
Image-Based Point Rendering and Its Application to
Color Editing Tool

Hiroaki Kawata

Keio University, SFC
5322 Endo, Fujisawa-city,

Kanagawa, 252-8520, Japan.

t02282hk@sfc.keio.ac.jp

Alexandre Gouaillard
CREATIS, INSA de Lyon

69621 Villeurbanne, France

alexandre.gouaillard@insa-
lyon.fr

Masahiko Morita
Keio University, SFC

masahiko@sfc.keio.ac.jp

Kenji Kohiyama
Keio University, SFC

kohiyama@sfc.keio.ac.jp

Takashi Kanai
Keio University, SFC

kanai@sfc.keio.ac.jp

ABSTRACT
Advances in 3D scanning technologies have enabled the practical creation of hundreds of millions of points. In
this paper, we describe a novel image-based point rendering algorithm only using points. Most of previous point
rendering algorithms has to prepare normal vectors in advance to establish shading effects. Our algorithm is
based on image processing and can calculate normal vectors on the fly in each frame using principal component
analysis. Also, our algorithm is familiar with various other image processing algorithms. As an example we
demonstrate an interactive color-editing tool for points.

Keywords
Point-Based Rendering, Image Processing, Principal Component Analysis, Color Editing.

1. INTRODUCTION
In recent years, a large number of scanned points

can be acquired thanks to the development of
scanning technology via 3D range image scanners.
On the other hand, geometric processing techniques
such as surface reconstruction from range images
[Hoppe92] are needed to utilize points in the various
Computer Graphics (CG) applications. Surface
reconstruction is a laborious process and often
requires a try-and-error task to make polygonal
surfaces from such points suitable for practical use.

Point-based rendering has been a focus of
constant attention to address the above issue. There
are several advantages compared to the polygon-
based rendering: The image quality of point-based

rendering can now be approximately the same as
polygon-based rendering whereas the data
representation of points keeps compact because faces
are not needed to render.

Point-based rendering was firstly introduced by
Levoy and Whitted [Levoy85]. In order to achieve
the rendering quality as same as polygon-based
rendering, a method to fill holes between points is
required. One type of approaches for filling holes is
to define a rectangle, a circle or an ellipsoid called as
splat [Rusin00] or surfel [Pfist00, Zwick01] for each
point. The other type of approaches based on image
processing [Gross98, Kawat04a] has been also
proposed.

On being related to the last advantage, there are
several painting or surface editing approaches.
[Agraw95] proposed 3D painting for scanned
objects; however the algorithm is used for meshes.
[Zwick02] developed an application for editing point
set surfaces. In this application, color editing and
surface editing for point set surface can be applied at
interactive frame rate. [Adams04] proposed another
painting method for point set surfaces. In this
approach a virtual brush for painting, which is also
defined by a point set, is used.

In this paper, we propose a color editing tool by
using point based processing technique based on

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Short paper proceedings ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

image processing. Our approach can render the
image by only using position information of points
without preparing normal vectors in advance. Our
approach is called as Image-Based Point Rendering
(IBPR) [Kawat04a].

The paper is organized as follows, firstly in
Section 2, we describe an IBPR algorithm used in
color editing tool on our approach. In Section 3, we
propose color editing tools as an application of our
approach. In Section 4, we show results of our
approach. In Section 5, we conclude this paper and
discuss about our approach.

2. IMAGE-BASED POINT
RENDERING

In this section, we describe a brief overview of
Image-Based Point Rendering (IBPR) algorithm
described in [Kawat04a]. The input data of IBPR is
only 3D positions)1(),,(nizyxpi K== of points.
Also, color information),,,(abgrci = can be attached
in each point if needed. In IBPR an image buffer is
provided to render points. We set the resolution of
such an image buffer smaller than screen resolution
(frame buffer). This approach is similar to the pull-
push algorithm proposed by Grossman and Dally
[Gross98]. Whereas the pull-push algorithm uses
several multi-resolution images for filling holes, we
use only one low-resolution image with arranging its
resolution.

In the rendering process, we store each 2D
coordinates),(y

i
x
ii ppp = , color information ci and a

normal vector),,(z
i

y
i

x
ii nnnn = to a corresponding

pixel of an image buffer. A normal vector is
computed using stored 2D positions pi in each frame
(see [Kawat04a]). We determine the resolution of an
image buffer (wi, hi) as follows:

 ,, shhsww sisi == (1)

.1
)2/tan(

,1

λσ

ω

⋅⋅=

+⋅
−
⋅

=

wfov
s

znzf
zfznw

 (2)

where ws, hs are width and height of a frame buffer
respectively. s is determined by the resolution of a

point set and the distance from a view position to a
point ω and a field of view fov. σ is the resolution of
point set, λ is width or height, and zn , zf are the
distance from a view position to a near plane and to a
far plane respectively.

After all information of points is stored in an
image buffer, we compute a normal vector and create
a rectangle grid mesh from each pixel and its
neighbor pixels only which points are stored. We use
these meshes for shading which allow filling holes.
Finally, we magnify an image buffer to the size of an
original frame buffer for the actual rendering.

We describe a method to compute normal
vectors for each pixel of an image buffer using
principal component analysis (PCA). We use PCA
here for only computing principal directions. In PCA
computation process, we need to search a set of
points for each pixel and its neighbor pixels. In our
approach, we can search neighbor points by referring
neighbor pixels of an image buffer efficiently. Figure
1 shows the range of pixels of an image-buffer
needed to search neighbor points (multiple points can
be stored for each element; these points are used in
up-sampling process described later in Section 3).

In original IBPR [Kawat04a], holes are filled
using a lower resolution image buffer. However, this
process itself causes a blurring effect on a resulting
image. We apply a hybrid rendering which both
mesh and splat are used as drawing primitives. We
describe the technique in Figure 2.

The details of the computation of normal vectors
using PCA and hybrid rendering are also described in
[Kawat04b].

3. COLOR EDITING
In this section, we propose a color-editing

method based on IBPR with some extensions. In our
approach, we can use general 2D image processing
algorithms, because IBPR is much familiar with
these algorithms. Since our approach uses an image
buffer, general 2D image processing techniques can
be applicable. In this paper, we focus on a stamp tool
(Figure 3) for points. In a stamp tool, one region of
an image is copied to another region. This tool can be
used for the removal of noises of range images.

Image Buffer Attributes
2D position
3D position
Color
...

Analyze point set using PCA.

Figure 1. Image-Buffer and affecting range of

PCA.
mesh

(p , p) x y
i i

edge

mesh
hybrid rendering

(p , p) x y
i i

edge

mesh

edgedgeedgeedgeeeeee geee

splat

Figure 2. Hybrid rendering.

Editing Process
In IBPR, a stamp tool is executed after all point

information is stored to an image buffer (described in
Section 2). We use this information for color editing
directly. Next, we describe the process.

First, the user defines the source region of the
image on screen space. 2D positions piand colors ci
included in the specified region are stored to a
temporary buffer.

Second, the user defines the destination region
of the image on screen space. In this region color
information is updated according to the temporary
buffer. Figure 4 shows such an updating process. We
determine a color of pi by using the distance
between pi and its neighbor points

jp . We also

calculate a weight for each neighbor point by using a
distance from pi . A color is calculated by a weighted
sum of colors in neighbor points. This calculation is
done for setting a higher priority to a closer point.

We also define the region of interest radiuscolor . It is
also used for computing a weight. The weight is
computed as follows,

 ω j =
p j − pi

radiuscolor

.. (3)

Then, a color ci of pi is determined as follows,

 ci =
c jω jj=1

n∑
ω jj=1

n∑
., (4)

where value of radiuscolor is defined by the user. This
process gives a simple way to find neighbor points
without any special data structure of point sets.

Up-Sampling
In the above process, if the density of points on

the destination region is not enough, the blurring of a
resulting image can occur. To address this problem,
we apply up-sampling to increase the quality of a
resulting image.

Up-sampling is used in most researches about
point-based painting. For example in [Adams04],

dynamic up-sampling scheme is applied for less
density regions. We use a simple method to improve
the quality of destination regions in a stamp tool. In
this method neighbor point regions are used to
calculate new sampling points. Such regions are
given by an image buffer. Our up-sampling method
is described as follows:

1. We define a sampling plane based on neighbor
points (Figure 5 left). The plane is defined by
three positions which are taken from an image
buffer.

2. Next, we calculate an interval of new sample
points. Based on this interval, new points are
sampled on this plane (Figure 5 middle).

3. We adjust a height from the plane of each new
sampled point according to source 3D points
(the positions of original 3D points) (Figure 5
right). Source 3D points are stored to an image
buffer in advance. We also compute a distance
height i from the plane to each source 3D point.
We use a Gaussian function to determine the
weight of source 3D point. A position ′ p j of new
sampled points are determined as follows:

{ },)/(

,)(
22 /

ijij

hd

heightrangepprnp

edr

⋅−⋅=′

= −
(5)

where d is a distance from a source 3D point. h
is a user-specified parameter and is set to 0.2.
range is also a parameter and is set according to
an interval of up sampling. A direction n is a
normal vector of the plane.

Figure 6 shows the comparison of resulting
images between up-sampling and the original
approach (up-sampling is not used). It can be seen
that the pasted image is clearly displayed compared
to the original approach.

4. RESULTS
In this section, we show the results of our

approach. We evaluate our approach on Pentium 4

 Image-Buffer

radiuscolor

pipj

Figure 3. Stamp tool. Figure 4. Color
transformation.

The points are averaged position
(x,y,z)

New points are sampled
according to the plane.

Adjust height using Gaussian
Function (Show in 2D).

plane

height i height j
p i

p j

Figure 5. Up sampling process.

Normal Up sampled Source image

Figure 6. Result of up sampling.

3.2 GHz CPU and 1GB RAM PC. For the
experiment we use an original range image of
Stanford Bunny (362,272 points). Figure 3 shows the
result of our point-based rendering with attached
color attribute and the right upper of Figure 3 show a
magnified image of the result with our stamp tool.
The rendering time is 1.11 seconds.

Next, we show the results of color editing tool.
We used Beetle range images with color information
(559,327 points) for the experiment. We edit the
regions of noises appeared in range images by
pasting colors of other regions. Figure 7 (a) shows
rendering results before editing operations with
different view directions. Figure 7 (b) shows the
results after editing operations. On the left upper of
each figure, a magnified image to a modified region
is shown. From these results, it can be seen that the
regions of noises are corrected and are smoothly
rendered.

5. CONCLUDING REMARKS
In this paper, we have described IBPR and its

application to color editing tool. Our approach for
point-based rendering is familiar with various 2D
image processing algorithms. As one of examples,
we have shown that a stamping tool can be
efficiently implemented on our point-based rendering
scheme. However, the rendering time is slow, but we
can imagine that an image-processing part of our
algorithms can be easily ported to a fragment
program of GPU, which dramatically improves the
rendering speed.

We have also demonstrated a stamp tool as an
application to our IBPR. We think that we can
implement other 2D image processing tools and also
3D geometry editing tools in the near future work.

ACKNOWLEDGMENTS
Stanford Bunny range images are courtesy of
Stanford University Computer Graphics Laboratory.

REFERENCES
[Agraw95] M. Agrawala, A. C. Beers and M. Levoy. 3D painting

on scanned surfaces. In Proc. 1995 Symposium on Interactive
3D Graphics, pp. 145-150, 1995.

[Adams04] B. Adams, M. Wicke, P. Dutré, M. Gross, M. Pauly
and M. Teschner. Interactive 3D painting on point-sampled
objects. In Proc. Eurographics Symposium on Point Based
Graphics 2004, pp. 57-66, 2004.

[Gross98] J. Grossman and W. J. Dally. Point sample rendering. In
Proc. Eurographics Workshop on Rendering 98, pp.181-192,
1998.

[Hoppe92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
In Proc. SIGGRAPH 92, pp. 71–78, 1992.

[Kawat04a] H. Kawata and T. Kanai. Image-based point rendering
for multiple range images. In Proc. 2nd International
Conference on Information Technology & Applications
(ICITA 2004), pp. 478–483, 2004

[Kawat04b] H. Kawata, A. Gouaillard and T. Kanai. Point-based
painterly rendering. In Proc. 2nd International Conference on
Cyber Worlds 2004, 2004.

[Levoy85] M. Levoy and T. Whitted. The use of points as a
display primitive. Technical Report 85-022, Computer Science
Department, University of North Carolina at Chapel Hill, 1985.

[Pfist00] H. Pfister, M. Zwicker, J. van Baar and M. Gross.
Surfels: Surface elements as rendering primitives, Proc. ACM
SIGGRAPH 2000, pp.335-342, 2000.

[Rusin00] S. Rusinkiewicz and M. Levoy. Qsplat: A
multiresolution point rendering system for large meshes. In
Proc. ACM SIGGRAPH 2000, pp.343-352, 2000.

[Zwick01] M. Zwicker, H. Pfister, J. van Baar and M. Gross.
Surface splatting. In Proc. ACM SIGGRAPH 2001, pp. 371-
378, 2001.

[Zwick02] M. Zwicker, M. Pauly, O. Knoll and M. Gross.
Pointshop3D: an interactive system for point-based surface
editing. In Proc. ACM SIGGRAPH 2002, pp.322-329, 2002.

(a) (b)

Figure ７. The results of stamp tool.

