
Welcome to the 13th International Conference in
Central Europe on Computer Graphics, Visualization

and Computer Vision 2005!

M L V Pitteway
Brunel University,

Uxbridge, UB8 3PH,
United Kingdom

1. INTRODUCTION

Jack Bresenham, in his introduction to this
conference two years ago, presented an eloquent case
for the software engineering aspects of our discipline,
citing Douglas McIllroy's meticulous scholarship in
his Bell-Labs technical 'Trilogy on Raster Ellipses
and programming Methodology':
1. 'Getting Raster Ellipses Right'
2. 'Math before Code: A soundly Derived

Ellipse-drawing Algorithm' and
3. 'Ellipses Not Yet Made Easy'.
"Beware of programs with imprecise specifications".
An engineer expects to first set up a precise definition
of his intentions, in this case using Freeman chain
coding to specify the correct sequence of incremental
moves that defines the intended "best" incremental
approximation to an ellipse, before setting up an
algorithm and resorting to computer code.

That may be good enough for an engineer, but
science doesn't work like that: Computing is,
I believe, an experimental science, and it is, in my
view, perfectly legitimate to scribble out
a programming hypothesis for subsequent check and
validation on a computer, and to worry about the
mathematics and meaning involved after the
experimental validation. Like Jack Bresenham,
I came into computing many years ago. I wrote my
first computer program (for the pilot assembly
EDSAC) some 50 years ago, so I hope my audience
today will forgive me if I, too, indulge in some
reflection on the past. We've certainly come a long
way since those early days. I entered the field,
however, with a scientific background, and although
science seems to have become less popular in recent
years than once it was, I still admit to be, by

profession, a computer "scientist", and I feel that the
"science" is still a paradigm that has much to offer to
our discipline.

The beauty and elegance of the equations of
Physics: Newton's "force is equal to the rate of
change of momentum", special and general relativity
(including the now infamous e = m c2), Maxwell's
and Schroedinger's equations, Dirac's model of the
Hydrogen atom and many other classic examples.
Engineers, too, share in this search for simplicity -
the design of a Brunel bridge, for example, or the
architecture of Sir Christopher Wren.

Modern software, by contrast, is plagued by
spaghetti codes that need frequent patching to correct
various glitches or to avoid attacks by the schoolboy
authors of worms and viruses. Could it be that the
reason source code is so often protected is not so
much because of its commercial value but to protect
its authors from the lampooning that they would be
exposed to by competent computer scientists if it
were ever to be published - the "if your bridge looks
weak, nail on another bit of wood" philosophy?

In the early days the limited hardware, with
random access storage often measured in words,
rather than kilo, mega or giga bytes, imposed a
discipline of its own, and having to sit up late at night
to complete a single sample run certainly encouraged
the writing of good, efficient code!

I was inspired when I read Jack Bresenham's
article in the IBM Systems Journal of 1965. At the
time it was to me the most original algorithm since
Euclid's (to which we now know it is closely related,
e.g. Clive Castle's 'algorithms for the even
distribution of entities', Computer Journal 1986).
Bresenham's algorithm draws the "best"
approximation to a straight line with a gradient
defined by two constants "b" and "a", and involves
only one addition and one test for each output move
generated. This led me to wonder if I could generate
useful curves efficiently if I added extra instructions
each side of the loop, and the obvious thing to try
seemed to me the addition of instructions like
"b - K1→b, a + K2→a" somewhere in the left hand
branch of the loop and similarly "b - K4→b,
a + K3→a" in the right. (The signs were chosen as

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WSCG’2005 Conference proceedings ISBN 80-903100-7-9
January 31- February 4, 2005, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

I was thinking of making a get smaller and/or b larger
to generate my curve.)

At the time I had in mind something like a
slowly varying approximation, as I realized that I
could resort to the use of calculus if my four
curvature constants K1 thru' K4 were small enough.
But then, when it turned out that, with K2 set equal to
K4, the algorithm generates the "best" approximation
to the arc of a conic section (though I had to
generalize the interpretation of "best" from
Bresenham's original definition) I felt that I might
have discovered something very interesting indeed.
(With K2 not equal to K4 the algorithm is now
known to generate a curve which spirals in or out
logarithmically, though it took me many years to
make that discovery, and it involves a further
relaxation of what we must accept as a legitimate
meaning for "best".) It ran like a bat out of hell, and
could drive an incremental graph plotter flat out even
with the primitive computer we then had installed at
Brunel. The first operator to try it actually switched
the machine off, as she was convinced something
must have gone wrong; she was used to seeing just
three of four increments per second.

One particular feature of my algorithm excited
the scientist in me: It could follow any conic section,
a hyperbola as well as an ellipse, and it had no
restrictions on the orientation of the axes of the
figure. I can't imagine any worthwhile scientific
theory that relies on the choice of axial orientation to
be meaningful.

There are many problems remaining, however.
As Jack put it in his introduction to this conference
two years ago: "Ellipses are a shape often done with
degenerate instances unaccounted for; that is, they
fail in certain instances. Comprehensive testing and
a thorough understanding of an algorithm's minutia is
always essential." Vaughan Pratt offered a fix in 1985
(and also solved a problem of all integer working that
I had given up on), but this involves extra work in the
loop which is a nuisance and seldom required in
normal use. Also we need to monitor the sign of b
and a, with remedial work required if either of these
two gradient defining variables become negative, if
we are to extend the algorithm sensibly to draw a
complete ellipse, for example.

Many talented computer science researchers
have worked to try for an elegant and simple solution
to at least some of these problems, but I am now
driven to wonder if Douglas McIlroy is right in
saying that "there is no Royal Road to programs".
How very disappointing if this is so! However, our
field is young and, like Jack I would like "to
encourage anyone not to be discouraged by earlier
problem solving attempts that may have been less
than successful; keep trying and likely it will
ultimately be successful".

Following the thinking of C.P. Snow, I have
sometimes argued that the information revolution
deserves to be accorded the status of a "third culture".
But for this to be achieved there needs to be an
algorithmic equivalent of general relativity, and
which Einstein described as being "so elegant and
beautiful that it must be right", or a Maxwell's or
Schroedinger's algorithm, or a beautiful design in
software engineering to match the best works of Sir
Christopher Wren or Isambard Kingdom Brunel.
Maybe some such thing will be presented to us at this
conference!

2. REFERENCES
[1] Bresenham,J.E.: Algorithm for computer control

of a digital plotter, IBM Systems Journal 4, pp.
25-30, 1965.

[2] Freeman,H.: On the encoding of arbitrary
geometric configurations, IRE Trans.EC-102,
pp.260-268, 1961.

[3] Pitteway,M.L.V.: Algorithm for drawing ellipses
or hyperbolae with a digital plotter, Computer
Journal 10, pp.282-289, 1967

[4] Pratt,V.: Techniques for Conic Splines, Computer
Graphics (SIGGRAPH) 19, pp.151-159, 1985.

[5] Bresenham, J.E.,Earnshaw,R.A.,
Pitteway,M.L.V.: Fundamental algorithms for
computer graphics, Springer-Verlag, 1985.

[6] Bresenham, J.E., Earnshaw,R.A., Forrest,A.R.,
Lansdown,R.J., Pitteway,M.L.V.: Theoretical
foundations of computer graphics and CAD,
Springer-Verlag, 1988.

[7] Castle,C.M.A., Pitteway,M.L.V.: Algorithms for
the even distribution of entities, Computer Journal
29, pp.574, 1986.

[8] McIlroy,M.D.: There is no royal road to
programs: a trilogy on raster ellipses and
programming methodology, Computer Science
TR155, AT&T Bell Laboratories, 1990. (see the
internet: http://cm.bell-labs.com/cm/cs/estr.html.)

[9] Golipour,M.K.: A new general incremental
algorithm for conic sections, 2004.

Choose the appropriate octant and set the initial
values for b, a, d, K1, K2, K3 and K4. Then

For d < 0:

square step
b - K1→ b
a + K2 → a
d + b → d

For d ≥ 0:
diagonal step
b - K4 → b
a + K3 → a
d - a→ d

 If b or a < 0 change octant

Repeat until done

Bresenham's algorithm with curvature parameters.

