimated.

5.3 Skeleton M odel

The estimation of the skeleton proportion is shawn

levels. More cues are to be investigated in order t
minimize the error propagated to higher hierardhica
levels. The algorithm will also be tested on real
video to verify its applicability.
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Figure 7. Camera motions and the modified 2D data



