
Memory Efficient Adjacent Triangle Connectivity of a Face
Using Triangle Strips

Hidekuni Annaka
annaka@src.ricoh.co.jp

Tsukasa Matsuoka
matsuoka@src.ricoh.co.jp

Akihiro Miyazawa
miyazawa@src.ricoh.co.jp

Multimedia Lab, Software R&D Group
Ricoh Company, Ltd.

ABSTRACT
We often need to refer to adjacent elements (e.g., vertices, edges and faces) in triangle meshes for rendering,

mesh simplification and other processes. It is, however, sometimes impossible to prepare the enormous memory
needed to represent element connectivity in gigantic triangle meshes. We proposed a memory efficient scheme
for referring to adjacent faces around a vertex in non-manifold triangle meshes [AM04]. But the scheme has a
redundancy in case of two-manifold triangle meshes. This paper proposes new schemes for referring to adjacent
faces around a face in two-manifold triangle meshes. First, as our previous scheme, we introduce the constraints
to allow random access to a triangle in a sequence of triangle strips. Then, for each face, we construct a list of
references to adjacent strips as a representation of triangle connectivity. Experimental results show that, compared
with conventional indexed triangle set based methods, our schemes reduce total strage for a triangle mesh and
adjacent triangle connectivity by less than 50%.

Keywords: strip, mesh, memory efficient,adjacent connectivity

1 INTRODUCTION
One of the most popular representations for 3D models is a
triangle mesh. It has often been used not only for render-
ing but also for various processes in many scenes. In such
scenes, adjacent triangle connectivity is frequently used: to
calculate vertex normals, to simplify meshes to reduce stor-
age, and to detect collisions for virtual reality systems.
The rendering of triangle meshes requires not only vertex co-
ordinates but also vertex normals. To reduce memory, with-
out storing vertex normals, adjacent triangles around a vertex
must be acquired to successively calculate its normal from
three triangle vertices (figure 1(a)). Adjacent connectivity
of vertices and triangle faces is also required to simplify tri-
angle meshes in the popularly used vertex contractopera-
tion [Gar99], which unifies two vertices of triangle meshes.
When faced with gigantic triangle meshes, however, it is im-
possible to prepare the enormous memory needed to repre-
sent adjacent connectivity. Those gigantic meshes are gen-
erated from the latest 3D shape input devices, for example
laser range scanners, and we must process triangles of those
models numbering in the hundreds of millions.
Therefore, we devised a method based on a triangle strip
reference to represent adjacent faces of a vertex [AM04].
Required total storage for a triangle mesh and adjacent
triangle connectivity is half that of conventional repre-
sentation based on an ITS (indexed triangle set mesh).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or
a fee.
WSCG 2005 SHORT papers proceedings
ISBN 80-903100-9-5, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

(a) normal vector calculation

(b) mesh simplification

Figure 1: Usage of adjacent relations

But most of triangle meshes are 2-d manifolds where adja-
cent connectivity can be represented using adjacent faces of
a face. This is why, in this paper we propose a more memory
efficient scheme for referring to adjacent faces of a face. In
this new scheme, required total storage is about 75% of our
previous scheme. Our representation is characterized by the
following:

• CTS (Constrained Triangle Strips)
In accessing arbitrary triangles of multiple strips in a
strip buffer, we use constrained index triangle strips.
We insert one or two delimiters between strips so that
the strip size is always an even number. Three vertices
orders of triangles at even indices in the strip are coun-
terclockwise and three vertices orders of triangles at
odd indices are clockwise in the strip.

• reference to adjacent faces of a face using CTS
We use strip indices to suppress storage size for adja-
cent face connectivity of a face. A triangle has three ad-
jacent triangles, and three triangle indices are required
to store adjacent face references. In triangle strip rep-
resentation, two adjacent triangles are typically in the
same strip and one adjacent face is in a different strip
(figure 4). Therefore, one strip index is usually re-
quired to store adjacent face references. This configu-
ration is three times more efficient than ITS based rep-
resentation [Gar99].

Here are some details on how we suppress storage size: We
use 63.6%–63.7% the storage of ITS based representation
by not using an indexed triangle set. Instead, we use a con-
strained index triangle strip for triangle connectivity. Fur-
ther, we use 46.6%–46.7% the storage of ITS based repre-
sentation by using strip indices for adjacent faces connectiv-
ity of a face rather than triangle indices.

The triangle strip is supported by OpenGL APIs and provides
fast rendering on popular hardware accelerators. Our method
is especially efficient both for adjacent triangle connectivity
of vertices and for rendering meshes.

The remainder of this paper is organized as follows: Sec-
tion 1.1 summarizes related work. Section 2 describes in-
dexed triangle sets and indexed triangle strips for triangle
mesh representations. Section 3 introduces our constraints
against indexed triangle strips to suppress adjacent triangle
connectivity of a vertex. Section 4 describe adjacent faces
connectivity of a face by using constrained index triangle
strips. Section 5 presents the results of experiments using
the proposed method and Section 6 discusses conclusions.

1.1 Related work
Some proposed data structures for adjacent connectivity be-
tween elements of 3D models can represent various genus
models. The winged-edge [Bau72] is a representative struc-
ture that can represent two-manifold models. 3D models of-
ten consist of non-manifold surfaces in actual scenes. The
radial-edge [Wei88] is a representative structure that can rep-
resent non-manifold models.

Those structures are popular representations. The following
triangle mesh representation [NDW93] can represent non-
manifold models with no explicit adjacent connectivity be-
tween elements but vertex connectivity of each triangle.
• triangle set
• triangle strip
• triangle fan

The above representations are suitable for sequential access-
ing and the rendering of triangles because vertex coordinates
are stored directly in the coordinate table. This being the
case, common vertex coordinates are stored separately in the
coordinate table, so the table cannot be used for referencing
neighborhoods.

The following representations are derived from the above
representations where each triangle consists of three indices
to a vertex coordinate table to share coordinates with other
triangles.
• indexed triangle set
• indexed triangle strip

• indexed triangle fan
Because of the absence of explicit adjacent connectivity, it
takes a long time to refer to adjacent elements of these tri-
angle meshes, for example, to adjacent vertices of a vertex
and adjacent triangles of a vertex. It is faster to refer to adja-
cent elements with explicit adjacent connectivity than with-
out. Hoppe uses adjacent triangles of a triangle in the Pro-
gressive Mesh [Hop97] techniques for two-manifold meshes.
Garland et al. use adjacent triangles of a vertex in the trian-
gle mesh simplification [Gar99] techniques for non-manifold
meshes. In the Hoppe techniques, adjacent connectivity con-
sists of adjacent triangles around a triangle and is equal to
the size of triangle connectivity. With Garland techniques,
adjacent connectivity is equal to the size of the triangle con-
nectivity. We proposed a scheme for referring to adjacent
triangles around a vertex in non-manifold triangle meshes
[AM04]. But the scheme may have a storage redundancy
in case of two-manifold meshes. Because we can refer to
all faces referring adjacent faces around a face in case of
two-manifold mesh. This paper proposes a memory efficient
method to acquire adjacent triangles around a face for two-
manifold meshes.

2 TRIANGLE MESH REPRESENTA-
TIONS

A triangle mesh M is represented widely as a tuple consisting
of vertex coordinates table V and vertex indices table T. Co-
ordinates table V = (v0,v1,v2, ...vm) lists vertex coordinates,
each element of which corresponds to a vertex coordinate
vi = [xi ,yi ,zi]. Indices table T = (t0 , t1, t2 , ...tn) lists vertex in-
dices that compose triangles. Each element of T corresponds
to an index t j to V. We classify meshes into two representa-
tions according to interpretation of T: an indexed triangle set
representation and an indexed triangle strip representation.

2.1 Indexed triangle sets
Figure 2(a) shows an indexed triangle set representa-
tion where a triplet of consecutive indices, such as
[t3 j , t3 j+1 , t3 j+2], [t3 j+3 , t3 j+4 , t3 j+5], and [t3 j+6, t3 j+7 , t3 j+8],
denotes three vertex indices of a triangle. For each triplet
[t3 j , t3 j+1 , t3 j+2], we refer to j as a triangle index, which is
one third of the subscript of the first vertex index. The ori-
entations of a triangle are decided by the order of the three
indices that compose the triangle. Generally speaking, the
side on which the order is counterclockwise is the front side.
It is easy to refer to an arbitrary triangle by triangle index j
in the case of an indexed triangle set, because three vertex in-
dices [t3 j , t3 j+1, t3 j+2] are uniquely derived from the triangle
index j.

(a)triangle set (b)triangle strip

Figure 2: Triangle mesh representations

2.2 Indexed triangle strips
Figure 2(b) shows an indexed triangle strip representation
where a triplet of consecutive indices, such as [t j , t j+1, t j+2],
[t j+2, t j+1, t j+3], and [t j+2 , t j+3, t j+4], denotes three vertex in-
dices of a triangle. Note two indices in each triplet are
also used in the previous and next triplets. For each triplet
[t j , t j+1, t j+2], we refer to j as a triangle index, which is the
subscript of the first vertex index and starts from 0. The
orientations of a triangle are decided by the order of three
indices [NDW93] in this representation also. Unlike the in-
dexed triangle set, however, the order flips alternately de-
pending on whether the triangle index is even or odd.

The indices table of an indexed triangle strip mesh is about
half to one third the size that of an indexed triangle set mesh.
This is because the indices are shared in an indexed trian-
gle strip representation. In addition, we can render indexed
triangle strip meshes faster than indexed triangle set meshes
because the number of vertices processed by the rendering
libraries (e.g., OpenGL) is smaller.

Indices table T usually represents a sequence of indexed tri-
angle strips. It is difficult, however, to refer to an arbitrary tri-
angle by triangle index j in the case of a sequence of indexed
triangle strips. Specifically, if the indices table stores multi-
ple strips to represent a model, we can’t determine the orien-
tation of a triangle by the triangle index. This is because the
parity (being odd or even) of triangle index j, which holds
true in one strip by definition, doesn’t match the parity de-
fined by the number counted from the beginning of T , which
consists of a sequence of multiple strips of different lengths,
where each strip ends with a delimiter −1.

3 REVIEW OF CONSTRAINED TRIAN-
GLE STRIPS

This section reviews a method that enables random access to
a triangle in a sequence of triangle strips [AM04]. Access is
accomplished by imposing a constraint on the triangle strips
described in the previous section.

In this method, we insert delimiters depending on the size of
strip indices as follows:
• If the size of the strip is an odd number, we insert one

delimiter (Figure 3(a)).
• If the size of the strip is an even number, we insert two

successive delimiters (Figure 3(b)).
As a result, the three vertices compose a triangle in counter-
clockwise order if the triangle index is even, or in clockwise
order if the index is odd. This enables us to find the orienta-
tion of any triangle in a sequence of strips.

(a) odd number

(b) even number

Figure 3: Constrained triangle strips

4 ADJACENT STRIPS OF A FACE
This section describes a new scheme for referring to adjacent
triangles around a face in two-manifold triangle meshes, by
using constrained index triangle strips.

In this section, let T be an index table that represents the
constrained triangle strips. We define a data structure that
represents adjacent strips of faces A= (a0,a1, ...,an) whose
size is the same as that of T. Each element of A is an index to
T. As shown in Figure 4, for a given triangle j, an element
aj+1 of A generally represents a triangle that is adjacent to
j and belongs to a strip different from j’s. If j is a starting
or ending triangle of a strip, aj or aj+2 represents another
adjacent triangle of j.

Figure 4: Adjacent strips of faces

For a given triangle j, which is composed of three vertices
[t j , t j+1, t j+2], we can refer to its three adjacent triangles as
follows:

1. If t j−1 < 0, the first adjacent triangle is a j , which is
composed of [taj , taj+1, taj+2]. Otherwise, the first one
is j−1, i.e., [tj−1 , t j , t j+1].

2. The second adjacent triangle is always ai+1, which is
composed of [taj+1 , taj+1+1, taj+1+2].

3. If t j+3 < 0, the third adjacent triangle is aj+2, which is
composed of [taj+2 , taj+2+1, taj+2+2]. Otherwise, the third
one is j+1, i.e., [t j+1, t j+2 , t j+3].

Figure 5 shows an example of referring adjacent strips of
faces in Figure 4.

Figure 5: Example of referring adjacent strips of faces

5 RESULTS
We implemented the schemes described in the previous sec-
tions and compared performance results with those of ITS
schemes on a personal computer with a Pentium 4, 1.8 GHz
CPU, 512MB of main memory and an NVIDIA GeForce2
MX 400 32MB VGA card. Performance was measured for
the following items:
• total storage size (|T + J| or |T + A|) : the total stor-

age size of the vertex indices table (|T |) and the adja-
cent triangle connectivity of vertices (|J|) or triangles
(|A|)[MB]

• access time (ta) : the time to refer to adjacent triangles
around all i) vertices or ii) triangles[ms]. The number
of references is the same in both cases i) and ii). This
is because the number in the case i) is eventually equal
to the sum of the number of vertices (three) of each
triangle and the number in the case ii) is equal to the
sum of the number of edges (three) of each triangle.

• rendering time (tr) : the time to render triangle meshes
[ms]

We used the following triangle meshes, (a) Dragon and (b)
Happy Buddha 1, in experiments and used the stripification
algorithm [ESV96] for the meshes.

(a) Dragon (b) Happy Buddha
vertices : 437645 vertices : 543652
triangles : 871414 triangles : 1087717

Figure 6: Experimental models

Table 1 lists experimental results of the following four meth-
ods.
• Mtv : ITS based method for referring to adjacent trian-

gle around a vertex [Gar99].
• Msv : Our previous method [AM04].
• Mtt : ITS based method for referring to adjacent trian-

gle around a face [Hop97].
• Mst : Our proposed method.

The results show that Mst decreases total storage size by
46.6%–46.7% compared to Mtt , and by 75.0% – 75.1% com-
pared to Msv.

Regarding the access speed, the results show that M st in-
creases access time (ta) by 113%–116%, compared to Mtt ,
and decreases by 82.7% – 82.9% compared to M sv.

Considering the rendering time as well, the results show that
Mst decreases total time (ta+ tr) by 77.7%–78.0%, compared
to Mtt , and by 87.6% – 87.7% compared to M sv.

1Models are courtesy of Stanford 3D Scanning Repository.

mesh method |T| |A| |T+A| t a tr ta+ tr
or or
|J| |T+ J|

(a) Mtv 19.9 26.6 46.6 210 345 555
Msv 9.3 15.5 24.8 411 161 572
Mtt 19.9 19.9 39.9 300 345 645
Mst 9.3 9.3 18.6 340 161 501

(b) Mtv 24.9 33.2 58.1 260 441 701
Msv 11.6 19.3 30.9 520 202 722
Mtt 24.9 24.9 49.8 371 441 812
Mst 11.6 11.6 23.2 431 202 633

Table 1: Experimental results of referring to adjacent trian-
gles around faces or vertices

6 CONCLUSION
Our proposed method achieves positive results for storage
size and total time compared to the ITS based methods and
our previous method. Regarding the access time, our pro-
posed method is better than our previous method, although
our proposed method is at a disadvantage compared to the
ITS based methods. Our proposed method, however, de-
creases the total time with respect to the ITS based methods,
because it exploits OpenGL triangle strips

Future work will focus on reducing access time.

References

[AM04]Hidekuni Annaka and Tsukasa Matsuoka. Memory
efficient adjacent triangle connectivity of a vertex using
triangle strips. In Computer Graphics International 2004
(CGI2004) Conference Proceedings, June 2004.

[Bau72]Bruce Guenther Baumgart. Winged edge polyhe-
dron representation. Technical report, Stanford Artificial
Intelligence Laboratory, October 1972. CS-320.

[ESV96]Francine Evans, Steven Skiena, and Amitabh
Varshney. Optimizing triangle strips for fast rendering.
In Roni Yagel and Gregory M. Nielson, editors, IEEE Vi-
sualization ’96, pages 319–326, 1996.

[Gar99]Michael Garland. Quadric-Based Polygonal Surface
Simplification. PhD thesis, School of Computer Science
Carnegie Mellon University, 1999. CMU-CS-99-105.

[Hop97]Hugues Hoppe. View-dependent refinement of pro-
gressive meshes. In SIGGRAPH’97 Conference Proceed-
ings, pages 189–198, August 1997.

[NDW93]Jackie Neider, Tom Davis, and Mason Woo.
OpenGL Programming Guide. Addison-Wesley Publish-
ing Company, August 1993.

[Wei88]Kevin Weiler. The radial-edge structure: A topolog-
ical representation for non-manifold geometric boundary
representations. In Geometric Modelling for CAD Appli-
cations, pages 3–36, North Holland, 1988.

