
Constructing the layer representation of polygons in
parallel

F. Martı́nez, A.J. Rueda and F.R. Feito
Depto. de Informática (Universidad de Jaén)

Campus Las Lagunillas
23071, Jaén, Spain

{fmartin,ajrueda,ffeito}@ujaen.es

ABSTRACT

For several years we have developed a scheme for representing polygons and 3D polyhedra by means of layers
of triangles and tetrahedra, together with effective algorithms for basic geometric operations on the represented
objects. In this paper we explore the optimization of some of these algorithms by parallel processing techniques.

Keywords
Graphic object representations, parallel geometric algorithms

1. INTRODUCTION
In previous work [Rue02a, Fei99a] we have developed
a method for representing polygons based on layers of
triangles, showing several interesting properties: it is
valid for any kind of polygon, simple, has little space
needs, and makes easy the effective implementation of
several operations, as the point-in-polygon inclusion
test [Fei95a, Fei97a] or Boolean operations on poly-
gons [Riv00a].

During the development of our work we have had
some problems with the algorithms used for construct-
ing the polygon representation. The most efficient,
based on a radial line sweeping, needsO(nlogn) time,
where n is the number of vertices of the polygon.
However, this algorithm is not extensible to 3D, so that
we are more interested in a simpler, 3D extensible al-
gorithm that requiresO(n2) time and space.

Realistic scenes have a great number of polygons con-
taining a great number of vertices. So, in order to
speed up the representation of scenes we must op-
timize the algorithm used for constructing polygons.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSCG SHORT papers proceedings, ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

For this reason we have decided to parallelize the
O(n2) constructing algorithm, and this experience is
described in the rest of the paper.

The remainder of the paper is structured as follows.
Section 2 briefly describes the representation of poly-
gons by layers. Section 3 explains the sequential,
O(n2) algorithm used for constructing the represen-
tation. Section 4 shows how to parallelize this algo-
rithm. Section 5 compares execution times of both al-
gorithms. Finally, Section 6 brings conclusions and
states the future directions of our research.

2. THE LAYER REPRESENTATION OF
POLYGONS
This section briefly describes the representation of
polygons by layers, so that the algorithm used for its
construction, explained in the next section, can be un-
derstood. See [Rue02a, Fei99a] for a detailed descrip-
tion of the contents of this section.

Given a polygon, it is possible to define a set of tri-
angles between an arbitrary point, namedorigin, and
each edge of the polygon. These triangles are called
origin triangles because one of their vertices coin-
cides with the origin. An origin triangle has twoorigin
edgeswhose vertices are determined by the origin and
a vertex of the polygon, and anon-origin edgewhich
belongs to the polygon. Figure 1 shows a polygon and
their corresponding origin triangles.

The layer representation is based on the concepts of:
subordination relation, subordination chain, index,
andlayer.

O

d

b
c

f ea

Figure 1: A polygon and its origin triangles.

Definition 1. Let t ands be two origin triangles of a
polygon. We say thatt is subordinate tos (t / s) if
and only if t = s or, in the case thatt 6= s, exists a
point belonging to the unidimensional interior of the
non-origin edge oft that also belongs to the interior of
the triangles. In Figure 1a is subordinate tob (a / b)
because the interior ofb clearly contains a big portion
of the non-origin edge ofa. Trianglesb andc are not
subordinate to any other one.

Definition 2. A subordination chainis defined as
an ordered sequence of trianglesS = {s0s1 . . . sn}
where si / si+1∀i : 0 ≤ i < n. In Figure 1
all non-trivial subordination chains are{a, b}, {f, e},
{f, e, d}, {f, e, d, c}, {f, b}, {f, c}, {f, d}, {e, d},
{e, d, c}, {e, c} and{d, c}.
Definition 3. We define theindexof an origin trian-
gle s (ind(s)) as the length of the longest subordina-
tion chain of the set of ordered triangles determined
by a polygonP, starting with triangles. Formally,
ind(s) = max{|Si|} whereSi = {s0s1 . . . sn} is any
valid subordination chain as defined previously veri-
fying s = s0. In Figure 1ind(a) = 2, ind(b) = 1,
ind(c) = 1, ind(d) = 2, ind(e) = 3 andind(f) = 4

Triangles can be sorted in severallayersaccording to
their index. This is thelayer representationor L-REP
of a polygon, as we see in the next definition.

Definition 4. We define thelayer representationor
L-REP of a polygonP as the set of layers contain-
ing the triangles with the same index, that isR =
{L1L2 . . . Ll} whereLi = {sj : ind(sj) = i} is
the layer of origin trianglessj with index i, and l is
the maximum index of the origin triangles generated
by the polygonP.

Figure 2 illustrates the representation of a polygon by
its L-REP.

O O

 Layer 3 Layer 4

O O

 Layer 1 Layer 2

e f

b
c d

a

Figure 2: A polygon and its L-REP.

3. SEQUENTIAL CONSTRUCTION OF
THE L-REP
In this section we describe the sequential algorithm
used for constructing the layer representation of a
polygon. Its pseudocode is shown below.

int n = p.n_edges(); // # edges
bool M[n][n]; // sub. matrix
int sc[n]; // sub. counters

// Stage 1: Build M and sc
for (int i = 0; i < n; i++) {

sc[i] = 0;
for (int j = 0; j < n; j++) {

M[i][j] = p.edge(i).sub_to
(p.edge(j));

sc[i] += M[i][j] ? 1 : 0;
}

}

// Stage 2: Build layers
int ntp = n; // # triangles processed
int l = 0; // current layer
vector<int> sct(sc); // copy of sc
while (ntp > 0) {

l++;
p.lrep.add_layer(l);
for (int i = 0; i < n; i++) {

if (sc[i] == 0) {
p.lrep.add_triangle(l, p.edge(i));
for (int j = 0; j < n; j++) {

if (M[j][i]) {
sct[j]--;

}
}
sct[i] = -1; // inserted
ntp--;

}
}
sc = sct;

}

The L-REP of a polygonp with n edges is constructed
in two stages. In the first stage two data structures are
built: the subordination matrix (M) and the subordi-
nation counters (sc). M is anxn boolean matrix that
stores at position(i, j) if si / sj , wheresx refers to
the origin triangle associated to the edgex of p. The
sc vector stores at positioni the number of triangles
to which si is subordinate — i.e., the origin triangle
associated to the edgei of p.

From the data structures built in the first stage,M and
sc, is easy to calculate the layers of a polygon taking
into account the following remark: after stage 1, trian-
gles whose subordination counter are 0 belong to layer
1. If, for every layer 1 trianglesi, the subordination
counters of the trianglessj such thatsj / si are decre-
mented by 1, the new triangles whose subordination
counter are 0 belong to layer 2. The same reasoning
can be applied to compute the layer 3 triangles from
layer 2 triangles, and so on, all the layers of a polygon.

4. PARALLEL CONSTRUCTION OF
THE L-REP
We will apply thedata domain decompositionscheme
to parallelize the sequential algorithm described in the
previous section. Following this scheme, a data do-
main to be processed is divided into several disjoint
“chunks”, and every “chunk” is allocated to a different
process that runs an algorithm on it. If, as in our case,
all processes run the same algorithm we have a SPMD
(Single Program Multiple Data) application.

In our parallelization the data domain consists of the
polygon edges, — i.e., their associated origin trian-
gles. A different subset of origin triangles is allocated
to every process. A process is responsible for comput-
ing the layer associated to every triangle of his subset.
In order to do this, processes run the following algo-
rithm.

Broadcast(p, root);
int pid = get_rank(); // process id.
int np = get_size(); // # processes
int n = p.n_edges(); // # edges
int sr; // starting row
int ne; // # edges allocated
calculate_chunk(pid, np, n, &sr, &ne);
bool M[ne][n]; // sub. matrix
int sc[ne]; // sub. counters
// Stage 1: Build M and sc
for (int i = 0; i < ne; i++) {

sc[i] = 0;
for (int j = 0; j < n; j++) {

M[i][j] = p.edge(sr+i).sub_to
(p.edge(j));

sc[i] += M[i][j] ? 1 : 0;
}

}

// Stage 2: Build layers
int ntp = n; // # triangles processed
int l = 0; // current layer
vector<int> cl; // current local layer
vector<int> cg; // current global layer
while (ntp > 0) {

l++; cl.resize(0); cg.resize(0);
p.lrep.add_layer(l);
for (int i = 0; i < ne; i++) {

if (sc[i] == 0) {
cl.push_back(sr+i);
sc[i] = -1; // inserted

}
}
AllGather(cl, cg);
for (int i = 0; i < cg.size(); i++) {

p.lrep.add_triangle(l, p.edge(cg[i]));
for (int j = 0; j < ne; j++) {

if (M[j][cg[i]]) {
sc[j]--;

}
}

}
ntp -= cg.size();

}

At first, every process receives a copy of the poly-
gon and calculates the subset of triangles allocated to
it (from sr to sr + ne − 1). After this, the process
computes the subordination matrix and the subordina-
tion counters of his subset of triangles. This computa-
tion is done without interacting with other processes.
Next, the second stage starts. In this stage the lay-
ers of the polygon are calculated. Every process com-
putes locally the triangles from his subset belonging
to the current layer. Next, processes gather the cur-
rent layer triangles found in all the processes by an
Allgather collective operation. So that processes can
decrement local subordination counters.

Before ending this section we want to do the following
remarks:

• TheBroadcast, get rank, get size, Allgatherand
calculatechunk functions used in the algorithm
are similar to functions defined in the MPI spec-
ification [Mpi94a].

• Broadcastand Allgather are synchronous col-
lective operations. So, the parallel algorithm
progresses at the pace of the slowest process —
the others must wait for it. However, this is not a
problem if the target hardware, as in our case, is
a homogeneous cluster exclusively dedicated to
the application execution. In fact, taking into
account our target hardware, self-scheduling
schemes as master-slave perform worse than our
proposed solution.

Edges (number of processes) Time Speedup
1000 (1) 0,62 –
1000 (2) 0,51 1,22
1000 (4) 0,22 2,82
1000 (8) 0,18 3,44
5000 (1) 21,78 –
5000 (2) 9,12 2,39
5000 (4) 4,46 4,88
5000 (8) 2,43 8,96
10000 (1) 85,82 –
10000 (2) 42,32 2,03
10000 (4) 20,93 4,1
10000 (8) 9,91 8,66

Table 1. Execution results (in seconds).

• At algorithm termination the L-REP of the poly-
gon is available to all the processes. This can be
useful for future parallel operations on the poly-
gon.

5. EXPERIMENTATION
In this section we describe the results from implement-
ing the previous section algorithm using MPI. The tar-
get hardware consists of 8 AMD dual processors at 2.1
GHz connected by a 1 Gigabit/s Ethernet.

Table 1 shows the results of some sample executions.
The left column contains the execution parameters,
i.e., the number of edges of the polygon and the num-
ber of processes — or processors — used in the paral-
lelization. If the number of processes is 1, the sequen-
tial algorithm is executed. The others columns show
the execution time and the speedup obtained — calcu-
lated as the sequential execution time divided by the
parallel execution time.

As can be seen the results are excellent. Even for the
polygon with 1000 edges, which sequential execution
only takes 0,62 seconds, good performance in terms
of speedup has been obtained. For the polygons with
5000 and 10000 edges a super speedup is obtained —
greater thann if n processors are used. This fact is nor-
mal when parallelizing algorithms with great memory
needs, as in our case due to the subordination matrix,
because parallel distributed hardware not only offers
more CPU cycles, but also more cache and main mem-
ory.

Lastly to note some information not shown in Table 1:

• The time needed to broadcast the polygons is
negligible compared to the total execution time.

• The speedup obtained in the two stages of the
parallel algorithm is similar.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described the parallelization of
the algorithm used for constructing the L-REP of a
polygon. As described in the previous section, the
execution results are excellent, specially when repre-
senting big polygons. Big polygons can be frequently
found, as in complex fonts or GIS, so the paralleliza-
tion is quite useful. Furthermore, this algorithm is ex-
tensible to 3D where the size of the objects can be very
big.

In the future we would like to apply parallel processing
techniques to some applications of the L-REP such as
Boolean operations or plain location.

7. ACKNOWLEDGEMENTS
This work has been partially granted by the Ministry
of Science and Technology of Spain and the Euro-
pean Union by means of the ERDF funds, under the
research projects TIC-2001-2099-C03-03 and TIN-
2004-06326-C03-03.

8. REFERENCES

[Fei95a] Feito, F.R.; Torres J.C., “Orientation, sim-
plicity and inclusion test for planar poly-
gons”, Computer & Graphics 19, pp. 595–
600, 1995.

[Fei97a] Feito, F.R.; Torres J.C., “Inclusion test for
general polyhedra”, Computer & Graphics
21, pp. 64–77, 1997.

[Fei99a] Feito, F.R.; Rivero M. y Rueda, A.J.,
“Boolean representation for general planar
polygons”, Proceedings of the WSCG’99,
pp. 87–92, 1999.

[Mpi94a] Message Passing Interface Forum, “MPI: A
Message-Passing interface standard”, Inter-
national Journal of Supercomputer Applica-
tions, 8(3/4), pp. 165–414, 1994.

[Riv00a] Rivero, M.L.; Feito, F.R., “Boolean oper-
ations on general planar polygons”, Com-
puter & Graphics 24, pp. 881–896, 2000.

[Rue02a] Rueda, A.J.; Feito, F.R. y Rivero, M., “A
triangle-based representation for polygons
and its applications”, Computer & Graphics
26, pp. 805–814, 2002.

