
Functional Programming of Geometric Algebra and
its Ray-Tracing Application

Charneau S., Aveneau L., Fuchs L.
SIC, CNRS FRE 2731, SP2MI

Bd Marie et Pierre Curie, BP 30179
86962 Futuroscope Chasseneuil Cedex – France

{charneau,aveneau,fuchs}@sic.univ-poitiers.fr

ABSTRACT

In computer graphics, geometric algebra provides a formal way to do complex geometric calculations. We propose
an implementation of the geometric algebra by using a functional programming language. To emphasize its
efficiency, we compare it with a well known geometric algebra implementation in an application to a ray tracer.

Keywords
geometric algebra, geometric algorithms, functional programming, imperative programming

1. INTRODUCTION
Geometric Algebra initially comes from Clifford Al-
gebra. It has been studied to develop a mathemati-
cal system designed for a universal geometric calcu-
lus [Hes86]. The possibilities of this system are large.
First, it embeds some schemes like vector algebra and
quaternions in a unique system. Then it permits to
represent geometric concepts by symbolic terms. Fi-
nally, specifications of operations are coordinate free,
and can be easily generalised in all dimensions.
The use of the geometric algebra in computer science
appears very promising, but its implementation causes
some problems [PHF04], which require some cares
about the data structures definition.
We present here an implementation of geometric alge-
bra with the functional programming language Objec-
tive Caml ; we then show the results of its comparison
to Gaigen [BFD03], the most efficient geometric alge-
bra implementation that exists [PHF04].

2. GEOMETRIC ALGEBRA
A geometric algebra is an associative algebra generated

Permission to make digital or hard copies of all
or part of this work for personal or classroom use
is granted without fee provided that copies are
not made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 Posters proceedings, ISBN 80-903100-8-7

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency - Science Press.

by a real vector space, in which a vector squares to a
scalar [Hes86]. Given four vectors a, b, c and d, we
can define a geometric product by :

a(bc) = (ab)c

(a + b)(c + d) = ac + ad + bc + bd

a2 = εa|a|
2

where |a| is the magnitude of a and εa ∈ {−1, 0, 1} is
called the signature of a.
It is convenient to decompose this product into its sym-
metric and antisymmetric parts by ab = a · b + a ∧ b,
where a · b is a scalar and a ∧ b is a new entity called
a bivector, or 2-vector, geometrically interpreted by an
oriented plane segment in the same way that a vector
is an oriented line segment (see figure 1).

PSfrag replacements a

b

a ∧ b

(a) vector,
gives a
unique line

PSfrag replacements
a

b

a ∧ b

(b) bivector, gives a unique
plane

Figure 1: Interpretation of k-vectors

With a ndimensional euclidean space En, the geometric
product leads to a 2n dimensional linear space Gn of
multivectors constructed by a direct sum of n+1 linear
spaces Gk

n of k-vectors, k ∈ [0; n], where k is called the
grade. 0-vectors are scalars and 1-vectors are isomorph

to vectors of En. A k-vector v1 ∧ v2 · · · ∧ vk is geo-
metrically interpreted by an oriented segment of the
k-subspace of En generated by the k vectors v1, . . .vk.

3. A FUNCTIONAL GEOMETRIC AL-
GEBRA IMPLEMENTATION

For our implementation, we use the functional lan-
guage Objective Caml [INRIA], and we include op-
timizations equivalent to those found in the Gaigen
implementations.
Gaigen [BFD03] is a C++ geometric algebra imple-
mentation generator. It includes some optimisations
on the data structures and the operations, that consist
in representing a multivector only by its non-null grade
parts and in making specific treatments on them. How-
ever, doing that with an imperative language makes the
data structures and their handling complex.

Interests for a functional language
The interests for a functional language are due to
its links with mathematical and formal models which
make the programming more efficient. Likewise, these
languages were developed to handle formal expres-
sions, which is precisely what we do in geometric alge-
bra. Moreover Objective Caml allows pattern match-

ing oriented programming, a kind of term unification
system which highly facilitates term handling.

Our Implementation
We have implemented two kinds of O’Caml modules.
The first one is a module that represents the geometric
algebra of a given euclidean space. On this pattern,
three modules were developed, for three algebras fre-
quently used for 3 dimensional euclidean geometry.
These modules integrate the same optimisations on the
represented data as the Gaigen ones.
For the second implementation, we have parameterized
the module by a space (the latter being specified in an
other module), thanks to which every algebra can be
“generated” and used, whatever the space used.

Results and comparisons
Our O’Caml implementation represent several advan-
tages over the Gaigen libraries. First, from the point of
view of the programming :

• the code is shorter and more readable,
• the data structure is simpler to define and to

handle,
• we do not need intermediate data structures to

control the content of a multivector, contrary to
Gaigen,

• the realization of a generic module is made easier.

All these advantages simplify the development which
becomes consequently faster.
Then, from the efficiency point of view, we have com-
pared the different implementations for the calculation
of rays intersections, in a home made C ray tracer.

Figure 2 shows the results we have obtained on a scene
that contains about 20 000 triangles, for a 640 × 480

pixels image size and 4 rays per pixels. The times
indicated only take into account the time spent in the
different geometric algebra libraries. The difference
between the remained times is due to the interface be-
tween O’Caml and C. Then one can see that we are
more than 2.5 times faster than the Gaigen libraries.

PSfrag replacements

(seconds)
(1)

(2)

79.23 203.48

Figure 2: Rendering times for each implemen-

tation, (1) : non generic O’Caml module (2) :

Gaigen optimized library

4. CONCLUSION
We have demonstrated that functional languages are
more adapted to implement geometric algebra than im-
perative languages. Thereby, the idea of an implemen-
tation generator as Gaigen remains interesting. Our
generic parameterized module is a first state for such a
goal. Indeed, based on a pseudo euclidean space, a non
generic optimized module should be generated simply
by integrating into it the result of each product for every
combinaison of k-vectors in terms of product and sum
of coordinates. The determination of such results can
easily be done with the generic parameterized module.
Moreover, by taking more care about the data structure
and its handling, and less care about the generated code
(length and redundancy), we would be able to generate
libraries even more optimized.
Another possible use of functional languages consists
in, for a given operation on multivectors, reducing the
induced term by lazy evaluation. For this reduction of
terms, functional languages again appear particularly
handy. This should minimize the calculations on co-
ordinates as well as the errors on these floating points
calculations and the time to perform them.

5. REFERENCES
[BFD03] T. Bouma D. Fontijne, L. Dorst. Gaigen.
2003, University of Amsterdam.
http://www.science.uva.nl/ga/gaigen/index.html.
[Hes86] D. Hestenes. A unified language for
mathematics and physics. Clifford Algebras and

their Applications in Mathematical Physics,
chapter 1, pages 1–23. Kluwer Academic
Publishers, 1986.
[INRIA] Institut National de Recherche
en Informatique et en Automatique. The O’Caml
language. http://www.ocaml.org/.
[PHF04] C. Perwasss D. Hildenbrand, D. Fontijne
and L. Dorst. Geometric algebra and its application
to computer graphics. Tutorial 3, 25th Annual
Conference of the EACG, September 2004.

