
Adaptive Tessellation of Bézier Surfaces Based on

Displacement Maps

F.J. Espino1 M. Bóo1 M. Amor2 J.D. Bruguera1

1Dept. of Electronic and Computer Eng., Univ. of Santiago de Compostela,

E-mail: {javi, mboo, bruguera}@dec.usc.es

2Dept. of Electronics and Systems, Univ. of A Coruña

E-mail: margamor@udc.es

ABSTRACT

Bézier surfaces are widely used in computer graphics applications. Rendering of such surfaces is
commonly performed by tessellation. In order to generate less triangles for high quality surfaces,
adaptive tessellation algorithms are better. The geometric tests used by these algorithms per-
form vector computations of high latency that decreases the performance of the algorithm. We
propose an adaptive tessellation algorithm that avoids vector computations for tests, replacing
them with scalar computations. This way, latency of tests is reduced and therefore, performance
improved.

Keywords: Bézier surfaces, tessellation, subdivision, displacement map

1 INTRODUCTION

Bézier surfaces are used in several computer
graphics applications. Due to the excellent per-
formance of hardware based methods for trian-
gle meshes, the strategy mostly employed for
rendering is the surface tessellation [Kumar96,
Moret01]. There are different methods and hard-
ware proposals [Kumar96, Moret01] for Bézier
surfaces tessellation. Adaptive tessellation meth-
ods increase detail where required [Chung00,
Espin03]. However, redundant computation of
vertices is made, because every shared vertex is
computed once per triangle. The method pro-
posed in [Espin04] improves performance process-

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and or a fee.

WSCG SHORT papers proceedings, ISBN

80-903100-9-5

WSCG’2005, January 31-February 4,2005

Plzen, Czech Republic.

Copyright UNION Agency - Science Press

ing groups of triangles instead of individual tri-
angles. The tests employed for adaptive tessella-
tion are based on the computation of all candi-
date vertices and normal vectors to be inserted
and their posterior analysis. This implies much
computation, because vertices that do not need
to be inserted are computed.

We propose an adaptive tessellation algorithm
based on the layer strips method [Espin04]. Edge
tests are performed using scalar computations
over a displacement map [Lee00]. The displace-
ment map is sent together with a coarse tessella-
tion to the the graphics unit. During subdivision,
no vertex is computed before a decision is made,
improving performance. As a result, good quality
meshes are generated with less computations.

2 ADAPTIVE TESSELLATION

BASED ON DISPLACEMENT

MAPS

Adaptive tessellation algorithms analyze geomet-
ric information of the surface in order to sub-
divide with high detail the regions of high cur-
vature. This way, the resulting meshes have
high quality with less triangles than uniform tes-

Surface

Coarse mesh

Distance map

CPU

Mesh reconstruction

Map
Test

Mesh
Subdivision

Tessellation Unit

G
ra

p
h
ic

s
p
ip

e
lin

e

Final mesh

GPU

Figure 1: Diagram of the adaptive tessellation algorithm

sellations. The simplest algorithms [Chung00,
Espin03] generate an initial coarse tessellation
and then processes each triangle iteratively, ana-
lyzing each edge for deciding the subdivision pat-
tern of the triangle. Several tests can be used,
obtaining different results in number of triangles
and quality of the tessellation. The problem of
processing triangles individually is that vertices
inserted in edges are re-computed. Moreover,
tests need the coordinates and normal vector of
the vertex that is going to be inserted, so useless
computation is performed.

In this section we propose an algorithm that
avoids unnecessary vertex computations. The
coarse tessellation and its displacement map are
computed and sent for rendering. The map is a
matrix of distances between the initial coarse tes-
sellation and the surface. This information is em-
ployed to generate the adaptive subdivided mesh.
The resulting triangle mesh is rendered in the
graphics system. This algorithm is a good can-
didate to be implemented as a first stage of the
Graphics Unit (GPU) as shown in Figure 1. This
way, communications between CPU and GPU are
kept low. Next, the algorithm is detailed.

2.1 Displacement Map Generation

Generation of the displacement map is made
through the following steps. First, the surface
is sampled in M ×N points and, for each point,
a distance value is computed. In general, the dis-
tance is computed as the distance between the
surface point and the plane of the triangle with a
normal vector intersecting the point. In Figure 2
a 2D simplification of a surface and a coarse tes-
sellation is shown. Surface point S1 represents
the general case, where the point is over the nor-
mal of only one triangle T1 and distance d1 is
computed.

Exceptional cases can be found. For these cases
we propose the following. In Figure 2, point S2

S
1 S

2

S
3

T
1

T
2

T
3

d
1 d

2

d
31

d
32

Figure 2: Cases in distance map generation

has no triangle with a normal vector intersecting
it, so the distance is computed as the distance
d2 to the nearest edge (edge between triangles
T1 and T2). Finally, both triangles T2 and T3

have normal vectors that intersect point S3, so
the nearest triangle is chosen for computing dis-
tance d3.

The necessary resolution (M × N) of maps can
be computed through a Fourier analysis, using
Nyquist criteria to select the minimum map reso-
lution. However, the simulations of our algorithm
show that lower resolutions do not decrease the
quality of the generated meshes. This is due to
the fact that maps are not used for surface recon-
struction, but only for test purposes.

2.2 Distance Map Test

The edge analysis is performed comparing dis-
tances associated to vertices and inserting ver-
tices in those regions where the distance differ-
ences are greater than a threshold value. Para-
metric coordinates are used to read the map val-
ues. Due to the limited resolution of the map,
the distances are linearly interpolated from the
available distances.

Three tests are distinguished depending on how
many points are used for distance comparisons:
two-point test (Map2p), four-point test (Map4p)
and eight-point test(Map8p). Figure 3 represents
the data used for these tests: d1 and d2 are the

d1(u1,v1)

d2(u2,v2)

d12(u12,v12)

d4(u4,v4)

d3(u3,v3)
d6(u6,v6)

d8(u8,v8)

d5(u5,v5)

d7(u7,v7)

Figure 3: Distance values for additional test

Figure T cmesh(KB) map(KB) Error
Surface1 18 0.84 1.00 0.2566
Surface2 18 0.84 1.00 0.1604
Teacup 468 21.94 26.00 0.0273

Table 1: Initial tessellations

distances associated to the vertices of the edge;
d12, the distance of the candidate vertex to be
inserted if the test is positive; and d3 to d8, the
additional points for tests Map4p and Map8p.
The parameters u and v are the parametric co-
ordinates of the vertices, used for accessing the
distance map.

The test Map2p only uses edge related informa-
tion, i.e. points d1, d2 and the tested vertex
d12. Differences are computed and compared to
a threshold value according to:

Map2p = (|d1−d12| > th) OR (|d2−d12| > th) (1)

The Map4p test uses two additional distance val-
ues (d3 and d4 in Figure 3) to improve the quality
of the tessellation. The parametric coordinates
needed for accessing the map are computed with:

(u3, v3) = (u12 − ve, v12 + ue)
(u4, v4) = (u12 + ve, v12 − ue)

(2)

where (ue, ve) = (u1 − u12, v1 − v12). The differ-
ences are compared together with differences of
Map2p to the threshold value using:

Map4p = Map2p OR (|d3 − d12| > th)

OR (|d4 − d12| > th) (3)

where Map2p are the comparisons of Eq. (1).
This test is extended to Map8p where four ad-
ditional distances (d5, d6, d7 and d8) are consid-
ered. These tests have been selected due to their
simplicity of computation and the good results
obtained during simulation.

3 RESULTS

The algorithm has been simulated in C++ lan-
guage and tested for several figures. Results are

shown for three figures: two individual surfaces
and a teacup.

Table 1 shows the memory requirements and
mesh error of the coarse tessellations for the three
figures. Column cmesh shows the memory re-
quirement of the coarse mesh (18 triangles per
surface1 where teacup has 26 surfaces). Column
map shows the requirements of the displacement
map with a resolution of 16x16 points. Keeping
these sizes, the communications requirements are
kept very low (1.84KB in total). The last column
of Table 1 shows the mesh error of the coarse
meshes.

Table 2 shows the mesh error for the subdivided
meshes with map tests (columns Map2p, Map4p
and Map8p). The error of flat test [Espin04] is
also included in column flat. Results for different
number of triangles of final mesh (columns T) are
shown. Of course, any of the adaptive methods
reduces the error respect to the coarse mesh.

Simulation data shows that using more distances
in test improves quality of subdivided meshes.
The difference in quality between Map4p and
Map8p is small and the cost, larger. Therefore,
Map4p have the best quality and cost trade-off.

Quality of meshes subdivided with map tests are
very close to those generated with flat test. For
example, for surface2 tessellated with around
5000 triangles quality is 0.00164 and 0.00064 for
Map4p and flat respectively; quality is even bet-
ter for more complex figures, like teacup.

Final considerations about mesh quality can be
made by looking at Figure 4. Figures 4(a), 4(b)
and 4(c) shows the subdivided meshes using the
Map4p test with approximately 5000 triangles.
As mentioned above, quality of the coarse tessel-
lation is improved with higher detail in curved
regions.

With the flat tests [Espin04] when a vertex is
computed and not inserted, useless computations
are performed. In our proposal the decisions
are computed first, so useless computations are
avoided and performance is improved.

In summary, we propose to reduce the computa-
tions associated to vertices not finally inserted
using high quality subdivided meshes and low
communication and memory requirements.

1Layer Strip [Espin04] requires 36 Bytes per vertex.

Figure
Map2p Map4p Map8p Flat

T E T E T E T E

surface1

5034 0.00025 5846 0.00167 5848 0.00168 4374 0.00025

4388 0.00047 4695 0.00182 4697 0.00183 3600 0.00053

2070 0.00160 2037 0.00438 2043 0.00437 1926 0.00132

surface2

5831 0.00344 6010 0.00162 5898 0.00164 5645 0.00064

4384 0.00213 4045 0.00212 4306 0.00168 4003 0.00092

2041 0.00404 2093 0.00403 2009 0.00375 2074 0.00183

teacup

20100 0.00175 23196 0.00145 17987 0.00238 20604 0.00242

13380 0.00239 14859 0.00297 14589 0.00318 12220 0.00363

7835 0.00429 7284 0.00406 7207 0.00427 9630 0.00390

Table 2: Tessellation results

(a) Surface1
(Map4p test)

(b) Surface2
(Map4p test)

(c) Teacup (Map4p
test)

Figure 4: Tessellated meshes

4 CONCLUSIONS

In this paper an adaptive tessellation algorithm
for Bézier surfaces is presented. It combines
the methods of previous algorithms with the dis-
placement map concept in order to obtain more
efficient and implementable tests.

The method we propose is based on displacement
maps and performs simpler tests that do not need
the precomputation of vertices, increasing perfor-
mance. Quality results for subdivided meshes are
very close to previous algorithms, keeping com-
munication requirements low.

The different tests based on using a set of dis-
tances (from 2 to 8) have been analyzed and com-
pared, concluding that the use of 4 distances for
test has the best trade off between quality and
computation load.

ACKNOWLEGMENTS

This work was partially supported by the Min-
istry of Science and Technology of Spain un-
der contract MCYT-FEDER TIC2001-3694-C02-
01 and by the Secretaŕıa Xeral I+D of Galicia
(Spain) under contract PGIDIT03TIC10502PR.

REFERENCES

[Chung00] A.J. Chung and A.J. Field. A Simple
Recursive Tessellator for Adaptive Surface
Triangulation. Journal of Graphics Tools:
JGT, 5(3):1–9, 2000.

[Espin03] F. J. Espino, M. Bóo, M. Amor, and
J. D. Bruguera. Adaptive Tessellation
of NURBS Surfaces. Journal of WSCG,
11(1):133–140, 2003.

[Espin04] F. J. Espino, M. Bóo, M. Amor, and
J. D. Bruguera. Hardware Support for
Adaptive Tessellation of Bézier Surfaces
Based on Local Tests. Technical report,
www.ac.usc.es, 2004.

[Kumar96] S. Kumar, D. Manocha, and A. Las-
tra. Interactive Display of Large-Scaled
NURBS Models. IEEE Trans. on Vis. and
Comp. Graphics, 2(4):323–336, 1996.

[Lee00] Aaron Lee, Henry Moreton, and Hugues
Hoppe. Displaced Subdivision Surfaces. In
Proceedings of the 27th annual conference
on Computer graphics and interactive tech-
niques, pages 85–94, 2000.

[Moret01] H. Moreton. Watertight Tessellation
Using Forward Differencing. In ACM Sig-
graph/Eurographics Workshop on Graph-
ics Hardware, pages 25–32, 2001.

