
An iterative method for rational pole curve fitting

J. C. Chambelland
jcchambe@esil.univ-mrs.fr

M. Daniel
mdaniel@esil.univ-mrs.fr

J. M. Brun
jmbrun@esil.univ-mrs.fr

LSIS (UMR CNRS 6168). ESIL-Case 925, 163 Avenue de Luminy
13288 Marseille cedex 09 - (France)

ABSTRACT
This paper adresses the problem of least-square fitting with rational pole curves. The issue is to minimize a sum
of squared Euclidean norms with respect to three types of unknowns: the control points, the node values, and the
weights. A new iterative algorithm is proposed to solve this problem. The method alternates between three steps
to converge towards a solution. One step uses the projection of the data points on the approximant to improve the
node values, the two others use a gradient based technique to update the control point positions and the weight
values. Experimental results are proposed with rational Bézier and NURBS curves.

Keywords
Least-square fitting, rational pole curves, optimization, iterative methods.

1. INTRODUCTION
Pole curve fitting techniques are often used in CAD
softwares to smooth a set of data points. Most of these
are least-square based methods and aim at minimizing,
with respect to control points and node values, a sum
of squared Euclidean norms measuring the distance
between the set of data points and the curve to be fitted.
Among this kind of method, one can emphasize the
linear least square method [LS86, Dan96] with fixed
parametrizations [Lee89, PT96, ZCM98, Far01], itera-
tive ”Hoschek like” methods [Hos88, SD03, CDB05],
and global approaches [SKH98, AB01]. These meth-
ods are efficient for polynomial and piecewise polyno-
mial pole curves but not for rational curves because the
weights linked to the poles are not considered to im-
prove the accuracy of the fitting. Based on the idea ini-
tially proposed in [CDB05] for non-rational pole curve
fitting, this paper presents a new iterative method al-
lowing to handle the influence of weights in this prob-
lem. The issue being to minimize a sum of squared Eu-
clidean norms with respect to three types of unknowns
(the control points, the node values, and the weights),
the proposed method alternates between three steps to
approach a solution. One step uses the projection of
the data points on the approximation curve to improve
the node values linked to data points. The two oth-
ers use a robust gradient based technique to update the
control point positions and the weight values.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-05-4
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

The problem formulation is given in section 2. Our al-
gorithm is detailed in section 3. Experimental results
are proprosed with rational B́ezier and NURBS curves
in section 4.

2. PROBLEM FORMULATION
We want to fit ak-dimensional (k > 1) rational pole
curveC(t) (t ∈ [a,b]) with (n+ 1) control points to a
given set of(m+1) orderedk dimensional data points
D in the least-square sense. This problem is to mini-
mize a sum of squared Euclidean norms with respect
to three kinds of unknowns: the set of control points
P, the set of node valuest linked to data points, and
the set of weight valuesw linked to control points. Let
be:

• D = (d0, ..,dm) the set of ordered points inRk

• P = (P0, ..,Pn) the set of control points inRk

• w = (w0, ..,wn) the set of weights inR+∗

• t = (t0, .., tm) the set of parametric nodes in[a,b]

The definition of the rational approximant is:

C(t) =

n

∑
i=0

wiHi(t)Pi

n

∑
i=0

wiHi(t)
n≤ m, t ∈ [a,b] (1)

And the problem is to minimize the function:

d(P, t,w) =
m

∑
j=0

‖d j −C(t j)‖2
2 =

m

∑
j=0

‖E j‖2
2 (2)

fixing t0 = a, tm = b, C(t0) = d0, C(tm) = dm such
that the first and the last data points respectively match
with the first and the last points of the curve.

3. PROPOSED ALGORITHM
Outline

Our algorithm allows the minimization of function
d(P, t,w) while improving the fitting of an initial ap-
proximation curve which provides guess values for
P, t, and w. This algorithm uses three steps to lo-
cate an optimal solution. As the problem depends on
three kinds of unknowns, we opted for a relaxation ap-
proach which consists of alternately decreasing objec-
tive functiond(P, t,w) with respect to control points,
node values and weight values.The first step mini-
mizesd(P, t,w) with respect to the node values, con-
sidering the control point position and the weight val-
ues fixed. This corresponds to minimize each term
‖d j −C(t j)‖2 with respect to the nodet j and leads to
the solution of the non-linear problem (• is the inner
product of two vectors):

(d j −C(t j))•
dC
dt

(t j) = 0 ∀ j ∈ [0..m]

Geometrically, this problem corresponds to find pa-
rametert j such thatC(t j) is the orthogonal projection
of data pointd j (see figure 1) on the approximant.

C(t0) = d0

C(tm) = dm

dj

dC

dt
(tj)

C(tj)

Figure 1: Data point projection

In order to find the closest point and its parametric
value, simple ”zero order” algorithms can be used.
They consist in comparing Euclidean distances be-
tween the point to project and a dense set of sample
points belonging to the parametric curve. This type
of algorithm is inefficient for accurate projections,
but useful to provide initial values to ”Newton-like”
algorithms which use first [Mor97, MH03] or/and
second parametric derivatives of the curve [HW05].
According to their rate of convergence, second order
algorithms converge theoretically faster than first
order algorithms but require more computing time for
each iteration and more memory to handle curvature
information. In our implementation, we opted for
a customized first order projection algorithm. We
particularly enforced its robustness, limiting at each
iteration the parametric displacement to the value
(b−a)/(m+1). This significantly reduces the risk of
overshoot and in most cases, very accurate projections
are obtained in less than 5 iterations.

The second stepconsists in reducingd(P, t,w) with
respect to the control points, considering the node
values and the weight values fixed. Sinced(P, t,w)
is infinitely differentiable with respect toP, we can
compute its gradient vector with respect to control
points∇P = (∇P

0 , ..,∇P
n)> and affirm that its negative

direction is a direction of maximum rate of decrease
([PFTV02, AW95]). Thus, we can ”locally” mini-
mize d(P, t,w), updating control points by the vector
−αP∇P assuming thatαP is a suitably computed pos-
itive scalar value. One way to compute the best scalar
valueαP

max, which minimizesd(P−αP∇P, t,w) with
respect toαP, is to use the following equation:

α
P
max=

‖∇P‖2

(HP∇P)> •∇P =

n

∑
i=0

‖∇P
i ‖2

(HP∇P)> •∇P

whereHP is the Hessian matrix ofd(P, t,w) with re-
spect toP. This result is used in the robust ”steep-
est descent method” [PFTV02, AW95], but as a mat-
ter of fact, requires an explicit handling of the Hes-
sian matrix of the objective function. This task can
be sometimes difficult and computationally intensive,
but in our case, the Hessian matrix with respect to
control points allows us to simplify the denominator
(HP∇P)> •∇P. Assuming for convenience that:

φi(t j) =
wiHi(t j)

n

∑
i=0

wiHi(t j)
(3)

We can simplify the expression ofαmax to the re-
duced expression:

α
P
max=

n

∑
i=0

‖∇P
i ‖2

2
m

∑
j=0

‖
n

∑
i=0

φi(t j)∇P
i ‖2

(4)

Proof:

The gradient ofd(P, t,w) with respect toP is the
(n+1) dimensional column vector:

∇P =

∇P
0
...

∇P
n

 =


∂d(P,t,w)

∂P0
...

∂d(P,t,w)
∂Pn


The Hessian ofd(P, t,w) with respect toP is the

(n+1)∗ (n+1) symmetric matrix:

HP =


∂ 2d(P,t,w)

∂P2
0

. . . ∂ 2d(P,t,w)
∂P0∂Pn

...
...

...
∂ 2d(P,t,w)

∂Pn∂P0
. . . ∂ 2d(P,t,w)

∂P2
n



From equ. (2) and (3), we can easily state that:

∇P =


−2

m

∑
j=0

φ0(t j)E j

...

−2
m

∑
j=0

φn(t j)E j


and:

HP =


2

m

∑
j=0

φ
2
0 (t j) . . . 2

m

∑
j=0

φ0(t j)φn(t j)

...
...

...

2
m

∑
j=0

φn(t j)φ0(t j) . . . 2
m

∑
j=0

φ
2
n (t j)


Consequently, the productHP∇P is the(n+ 1) di-

mensional column vector:


2

m

∑
j=0

φ
2
0 (t j)∇P

0+ . . .+2
m

∑
j=0

φ0(t j)φn(t j)∇P
n

...
...

...

2
m

∑
j=0

φn(t j)φ0(t j)∇P
0+ . . . +2

m

∑
j=0

φ
2
n (t j)∇P

n


which can be reduced to:

HP∇P =


2

m

∑
j=0

φ0(t j)
n

∑
i=0

φi(t j)∇P
i

...

2
m

∑
j=0

φn(t j)
n

∑
i=0

φi(t j)∇P
i


thus:

(HP∇P)> •∇P =2
n

∑
k=0

m

∑
j=0

φk(t j)
n

∑
i=0

φi(t j)∇P
i •∇P

k

=2
m

∑
j=0

n

∑
k=0

φk(t j)∇P
k •

n

∑
i=0

φi(t j)∇P
i

=2
m

∑
j=0

‖
n

∑
i=0

φi(t j)∇P
i ‖2

This allows us to state that:

α
P
max=

n

∑
i=0

‖∇P
i ‖2

2
m

∑
j=0

‖
n

∑
i=0

φi(t j)∇P
i ‖2

q. e. d.

The third step consists in decreasingd(P, t,w)
with respect to the weight values, considering the
control point position and the node values fixed. This
step uses the direction of maximum rate of decrease
([PFTV02, AW95]) of the objective function with
respect to weights, i.e the negative direction of the
vector ∇w which is the gradient ofd(P, t,w) with
respect tow. The gradient ofd(P, t,w) with respect to
w is the(n+1) dimensional column vector:

∇w =

∇w
0
...

∇w
n

 =


∂d(P,t,w)

∂w0
...

∂d(P,t,w)
∂wn



Using equ. (2) and the sum and product derivative
rules, we can state that:

∇w =


2

m

∑
j=0

E j •
∂E j

∂w0

...

2
m

∑
j=0

E j •
∂E j

∂wn

 (5)

Using the difference and the quotient derivative
rules, we can state that:

∂E j

∂wi
=−

Hi(t j)Pi

n

∑
i=0

wiHi(t j)−Hi(t j)
n

∑
i=0

wiHi(t j)Pi

(
n

∑
i=0

wiHi(t j))2

=−
Hi(t j)(Pi

n

∑
i=0

wiHi(t j)−
n

∑
i=0

wiHi(t j)Pi)

(
n

∑
i=0

wiHi(t j))2

=−

Hi(t j)(Pi −

n

∑
i=0

wiHi(t j)Pi

n

∑
i=0

wiHi(t j)
)

n

∑
i=0

wiHi(t j)

=−
Hi(t j)(Pi −C(t j))

n

∑
i=0

wiHi(t j)

(6)

Inserting eq. (6) in eq. (5) finally leads to:

∇w =



−2
m

∑
j=0

Hi(t j)E j • (Pi −C(t j))
i=n

∑
i=0

wiHi(t j)

...

−2
m

∑
j=0

Hi(t j)E j • (Pi −C(t j))
i=n

∑
i=0

wiHi(t j)


(7)

While the computation of the suitable positive scalar
valueαP

max is efficiently handled for step 2, this task is
more tedious with weight values. Indeed, the Hessian
matrix with respect tow, Hw, does not allow any sig-
nificant simplication for the computation of the ”opti-
mal” value which is given with respect tow by:

α
w
max=

‖∇w‖2

(Hw∇w)> •∇w =

n

∑
i=0

‖∇w
i ‖2

(Hw∇w)> •∇w

Experimental results have shown that the use of this
expression, which requires to compute and store the
complex expression of the Hessian matrixHw, leads
to inefficient results. On the other hand, a constant
value multipling the gradient vector often entails the
divergence of the objective function near the minimum
[PFTV02, AW95]. The solution we opted for is to look
for a ”satisfactory” scalar valueαw rather than the best
one i.eαw

max. A backtracking approach is applied to
achieve this task. The search is initialized with a tiny
positive scalar value forαw (for example 0.1), which
is gradually increased while the decrease of the objec-
tive function is verified. Note that, we also take care
to keep the positivity of the weight values in order to
respect the definition of the rational approximant (see
eq. 1) verifyingwi − αw∇w

i > 0 ,∀i ∈ [0..n]. The
three steps we described allow us to decrease the er-
ror function with respect to three kinds of unknowns.
The first is an optimization step, while the two others
are only reduction steps corresponding respectively to
one step of the steepest descent method and one step
of the gradient descent method with an estimated ”sat-
isfactory” scalar weighting coefficient for the gradient.
Even if these steps could be mixed in different ways to
minimize the objective function, we opted for a partic-
ular blend based on our most convincing experimen-
tal results. This aims at reducing a sum of minimum
squared Euclidean norms (as proposed by J. Hoschek
[Hos88]). Each odd iteration of our iterative algorithm
consists in reducing a minimal sum of squared Eu-
clidean norms with respect to control points (step 1
+ step 2) while even iterations aim at reducing a min-
imal sum of squared Euclidean norms with respect to
weight values (step 1+ step 3).

Convergence
The convergence is studied from the sequence given by
the positive values of the objective function through it-
erations. Odd iterations achieve the projection of data
points (step 1) and decrease the sum of squared Eu-
clidean norms with respect to poles (step 2). Even
iterations also project the data points (step 1) and de-
crease the sum of squared terms with respect to weight
values (step 3). From guess valuesP, t, w, we can eas-
ily state that for an odd iterationi, step 1leads to a new
sett

′
such thatd(P, t,w) ≥ d(P, t

′
,w) and thatstep 2

leads to a new setP
′
such thatd(P, t

′
,w) > d(P

′
, t

′
,w).

If we consider the following even iterationi +1, this
leads fromstep 1to a new sett

′′
such thatd(P′, t′,w)≥

d(P′, t
′′
,w) andstep 3leads to a new setw

′
such that

d(P′, t
′′
,w) > d(P

′
, t

′′
,w′). As illustated in figure 2,

this proves that alternating between odd and even it-
erations ensures that the positive values of the objec-
tive function describe a decreasing lower bounded se-
quence which proves its convergence.

odd iterations

d(P, t
′

,w) > d(P
′

, t
′

,w)

d(P, t,w) ≥ d(P, t
′

,w)

d(P′, t′,w) ≥ d(P′, t
′′

,w)

d(P′, t
′′

,w) > d(P
′

, t
′′

,w′)

even iterations

d(P
′

, t
′′

,w′)

d(P, t,w)

step 1
step 2

step 1
step 3

Figure 2: Illustration of the convergence

The convergence is an important robustness crite-
rion but the theoritical efficiency of an iterative opti-
mization method is often given by its rate of conver-
gence. For classical objective functions depending of
one type of unknowns, this information corresponds to
the speed of convergence of the approximate solution
towards the optimal solution. This rate can also be
computed from a ”residual” function converging to-
wards zero at the solution (for example the squared
Euclidean norm of the gradient). Unfortunately, such
a study seems unsuitable for our method since three
types of unknowns are alternatively modified. The ef-
ficiency of this algorithm can however be measured
from practical consideration especially from the ratio
between the computing time and the approximation
accuracy. This analysis is proposed in the last section.

Stopping criteria
As for all iterative methods, a basic stopping criterion
is the number of iterations achieved by the process in
the case of a wrong expected accuracy or an extraor-
dinary numerical problem. A more meaningful stop-
ping criterion is an expected approximation accuracy
for the fitting of a given curve to a given set of data
points. When the degrees of freedom of the approxi-
mation curve is sufficient, this criterion is particularly
suitable for our method, which ensures the strict de-
crease of the error function through iterations. An-
other stopping criterion used by classical optimization
methods handling one type of unknowns, is the gra-
dient norm of the objective function which converges
towards 0 approaching a critical point. In our case,
this provides two other stopping criteria, one linked
to the norm of∇P, the other linked to the norm of∇w.
Note that an optimum solution is reached when the two
norms vanish.

Pseudo-code
/**Control values**/
N : positive integer.
εd, ε∇P, ε∇w : positive real values.

/** Initialization**/
iter=0
initialize P andw
compute nodest = (t0...tm) such that
‖d j −C(t j)‖= mint∈[a,b] ‖d j −C(t)‖

computed(P, t,w)
compute∇P

compute∇w

/**Main loop**/
while (iter < N) and (d(P, t)≥ εd) and
((‖∇P‖ ≥ ε∇P) or (‖∇w‖ ≥ ε∇w))
{

iter=iter+1
if (iter % 2 == 1){

computeαP
max

P = P−αP
max∇P

}
else {

compute a satisfactory positive valueαw

w = w−αw∇w

}
compute nodest = (t0...tm) such that
‖d j −C(t j)‖= mint∈[a,b] ‖d j −C(t)‖

computed(P, t,w)
if (iter % 2 == 1)

compute∇w

else
compute∇P

}
endwhile

4. EXPERIMENTAL RESULTS
In the following, approximation errors are measured

from: Em =
√

d(P,t,w)
m+1 andEs = supj=0,..,m‖Ej‖2.

Example 1
We fit a planar rational B́ezier curve and a planar
quadratic clamped NURBS curve to a set of 10 pla-
nar data points given in figure (3). The curves are de-

1000 1100 1200 1300 1400

−800

−750

−700

−650

−600

−550

−500

−450

Figure 3: The 10 data points

fined on the range [a=0,b=1] and are controled by 5
poles. For the NURBS curve, the knot vector is fixed
to (0.0,0.0,0.0,0.33,0.66,1.0,1.0,1.0). The weight
values are initialized to 1 so that the two curves are
respectively a B́ezier curve and a B-Spline curve be-
fore starting the process. The initialization of con-
trol pointsP has been obtained by a linear least-square
minimization with respect to control points using four
types of parametrization: centripetal, chordal, Foley-
Nielson and Zhang [Lee89, Far01, ZCM98]. Initial
approximation errors are gathered in tables 1 and 2.
Table 3 shows the initial Euclidean norms of both gra-
dients (‖∇P‖ and‖∇w‖).

Init. d(P, t,w) Em ES

Centripetal 1289.25 11.35 17.62
Chordal 1469.27 12.12 18.65
Foley-N. 1429.62 11.95 19.68
Zhang 729.38 8.54 15.99

Table 1: Initial errors (rational B́ezier curve)

Init. d(P, t,w) Em ES

Centripetal 1182.93 10.87 19.00
Chordal 1642.61 12.81 20.54
Foley-N. 1382.21 11.75 20.21
Zhang 530.18 7.28 12.75

Table 2: Initial errors (NURBS curve)

rational B́ezier NURBS curve
Init. ‖∇P‖ ‖∇w‖ ‖∇P‖ ‖∇w‖
Centripetal 18.81 1416.43 35.25 384.99
Chordal 21.62 1487.47 35.93 357.44
Foley-N. 21.77 1686.07 42.18 501.27
Zhang 14.84 1534.63 28.55 622.46

Table 3: Initial gradient Euclidean norms

For both types of curve, the best results are obtained
with the Zhang parametrization. The corresponding
approximations are given in figures 4 and 5.

1000 1100 1200 1300 1400

−900

−800

−700

−600

−500

−400

−300

−200

P
0

P
4

Figure 4: Zhang first approximant (Rational Bézier)

1000 1100 1200 1300 1400

−800

−750

−700

−650

−600

−550

−500

−450

P
0

P
4

Figure 5: Zhang first approximant (NURBS)

For the rational B́ezier curve, we aimed at dividing
by at least 1000 the initial norm of both gradients‖∇P‖
and‖∇w‖ before stopping the process. So according
to table 3,ε∇P andε∇w have been respectively set to
0.1 and 1. For the NURBS curve, we expected a very
accurate fitting trying to divide by 10000 the norm of

both gradients. In this case this corresponds to fixε∇P

andε∇w to 0.01 and 0.1 respectively. The maximum
number of iterations has been set to 10000 and the ap-
proximation accuracyεd has been set to 10−6. Tables
4 and 5 show the approximation errors and the corre-
sponding iteration number and computing time when
the process stops (all tests have been achieved on a 2
Gh PC computer). Tables 6 and 7 give the resulting
weights. Figures 6 and 7 show the resulting rational
Bezier curve and the resulting NURBS curve first ini-
tialized from the Zhang parametrization.

Init. Em ES iteration time (s)
Centripetal 0.286 0.491 9175 < 2
Chordal 0.284 0.487 9123 < 2
Foley-N. 0.301 0.519 8277 < 2
Zhang 0.321 0.558 9145 < 2
Table 4: Resulting errors (rational Bézier curve)

Init. Em ES iteration time (s)
Centripetal 0.006 0.010 2903 < 1
Chordal 0.006 0.010 3187 < 1
Foley-N. 0.006 0.010 2845 < 1
Zhang 0.006 0.010 2751 < 1

Table 5: Resulting errors (NURBS curve)

Init. w0 w1 w2 w3 w4

Centripetal .53 1. 28 1.00 1.38 .38
Chordal .54 1. 28 .99 1.39 .38
Foley-N. .52 1. 31 .98 1.36 .45
Zhang .55 1. 36 .87 1.31 .61

Table 6: Resulting weights (rational Bézier curve)

Init. w0 w1 w2 w3 w4

Centripetal .76 1.14 1.15 1.04 .84
Chordal .73 1.14 1.21 1.14 .67
Foley-N. .77 1.14 1.14 1.02 .88
Zhang .78 1.15 1.11 0.98 .93
Table 7: Resulting weights (NURBS curve)

One can notice that the initial approximation errors
given by the linear least square method are drasti-
cally improved. For the rational B́ezier curve,Em is
roughly divided by 30 whileEs is roughly divided by
40. For the NURBS curvesEm andEs are roughly di-
vided by 2000. To measure the influence of handling
weights on the resulting approximation errors, we fit-
ted these curves using the iterative method we pro-
posed in [CDB05], which does not handle weight val-
ues. Note that according to the weights set to 1, these
curves are respectively Bézier and B-Spline curves.
For the B́ezier curve, the best results we can obtain
areEm = 1.40 andEs = 2.74. For the B-Spline curve
Em = 0.38 andEs = 0.84. This states that for the ra-
tional Bézier curve, handling weights allows to reduce

by roughly 5 the errors obtained without optimizing
the objective function with respect to weights. For the
NURBS curve, errors are roughly divided by 50.

1000 1100 1200 1300 1400

−900

−800

−700

−600

−500

−400

−300

−200

P
0

P
4

Figure 6: Resulting Rational B́ezier

1000 1100 1200 1300 1400

−800

−750

−700

−650

−600

−550

−500

−450

P
0

P
4

Figure 7: Resulting NURBS

Example 2

In this second example, we fit a clamped cubic
NURBS curve to the set of 201 data points given in
figure 8. This set is used to emphasize the interest
of the improved Hoschek method (IH) proposed in
[SD03]. This allows us to make a rapid comparison
of our approach with this iterative method providing
very convincing results. Note that this method is
for B-Spline fitting and does not handle weights.
As in [SD03], the curve we fit is defined on the
parametric range [a=0,b=1] and is controlled by 19
poles. Intermediate knots are uniformly spaced.

500 1000 1500 2000 2500
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 8: The 201 data points

To start with the same configuration for both
methods, weights are initialized to 1 and the first
approximation curve (given in figure 9) is obtained by
a linear least-square minimization with a centripetal
parametrization.

500 1000 1500 2000 2500
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 9: The first approximant

In order to compare both methods we initialized
our fitting accuracy with the best mean error which
can be obtained with the improved Hoschek method.
On a 2Gh PC computer, the best results we can ob-
tain with this method areEm = 1.88 andEs = 6.29 in
4000 iterations (300 s). Settingεd to 1.88, our process
stops after 1953 iterations (18 seconds). The corre-
sponding maximum error is 5.59. This again empha-
sizes the importance of handling weights in this prob-
lem. Moreover, as illustrated in the graph figure 11,
whereEm is collected over 5000 iterations, our method
leads to a significant improvement of this value. In-
deed, after 5000 iterations approximation errors are
Em = 1.29 andEs = 4.43. The corresponding approx-
imation curve is given in figure 10. One can also em-
phasize the smooth and strict convergence ofEm to-

wards the minimum, and its very fast decrease during
the first iterations.

500 1000 1500 2000 2500
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 10: The approximant after 5000 iterations

0 1000 2000 3000 4000 5000
1

2

3

4

5

6

7

8

9

iterations

E
m

Figure 11:Em over 5000 iterations

5. CONCLUSION

We have proposed an iterative method to fit a ratio-
nal pole curve on a set of data points in the least-
square sense. Based on a relaxation approach, our
algorithm aims at alternatively minimizing a sum of
squared Euclidean norms with respect to three types
of unknowns: the control points, the node values, and
the weights. The method uses a projection step to op-
timize the objective function with respect to node val-
ues and two robust gradient based techniques to op-
timize the objective function with respect to control
points and weight values. The positive error func-
tion d(P, t,w) monotonically reduces through itera-
tions ensuring the convergence of the process. This
algorithm, suitable for all types of rational pole curve,
is robust and efficient. We are currently extending it to
surfaces. Experimental results emphasize the drastic
influence of handling weights in this problem.

6. REFERENCES
[AB01] M. Alhanaty and M. Bercovier. Curve and

surface fitting and design by optimal methods.
Computer Aided Design, 33(2):167–182, 2001.

[AW95] G. Arfken and H. J. Weber.Mathematical
Methods for Physicists, 4th ed.Orlando Academic
Press, 1995.

[CDB05] J. C. Chambelland, M. Daniel, and J. M.
Brun. A robust iterative method devoted to pole
curve fitting. In CAD/GRAPHICS 2005 confer-
ence (Hong-Kong, Chine, December 7-10, 2005)
proceedings, ISBN 0-7695-2473-7, pages 22–27.
IEEE Computer Society, 2005.

[Dan96] M. Daniel. Data Fitting with B-splines
Curves. In Modelling and Graphics in Science and
Technology, J. Teixeira et J. Rix Eds., Springer
Verlag, pp 91-104, 1996.

[Far01] G. Farin. Curves and Surfaces for CAGD, a
Pratical Guide, 5th ed.Morgan Kaufmann, 2001.

[Hos88] J. Hoschek. Intrinsic parametrization for
approximation. Comput. Aided Geom. Design,
5(1):27–31, 1988.

[HW05] S. M. Hu and J. Wallner. A second order
algorithm for orthogonal projection onto curves
and surfaces. Comput. Aided Geom. Design,
22(3):251–260, 2005.

[Lee89] E. T. Y Lee. Choosing nodes in paramet-
ric curve interpolation.Computer Aided Design,
21(6):363–370, 1989.

[LS86] P. Lancaster and K. Salkauskas.Curve and
Surface Fitting: An Introduction. Academic Press,
1986.

[MH03] Y. L. Ma and W. T. Hewitt. Point inver-
sion and projection for NURBS curve and surface:
Control polygon approach.Comput. Aided Geom.
Design, 20(2):79–99, 2003.

[Mor97] M. E. Mortenson.Geometric Modeling, 2nd
edition. John Wiley and Sons, 1997.

[PFTV02] W. H. Press, B. P. Flannery, S. A. Teukol-
sky, and W. T. Vetterling.Numerical Recipes in
C++, 2nd ed.Cambridge University Press, 2002.

[PT96] L. A. Piegl and W. Tiller. The NURBS Book,
2nd ed.Springer, 1996.

[SD03] E. Saux and M. Daniel. An improved
Hoschek intrinsic parameterization. Comput.
Aided Geom. Design, 20(8-9):513–521, 2003.

[SKH98] T. Speer, M. Kuppe, and J. Hoschek. Global
reparametrization for curve approximation.Com-
put. Aided Geom. Design, 15(9):869–877, 1998.

[ZCM98] G. Zhang, F. Cheng, and K. T. Miura.
A method for determining knots in parametric
curve interpolation. Comput. Aided Geom. De-
sign, 15(4):399–416, 1998.

