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ABSTRACT 
In this paper we present a technique for modeling solids based on the rational trivariate Bézier expressions. 
These solids are defined by analytical expression. For modeling purposes we focus on rotational, transitional and 
twisted solids. Final visualization is then done by approximation of solids by net of points and by boundary 
evaluation of solid. We also present practical output of our visualization algorithm. 
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1. INTRODUCTION 
The trivariate solids are not very popular in 
geometric modeling because of high degree of 
freedom. Rather they were used for free-form 
deformations and modeling [Sed86]. But,  for some 
part of geometric modeling, they are useful. It is very 
easy to map 3D textures on such solids, also some 
properties can be attached to the points of solid with 
trivariate functions. Some types of solids can be used 
for deformation simulation because of their 
transformation invariance. Also, there exist works 
considering approximations of these solids by 
subdivision schemes [Mcd02]. In this paper we focus 
on one group of trivariate solids, rational Bézier 
solids. 

2. RATIONAL BÉZIER SOLIDS 
The rational Bézier tetrahedral is defined with a 
degree n, tetrahedral domain ABCD, control net of 
points, and for each point one real number (weight). 
Control net with weights can be written in following 
way: 
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Let us have point U from the domain and let 
u=(u,v,w,t);u+v+w+t=1 are barycentric coordinates 
of point U (U=uA+vB+wC+tD) with respect to 
ABCD. Point of rational Bézier tetrahedra RBn(u) can 
be defined using analytical expression:  

lkjin

n

n
n

n

n twvu
lkji

nB
Bw

BVw
RB

!!!!
!)(;

)(

)(
)(

||

|| ==
∑
∑

=

= u
u

u
u i

i
ii

i
iii  

Rational Bézier tensor solid is defined with three 
degrees n, m, o, box domain ABCDEFGH and a 
control net of points and for each point a real number 
(weight): 
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Assume that we have point U from domain and let u 
are coordinates of U with respect to ABCDEFGH, so 
u=(u,v,w);0≤u,v,w≤1. Now we can define point of 
Bézier tensor solid RBn,m,o(u) with analytical 
expression: 
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are Bernstein polynomials. 



3. MODELING 
Translational solids 
Let us have a rational Bézier patch with given control 
points P(i,j) and weights s(i,j), where i=0,..,n;j=0,…,m 
and rational Bézier curve with control points Qi and 
weights ri, where i=0,…,o. The curve and patch must 
correspond to each other, they share their first 
vertices, so P(0,0)=Q0. Then translational rational 
Bézier tensor solid has degrees (n,m,o) and following 
control points and weights: 
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Rotational solids 
Lets have rational Bézier curve with control points 
Qi=[Qxi, Qyi, Qzi] and weights ri, where i=0,…,o. 
Then rotational rational Bézier tensor solid has 
degrees (2,2,o) and the following control points and 
weights: 
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where i=0,…,o.  

Twisted solids 
The twisted solid is like a translational solid, but 
when we are translating patch along the curve, on 
each level we rotate translated control points around 
given axis by the given angle. So assume that we 
have rational Bézier patch given by control points 
P(i,j) and weights s(i,j), where i=0,..,n;j=0,…,m and a 
rational Bézier curve with control points Qi and 
weights ri, where i=0,…,o. We will be rotating each 
level patch around z-axis by angle α. The control 
points and weights of resulting rational Bézier tensor 
patch with degrees (n,m,o) are: 
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4. RESULTS & CONCLUSION 
Based on rational Bézier solids and its approximation 
by point nets, we visualized some solids modeled 
using described ways. We have presented trivariate 
solids based on Bézier notion for splines and 
prepared basic modeling tools for creating such 
solids 
 

 
Figure 1. Transitional and twisted rational Bézier 

tensor solids. 
 

 
Figure 2. Rotational rational Bézier tensor solids 
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