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ABSTRACT
The need to systematically generate sets of reference points with prescribed arclengths along parametric curves,
with accuracy and real-time performance usually arises in applications related to CNC machining, highway and
railway design, manufacturing industry, and animation. Mechanisms to produce a parameter set that yield the
coordinates of prescribed reference points along the curveQ(t) = {x(t), y(t)} are therefore sought. Arclength
parameterizable expressions usually yield the parameter set that is necessary to generate the reference points; how-
ever, for typical design curves, such expressions are oftennot available in closed form. It is desirable to find
efficient ways to compensate for lack of arclength parameterization. In this paper, several methods for approx-
imating arclength parameterization are studied. These methods are examined for both accuracy and real-time
processing requirements. The paper also introduces a numerical interpolation technique for a cubic interpolator
function; the interpolator exploits the influence of end point tangent vectors to generate approximately uniformly
distributed reference points as an example application.
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1 INTRODUCTION
The need to generate sets of reference points (R’s)
along paths of mechanical tools or parts is present
in CAD and CAM applications. For convenience,
reference points are referred to asR’s and theith
reference point is designated asRi. As an exam-
ple, in CNC machining, computers with CAD sys-
tems might be instructed to produce thousands of
R’s along the path of a manufactured part (such as
the fuselage of an air- plane, where uniform spacing
between adjacent reference points is desired to min-
imize tension) according to specific prescribed loca-
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tions [Frk92a, Frk96a, Sha82a]. The manipulated part
may be required to be affixed to other complement-
ing parts by bolts through adjacent holes, in locations
marked by reference points.

A first step towards generating a set ofN R’s with
prescribed arclengths is to abstract the physical paths
along the object of interest by aparametriccurveQ(t)
in Bernstein-B́ezier representation [Far93a]. Next,
several problems have to be solved, usually in the fol-
lowing order:

(a) Obtain an expression for the arclengths(t), t ∈
[0, 1].

(b) Compute the total arclengthL = s(1).

(c) Determine the set of desired arclengths
{si=1,...,N}, si ∈ (0,L], at which theR’s are to
be generated.

(d) Re-parameterizeQ(t) with the parameter set



{ti} obtained fromt(si): the inverse function
of the arclength expression obtained in (a).

Arclength parameterization is desirable because the
arclength is an intrinsic quantity of the curve and arc-
length parameterization is an intrinsic property of the
curve. It facilitates design and analysis of curves and
surfaces [Bur94a, Gug63a, You93a]. If a closed-form
solution is available for items (a) and (d) above, the
coordinates of anR that lie at arclengthsi along
Q(t) may accurately be obtained by first evaluating
ti = t(si), and then evaluatingQ(t) at t = ti.

In general, however, because of the non-linearity of
the integral expressions(t), it is impossible to solve
it in an analytic fashion, and even when this is possi-
ble, trying to derive an arclength parameterizable ex-
pressiont(s) from it usually fails [Sha82a, Frk91a,
Frk91b, You93a]. Because of this, several approaches
are taken to approximate results that would be attained
by arclength parameterization. In this paper,s(t) is
exploited to derive a cubic interpolating function to
approximatet(s), and the closeness of this function,
in comparison to existing methods to actual arclength
parameterization, is discussed.

A class of curves known as Pythagorean-hodographs
have closed form expressions for their arclengths;
however, they still require the solution of a non-linear
equation to obtain the parameter as a function of the
arclength [Frk91a]. This article is concerned with a
more general class of polynomial curves.

The rest of the paper is organized as follows. Sections
2 and 3 present fundamental mathematical prelimi-
naries and related work of several techniques that are
geared to addressing approximation of arclength pa-
rameterization. Section 4 presents the Cubic Interpo-
lator, an analytical method that embodies Hermite In-
terpolation to approximate arclength parameterization.
This method is also introduced in [Mad04a] and is pre-
sented here for convenience. Section 5 shows Experi-
mental Results of all presented techniques presented in
a visual comparative fashion for the reader. In Section
6, a new cubic-spline Interpolation Function is derived
to produce numerically accurate results when the role
of real-time performance is down-played. The paper
is concluded in Section 7.

2 MATHEMATICAL PRELIMI-
NARIES

For the purpose of this paper, a curve is represented
by a parametric polynomialQ(t) in Bernstein-Bézier

representation:

Q(t0≤t≤1) =

n
∑

i=0

pi

(

n
i

)

(1− t)n−iti. (1)

Properties and importance of such a representation to
CAD/CAM are mentioned in the literature [Far93a,
Qin89a]. In the above equation,n denotes curve de-
gree, andpi ∈ IE2 are the Bézier points that constitute
the control polygon of the curve.

The arclengths(t) of Q(t) is determined by the fol-
lowing integral:

s(t) =

∫ t

0

‖Q′(τ)‖ dτ, (2)

whereQ′(t) is the derivative ofQ(t). The total arc-
length ofQ(t) is thereforeL = s(1).

Because of the non-linearity and the integral term
present ins(t), an arclength parameterizable expres-
sion t(s) usually has to be approximated, rather then
derived directly from (2).

3 RELATED WORK
Several methods have been developed to approximate
arclength parameterization, some of which are based
on curve dependent tables of data, while others are
not. The former class of approximators have the ad-
vantage of being adaptable for prescribed accuracy
by several numerical techniques. It is difficult to ob-
tain a meaningful comparison for methods which are
not of the same class. In some applications such as
graphical simulation and animation, where the ani-
mated object is to appear at approximately uniformly
spaced intervals for smooth appearance, it is the per-
formance rather than the accuracy that is of impor-
tance [Mad96a]. In the remainder of this section, an
overview of existing methods is presented.

3.1 Basic parametric Flow (BPF)

The simplest method forR’s generation may be called
the basic parametric flow (BPF), since a number of
N points are produced by uniform parameter spac-
ing (e.g., ti=0,...,N = i/N ). Although simple and
fast, it is well known that this method is not suitable
for generating points along the arclength of a curve
[Frk97a, Mad96a].

3.2 Sharpe & Thorne (ST)

The method described by Sharpe and Thorne can accu-
rately produceR’s at prescribed arclengths [Sha82a].



However, it has a high computational cost associated
with ”extracting” the corresponding parametric value
for eachR to be generated. Consider the follow-
ing non-linear equation used to findti, the parametric
value needed to generateRi:

M(t) =

∫ t

ti−1

√

Q′(τ) ·Q′(τ) dτ − si = 0, (3)

wherei = 1..N , ti−1 is the parametric value corre-
sponding toRi−1, the parametert = ti is the value
corresponding to the next reference-pointRi, andsi

is the arclength fromRi−1 to Ri. In order to obtain
ti, a few Newton-Raphson iterations are applied:

τj = τj−1 −
M(τj−1)

M ′(τj−1)
, τ0 = ti−1, (4)

wherej = 1, 2, . . . , k, andM ′(τj) is the derivative
of M(τj). The value ofti is given byτk, wherek is
the number of iterations required for convergence to
an acceptable accuracy.

For applications requiring real-time processing, or
those not requiring very accurate spacing ofR’s, this
method may be impractical.

3.3 Optimal Parameterization (OP)

Farouki’s OP is mathematically a rather intricate
process [Frk97a]. The given polynomial curveQ(t)
is first transformed into an equivalent rational form
by transforming the parametert in (1) (by applying
a Möbius transformation) as follows:

t =
(1 − α)u

α(1 − u) + (1 − α)u
, (5)

with 0 < α < 1 and0 ≤ u ≤ 1. Substituting (5) into
(1) results in the following rational form:

Q̃(u) =

n
∑

i=0

wipi

(

n
i

)

(1 − u)n−iui

n
∑

i=0

wi

(

n
i

)

(1− u)n−iui

, (6)

wherewi = (1 − α)iαn−i. The objective is to find
the set of weights{wi} so thatu approximates an
arclength parameter. The problem is thus to find the
”best” α for (6).

While the cost of obtaining the ”right”α may be high,
this method is better suited for applications requiring
real-time processing than ST [Mad96a].

3.4 Cumulative Chordlength (CC)

Cumulative chordlength is a straightforward method to
approximate the arclength of a curve. This method can
be exploited to generateR’s that visually seem to be
uniformly spaced.

The algorithm is as follows: while computing the arc-
length, the set{sk | k = 0, 1, . . . , η} (η being the num-
ber of chords used to approximate the curve) keeps
track of the cumulative chordlength thus far.R’s at
distances{i∆d | i = 0, . . . , N ; ∆d = sη/N}, where
sη is the total chordlength, may then be located by
searching for their closest values in{sk}, and then fur-
ther refining those values by means of linear interpola-
tion. That is,ti, the parametric value corresponding to
Ri, at distancei∆d, is approximated by the function
A(i, k) as follows:

ti = A(i, k) = ∆u

(

k − 1 +
i∆d− sk−1

sk − sk−1

)

, (7)

wheresk−1 ≤ i∆d < sk, and∆u = 1/η.

While increasing the number of chords approximat-
ing Q(t) mayincrease accuracy, the size of the curve-
dependent data-table that has to be maintained also in-
creases [Mad96a].

4 A Cubic Interpolator (CI)
Hermite interpolation [Dav63a, Fol92, Far93a] is used
to approximatet(s) for any parametric curveQ(t).
The cubic interpolator (CI) is defined as follows:

F(s) = as3 + bs2 + cs + d ≈ t(s). (8)

An approximation to the inverse function ofs(t) =
∫ t

0
‖Q′(τ)‖ dτ may be derived as follows. First,s(t)

is differentiated to give

s′(t) =
ds

dt
= ‖Q′(t)‖. (9)

From (9),t′(s) may be written as follows:

t′(s) =
dt

ds
=

1

‖Q′(t)‖
. (10)

Upon integration of (10), the following results:

t(s) =

∫ s

0

1

‖Q′(τ)‖
dτ. (11)

The value oft(s) at two parametric values is already
known, namely, ats = 0 ands = L. Further, for a
cubic interpolator, two more items of data are needed
to determine values for the four coefficients ofF(s) in



(8): a, b, c andd. The geometry vector at the bound-
aries of the curvet(s) are obtained as follows:









t(0)
t′(0)
t(L)
t′(L)









=









0
1

‖Q′(0)‖

1
1

‖Q′(1)‖









. (12)

Further, by requiring thatF(s) = t(s), and that
F ′(s) = t′(s) at the boundaries, we can solve for the
coefficients of (8) to get the following solution vector:









a
b
c
d









=











1
L2

(

c + 1
‖Q′(1)‖

)

− 2
L3

1
L2 −

c
L − aL
1

‖Q′(0)‖

0











. (13)

To illustrate the low cost of generatingR’s using the
CI method, theCI algorithm shown next is an imple-
mentation of the method described above ([Mad96a]
gives details on implementation and cost of all other
algorithms described here). The idea is to generate a
set{Fi | i = 0, . . . , N} by the approximating interpo-
lating function, such that evaluation of{Q(Fi)} ren-
ders reference points that are approximately uniformly
spaced.

TheCI algorithm starts by calculating the coefficients
a, b, and c of the cubic interpolating function. The
functionF(s) in (8) is evaluated at{i∆L} to yield
{Li}.

CI()
compute L, scale ‖Q′(0)‖ and ‖Q′(1)‖
c← 1/‖Q′(0)‖
a← c + 1/‖Q′(1)‖ − 2
b← 1− c− a
∆L← 1/N, ℓ0 ← 0
for i← 1 to N

ℓi ← ℓi−1 + ∆L
Fi ← ((aℓi + b)ℓi + c)ℓi

Ri ← Q(Fi)
END

Scaling of ‖Q′(0)‖ and ‖Q′(1)‖ implies dividing
them by L; this scales the whole curve such that
L = 1. Note thatFi above is simply Eq. (8) eval-
uated using Horner’s less costly method.

Note that a precise measure of the deviation from a
true uniform distribution is obtainable. Consider, for
example, the quintic PH curve of Figure 4, where
N = 80 reference points are generated along its path.
By calculating the distance between every pair of ref-
erence points and accumulating the deviation from a

true uniform distribution, an exact measure of the de-
viation from a true uniform distribution is obtained. In
this case, the deviation is5.87%. In theCI() function
above, such a deviation can be computed by first ini-
tializing deviationto 0, and by adding the following
the following two lines to thefor-loop.

di ←
√

(xi − xi−1)2 + (yi − yi−1)2

deviation← deviation +|di −∆L|

Inversely, the distribution is94.13% accurate, which
is a huge achievement over the basic parametric flow
(BPF()) parameterization yielding only69.32%, at
more or less the same cost.

5 Experimental Results

The objective of this section is to show how close the
R’s generated by the various methods are to the exact
R’s (note that uniform spacing is desired), and how the
results of the method presented in the previous sec-
tion compare to those of other methods. In the last
subsection, attention is turned to the cost of using the
algorithms discussed to generateR’s. Figures 1 to 4
show the result of applying the algorithms discussed
to a sample of curves; a much larger sample of curves
is found at [Mad96a].

Each of the figures is organized as follows. The actual
curve is shown first, followed by plots showing only
R’s along their translated paths. In each case, fourR

plots are shown: those resulting from BPF (basic para-
metric flow), ST (Sharpe & Thorne), OP (Farouki’s
optimal parameterization), and from CI (cubic inter-
polator).

The ST reference points are considered to be exact (6
to 8 digits of accuracy) and thus are used to compare
other results with. Because CC (cumulative chord-
length) plots arevisually indistinguishable from ST
plots, they are not shown ([Mad96a] discusses CC and
CC plots in more detail).

For symmetric curves (e.g., Figures 1 and 4), the value
of α in OP’s algorithm is1/2, thereby producing re-
sults exact to those of BPF [Mad96a, Frk97a]. These
and other figures show the closeness of CI results to
those of ST, obtained at a considerably lower cost than
required by ST.
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Figure 1: A cubic PH curve.
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Figure 2: A cubic Bézier with high curvature
regions.

BPF

ST

OP

CI

Figure 3: A quintic PH curve.

BPF

STOP CI

Figure 4: A quintic S-curve.

Refer to [Mad96a, Mad04a] for detailed analysis and
tabulated statistics about the run-time cost of each al-
gorithm.

6 USING THE CUBIC-SPLINE
INTERPOLATION FUNC-
TION

In developing the Cubic Interpolator in Section 4, the
emphasis was on obtaining an expression fort(s) (that
is, t, the parameter of the curveQ(t), as a function of
s, the arclength of the curve) in an analytical fashion,
such that, when evaluated atsk ∈ [0,L], the corre-
spondingtk ∈ [0, 1] results. It is desirable, for manip-
ulation in mathematical experiments, that it is a single
function rather than a piecewise function.

The objective ofCI is to make available an approxima-
tion to t(s). This is similar to some of the objectives
sought in [Sha82a, Gue90a, Frk92a, Frk97a]. How-
ever, it is noted that some of these methods depend on
analytical expressions, such as theCI or theF-OP al-
gorithms, whereas other methods, such as theST algo-
rithm, depend on numerical methods to approximate
t(s). The first kind of approximators has the advan-
tage of not having to compute and maintain arrays of
numbers, or use quadrature techniques to reach a satis-
factory result; it is not equitable to compare their accu-
racy to those that depend on numerical methods. The
latter have the advantage that any prescribed accuracy
can be obtained by increasing the number of approx-
imating segments to refine results in accordance with
some prescribed tolerance, or increasing the number
of Newton-Raphson iterations.



In this section, it is shown how the proposed method
may be modified so that it also uses numerical tech-
niques to generate reference points (RPs) along para-
metric curves, thereby making use of the advantages
that numerical methods have. The numerical version
of the proposed method is calledNCI, or, the numer-
ical CI. Its objective is to generate RPs with accuracy
and performance comparable to methods which de-
pend on numerical techniques.

6.1 TheNCI Derivation & Algorithm

The idea behind developing theNCI is similar to that
behind theCC method in Subsection 3.4: the curve
Q(t) is first approximated byℑ segments. The cu-
mulative arclength is calculated at the end of thekth
segment,k = 1, 2, . . . ,ℑ, along with the coefficients
ak, bk, ck, anddk. Because each segment is approx-
imated over two Simpson intervals (using Simpson’s
rule),ℑ is alwaysI/2, whereI is an even number of
Simpson intervals used to approximate theQ(t). This
is feasible because Simpson’s rule may give the inter-
mediate arclengths at every second function. That is,
the arclength of thekth segment may be determined
by

sk =
1

3I
(α2k−2 + 4α2k−1 + α2k) + sk−1 (14)

wherek = 1, 2, . . . ,ℑ, s0 = 0, andαj = ‖Q′(j/I)‖.
Note thatL = sℑ. To determine the coefficients for
each segment, Equation (3.27) is rewritten in the fol-
lowing manner:

fk(s) = aks3 + bks2 + cks + dk, (15)

with derivative

f ′k(s) = 3aks2 + 2bks + ck, (16)

wheresk−1 < s ≤ sk. For each segment, four equa-
tions are required to solve for the four unknowns. Fol-
lowing the same methodology used in Section 3.3.1
(i.e., to formulate four equations by equating each of
fk(s) andf ′k(s) ats = sk−1, ands = sk, with the ap-
propriate values oft(s), andt′(s), respectively). Let

fk(sk−1) =
k − 1

ℑ
,

fk(sk) =
k

ℑ
,

and

f ′k(sk−1) =
1

α2k−2
,

f ′k(sk) =
1

α2k

,

the four equations are formulated as follows:

aks3
k−1 + bks2

k−1 + cksk−1 + dk = (k − 1)/ℑ,

aks3
k + bks2

k + cksk + dk = k/ℑ,

3aks2
k−1 + 2bksk−1 + ck = 1/α2k−2,

3aks2
k + 2bksk + ck = 1/α2k.

The coefficientsak, bk, ck, anddk may now be solved
for, and are as follows:

ak=
1

(sk − sk−1)2

(

α2k−2 + α2k

α2kα2k−2
−

2

ℑ(sk − sk−1)

)

,

bk =
α2k−2 − α2k

2α2kα2k−2(sk − sk−1)
−

3

2
ak(sk + sk−1),

ck =
1

α2k

− 3aks2
k − 2bksk,

dk =
k

ℑ
− (aks3

k + bks2
k + cksk).

The complete algorithm follows.

NCI()
compute αi←0,1,...,I , sk=0,1,...,ℑ

scale αi, sk so that sℑ is unity
compute ak, bk, ck, and dk, k = 0, 1, . . . ,ℑ
∆L← 1/N, k ← 0, ℓ0 ← 0
for i← 1 to N − 1

ℓi ← ℓi−1 + ∆L
while ℓi > sk

k ← k + 1
fi ← ((akℓi + bk)ℓi + ck)ℓi + dk

ri ← Q(fi)
END

6.2 Visual Results

In this subsection, some RP plots are shown for both
theNCI and theCC method, where both will be com-
pared against RPs generated by theST method. The
purpose is to show how theNCI produces better results
with fewer segments than is usually required for the
CC, and does less computation than is required by the
CC, or theST method. In Figure 5, the circles denote
RPs generated by theST algorithm, while the dots de-
note RPs generated by theCC and theNCI algorithms.
The number next to the algorithm name on each plot
indicates the number of chords, segments used by the
CC, and theNCI algorithms, respectively.
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Figure 5: Comparative plots with CC and NCI.

7 Conclusion & Future Research
A survey of methods for approximating the intrinsic
arclength parameterization for parametric curves has
been presented. The main property of one of the fea-
ture methods, theCI, is that it depends on analytical
expressions influenced by the tangent vectors at the
curve end points, as opposed to methods which depend
on numerical techniques. The main advantage ofCI is
that it is suitable for real-time applications. When the
prescribed accuracy to generating the Reference Points
is sought over the speed in generating the reference
points, a new numerical method,NCI, which depends
largely on numerical techniques is derived out ofCI
and is shown to produce accurate results in a competi-
tive number of iterations.

Work currently in progress iterates over the following
points.

• Determine the number of Simpson intervals
needed to achieve acceptable accuracy in ob-
taining the arclength of a curve segment.

• Investigate the performance of an interpolat-
ing function of a higher degree. For this, a
quintic interpolator will be developed and ana-
lyzed against the cubic interpolator to determine
whether there is a pay off by using more infor-
mation at the end points.
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