
Occlusion Culling with Statistically Optimized
Occlusion Queries

Vít Koval íkč
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

xkovalc@fi.muni.cz

Ji í Sochorř
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

sochor@fi.muni.cz

ABSTRACT
This paper presents an effective algorithm for occlusion culling using hardware occlusion queries. The number of
queries is optimized according to the results of the queries from several preceding frames. Parts of the scene
which are found to be unoccluded in recent frames, are tested less often thus reducing the number of queries
performed per frame. The algorithm is applicable to any kind of scene, including scenes with moving objects.
The algorithm utilizes a tree structure containing objects in the scene.

Keywords
Visibility, real-time rendering, occlusion culling, occlusion query

1. INTRODUCTION
The number of details in virtual environments is still
increasing and requires the use of “clever” algorithms
for displaying a scene. Simple brute force approaches
to rendering complex scenes, do not achieve
interactive frame rates. Therefore algorithms
performing occlusion culling have to be used. Such
algorithms are able to detect objects, which are
occluded by another object(s) from a user's point of
view, and quickly discard these hidden objects from
further processing.

There are many methods for performing occlusion
culling (for more details see survey [Coh03a]).
In recent years hardware based occlusion queries
have started to be used. The query allows the
programmer to indirectly access the Z-buffer and test
if an object is visible or if it is shielded by already
rendered objects. The tested area is usually just a
bounding box of a fully detailed object. Based on the

results of a query the application can decide whether
or not to render a full object.

Despite the simplicity of the occlusion query
function, it is not trivial to use it correctly to gain a
significant performance boost. Several algorithms for
using occlusion queries have been developed.

One of the first was [Hil02a]. The scene is divided
into a grid and each cell in the grid contains list of
objects that are intersecting it. When rendering
a frame, the grid is processed by layers in front to
back order. For each cell the visibility of its bounding
box is queried and in cases where the box is visible,
objects in the cell's list are rendered, unless they had
not been previously rendered because they intersected
another already processed cell.

Another approach was described in [Hey01a]. In
contrast with the previous method, this algorithm
works in screen-space. The screen is divided into
a regular low-resolution grid in which each cell
remembers whether the relevant part of the screen is
occluded. When rendering, objects in the scene are
processed in front-to-back order and each object is
tested against the occlusion grid. Because the
occlusion state of the cells in the grid is updated only
when it is necessary, this method is called “Lazy
occlusion culling” (for more details see [Hey01a]).

Our method uses a scheme similar to one recently
described in [Bit04a]. The whole scene is organized
in a tree structure. During rendering the nodes are
traversed and their visibility is tested using occlusion
queries on their bounding boxes. The contents of a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG 2005 SHORT papers proceedings,
ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

node are rendered only where such a node is found
visible.

In order to reduce the number of queries, we are
using heuristics to detect nodes, which are probably
visible and the algorithm renders such nodes without
issuing a query.

2. OCCLUSION QUERY
Occlusion query is a hardware function present in
modern graphic cards. The principle is simple: After
a part of the scene is rendered onto screen and to the
Z-buffer, there is a complex object to be rendered.
Instead of rendering it, the displaying algorithm may
choose to test whether the object is actually visible.
This test is performed by retrieving the bounding box
of the object and applying the occlusion query on it.
The occlusion query returns the number of pixels that
would have been visible, if the box had been
rendered. This is done by comparing the box with
stored Z-buffer values. If the number of possibly
visible pixels is equal to zero, the bounding box is
hidden by previously rendered object(s) and it is not
necessary to render the complex object.

Unfortunately, the use of the occlusion query function
is not that simple. Due to the buffering of data sent to
a graphic card it often happens that previous parts of
the scene have not been rendered at the time when a
query is issued. However, occlusion queries might be
processed asynchronously. It is possible to start a
query, then render some object and use the result of
the query later when it is available. Furthermore, it is
not necessary to wait with the next query until the
previous one is finished – the queries may run
simultaneously. The processes are illustrated in
Figure 1:

3. ALGORITHM
Overview
Our algorithm requires the scene to be organized in a
hierarchical tree structure. In our experiments we
utilize an axis-aligned BSP tree, but octree, kD-tree
or other similar structures could also be used. Each
object in the scene is placed in exactly one node, that
encom-passes the object fully and as tightly as
possible.

When rendering a frame, the algorithm sets up
a queue which holds nodes to be processed. Initially
it contains the root node only. The queue is processed
in natural order and for each node the algorithm
decides whether the objects in a node will be
discarded, queried for visibility or rendered without
using an occlusion query.

The first case is straightforward. If the node is
discarded, for example because of frustum culling, it
is removed from the queue and the algorithm moves
to the next node in the queue.

The second case is slightly more complicated. For
some nodes, the algorithm may decide that an
occlusion query is not necessary (the decision process
will be described later). Objects which are stored in
such a node are immediately rendered and the node is
removed from the queue. Its descendants are placed
in the queue at the position of the deleted node. The
newly inserted nodes are sorted in front-to-back
order. The algorithm then continues with the first
descendant.

The third case is the most complex. If there is not
enough information about the results of recent
occlusion queries, it is difficult to predict, whether
objects in a node should be rendered or not. At this
point, the query is issued. The result of the query will
be available after some time. It is possible to wait for
the query to finish, but it would be a waste of time
that could be used for processing another node.
Hence the algorithm starts to process the next node
in the queue instead of waiting for the result.

When a query finishes, depending on the result the
node may be either skipped or the objects in the node
are rendered and the node in the queue is replaced by
its descendants. Because newly inserted nodes
precede the currently processed node, the algorithm
has to sometimes return and pass through the queue
again. It can stop processing the queue at any time
and return to the beginning of the queue, usually after
the number of queries exceeds some threshold (about
20) and there is high probability that the first queries
are already finished. It would be possible to stop
processing the queue and return to the exact time
when the result of the first query is available, but that
would require additional checking of the status of the
query, which in itself is time consuming.

The actual implementation uses two queues – one is
the main query described above and the other is the
queue with nodes with the occlusion query issued and
not finished yet. Here is the overview in pseudocode:
queue.insert (root);
while (!queue.empty) {
while (!queue.empty &&
!query_queue.FirstNode.AnswerReady) {

act_node = queue.FirstNode;
action = CalcNodeAction (act_node);

Figure 1: Illustration of simple and advanced use
of the occlusion queries

if (QUERY == action) {
act_node.IssueQuery;
query_queue.Add (act_node);

} else if (RENDER == action) {
RenderNode (act_node);

}
query.DeleteFirstNode ();

}

queue.SetPointerToStart;
while (!query_queue.empty) {
visible_pixels =
query_queue.FirstNode.GetResult;

SaveStatistics
(query_queue.FirstNode,
visible_pixels);

if (visible_pixels > 0) {
RenderNode
(query_queue.FirstNode);

queue.AddChildrenBeforePointer
(query_queue.FirstNode);

}
query_queue.DeleteFirstNode;

}
}
The CalcNodeAction function is crucial for the
algorithm. It takes a node as a parameter and returns
the value, which informs the rest of the algorithm,
what actions should be taken for the given node. The
actions are:

– RENDER. Objects in the node will be rendered
without issuing a query.

– SKIP. The node is invisible, the objects in the
node will not be rendered.

– QUERY. Occlusion query will be issued to
determine if the node is visible or not.

Here is a pseudocode for a simple version of the
CalcNodeAction function. This version does not
utilize any results of the preceding occlusion queries.
if (FrustumCulled (node))
return SKIP;

else if (ViewerIsInside (node))
return RENDER;

else
return QUERY;

Optimizations
The CalcNodeFunction can make an estimation
(based on the results of recent occlusion queries) and
change a return value from QUERY to RENDER.
This estimation has to be done carefully, otherwise
we could end up with rendering many objects, which
are actually occluded. On the other hand, we do not
want to use many occlusion queries as it may severely
reduce performance.

The algorithm stores the results of several recent
occlusion queries for every node and uses them to
determine whether to initiate an occlusion query or
not. The more times the node was found visible, the

less often the query will be issued to check if it is still
visible.

Pseudocode for the optimized CalcNodeAction
function follows:
if (FrustumCulled (node))
return SKIP;

else if (ViewerIsInside (node))
return RENDER;

else {
if (StatisticsTooOld (node))
return QUERY;

if (OCCLUDED ==
LastQueryResult (node))
return QUERY;

occ_num = GetNumOfUnoccludedResults
(node);

not_query_time = last_query_time +
BASE_TIME * (2 – 0.5^occ_num);

if (actTime > not_query_time)
return QUERY;

return RENDER;
}
The BASE_TIME constant depends on the speed of
viewer's movement and also on the type of scene. For
higher speeds we select a lower number. In our tests,
this constant was equal to 2/3 of second, which is a
good compromise between forgetting the statistics
too early and predicting the occlusion incorrectly
because of too old information.

4. RESULTS
All tests were performed on a computer with Intel
Pentium 4/2.0 GHz processor, 512 MB of RAM and
ATI Radeon 9700 with 128 MB of memory.

Three scenes were tested. The first one (Figure 2)
was the power plant model containing nearly 2
million triangles. It is a smaller version of the UNC's
power plant model. Unfortunately, it was not possible
to render the full model with its 12 million triangles
in interactive frame rate with this configuration.

The second scene (Figure 3) was a computer-
generated library with shelves containing nearly
40,000 books with a total of over 10 million triangles.
The shelves does not have back sides, so the books
were the main occluders.

The third scene (Figure 4) consists of 5,000 randomly
placed teapots that are made of 32 million triangles.

Three different rendering algorithms were used:

– No occlusion culling. This algorithm uses only
view-frustum culling, it does not use any kind of
occlusion culling.

– Simple occlusion culling. The algorithm starts
with the root of the scene hierarchy and traverses

the hierarchical structure in a top-down manner to
the leaves. Before rendering a node, the occlusion
query is utilized to get the visibility of the node's
bounding box. If the box is invisible, the node and
it's descendants are not going to be rendered.

– Statistical occlusion culling. This is the algorithm
described in the previous section.

For each scene we run these algorithms to render
a fly-through containing several hundred frames and
we measured the total rendering time. The result are
shown in Table 1:

Scene No OC Simple OC Stat. OC
Power plant 43 37 22

Library 14 7 4

Teapots 33 11 11
Table 1. Time (in seconds) to fly through several

scenes using three different rendering algorithms.
The occlusion culling algorithm with statistically
controlled occlusion queries gives the best results in
most cases. However, sometimes it may be slower
than “Simple OC” because the statistics of a recent
occlusion may give a false prediction and
unnecessarily render many objects. But the statistics
are used only for a brief interval, so “Stat. OC” is

usually only a little slower in these problematical
cases.

5.CONCLUSION AND FUTURE WORK
We have described a new occlusion culling
algorithm, which is able to render scenes up to four
times faster than algorithms using view-frustum
culling only. It can operate on any type of scene,
including a scene with moving objects.

There are many directions for future work. The
algorithm can be improved by better ordering of the
queries, or by improving prediction function based on
the recent statistics.

6. ACKNOWLEDGMENTS
This work was supported by grant VZ MSM
143300003.

7. REFERENCES
[Bit04a]Bittner, J., Wimmer, M., Piringer, H.,

Purgathofer, W. Coherent Hierarchical Culling:
Hardware Occlusion Queries Made Useful.
Computer Graphics Forum (Proc. Eurographics
2004) 23(3):615-624, 2004.

[Coh03a] Cohen-Or, D. Chrysanthou, Y., Silva, C.T.,
Durand, F. A survey of visibility for walkthrough
applications. IEEE Transactions on Visualisation
and Computer Graphics 9, 3. 2003.

[Cor02a] Corrêa, W.T., Klosowski, J.T., Silva, C. T.
Fast and Simple Occlusion Culling. Game
Programming Gems 3, Charles River Media,
2002.

[Hey01a] Hey, H., Tobler, R.F., Purgathofer, W.
Real-Time Occlusion Culling with a Lazy
Occlusion Grid. Technical Report TR-186-2-01-
02, Institute of Computer Graphics and
Algorithms, Vienna University of Technology,
2001.

[Hil02a] Hillesland, K., Salomon, B., Lastra, A.,
Manocha, D.. Fast and simple occlusion culling
using hardware-based depth queries. Technical
Report TR02-039, Department of Computer
Science, University of North Carolina, 2002.

Figure 2: The power plant model (first test scene)

Figure 3: The library (second test scene)

Figure 4: Teapots (third test scene)

