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ABSTRACT 

This paper presents a new error bound simplification algorithm for complex geometric models. A lower polygon 
count approximation of the input model is generated by performing edge collapse operations.  The collapse 
vertex is constrained to lie within a localised tolerance volume built around the edge collapse neighbourhood. 
This constraint ensures that all points on the simplified surface are within a user specified distance from the 
surface after the previous edge collapse.  
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1. INTRODUCTION 
This paper presents a new simplification algorithm 
for geometric models. The algorithm develops upon 
the simplification envelope approach proposed in 
[Coh95] and [Bre00], by creating an arbitrarily tight, 
localised tolerance volume built around the edge 
collapse neighbourhood. Constraining the collapse 
vertex to lie within this tolerance volume guarantees 
that all points on the simplified surface lie within a 
user specified distance from the surface after the 
previous edge collapse operation.  

2. THE TOLERANCE VOLUME 
The tolerance volume is built around the triangles 
making up the collapse neighbourhood (e.g. those 
triangles sharing either vertex of the collapsing edge) 
and represents a subset of collapse vertex positions 
that preserve a user specified bound on simplification 
error. Firstly, the convex kernel is created from the 
boundary edges (edges not sharing a vertex with the 
collapsing edge) within the collapse neighbourhood 
by constructing boundary planes lying orthogonal to 
its corresponding boundary triangle and passing 
through its boundary edge.  The convex kernel of the 

collapse neighbourhood is then intersected with a set  

of prisms created for each triangle within the collapse 
neighbourhood. The prisms are formed by offsetting 
each triangle along its positive and negative surface 
normal by a distance equal to the error bound. The 
open sides of the prisms are capped with 
quadrilaterals. A typical prism is shown in Figure 1. 

 

 

 

 

 
Figure 1. Prism used in the construction of the 

tolerance volume. 
The set of prisms defined above may contain illegal 
vertex positions. A position is illegal if it results in 
any part of the simplified surface breaching the error 
bound. This problem is overcome by partitioning the 
prisms into legal and illegal sub-regions with 
partition sets. 

2.1 Partition Sets 
Partition sets are created for the offset triangles 
within each prism. There are three basic varieties of 
partition: those for boundary prisms (created for 
triangles sharing only one vertex with the collapsing 
edge), those for internal prisms (created for triangles 
sharing both vertices of the collapsing edge) and 
those where the boundary vertex used to construct the 
partition is external to the prism used in the 
construction of the partition. 

2.1.1 Boundary Prisms 
Partitions are created for the offset triangles within 
each boundary prism. The vertices belonging to the 
internal edges (e.g. those sharing one of the offset 
collapsing vertices) on each offset triangle are 
displaced along the vector formed between the 
opposite boundary vertex (on the surface triangle 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
WSCG 2005 POSTERS proceedings, ISBN 80-903100-8-7, 
WSCG’2005, January 31-February 4, 2005 
Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 

Positive offset triangle 

Negative offset triangle  

Original triangle 



 

Prism (square) 

used to construct the prism) and the vertex to be 
displaced.  The vertices need to be displaced by a 
large enough distance to ensure that the partition is 
capable of intersecting all prisms. The vertices of the 
internal edge together with the displaced vertices 
define a quadrilateral partition. Since there are two 
internal edges on an offset triangle within a boundary 
prism, two quadrilateral partitions are formed. The 
gap between the two partitions is capped to form a 
triangle. The offset triangle itself is added to the set 
making a total of four partitioning polygons.  The 
complete partitioning set for a boundary prism is 
illustrated in Figure 2(a). 

 

 

 

 

 

 
Figure 2. Partition set for a boundary (a) and 

internal (b) prism 

2.1.2 Internal Prisms 
The partition sets for internal prisms are formed in an 
analogous fashion to those of boundary prisms. The 
difference lies in the fact that the offset triangles 
within internal prisms have three internal edges. A 
partitioning set for an internal prism is illustrated in 
Figure 2 (b). 

2.1.3 Exterior Partitions 
Exterior partitions are created for both boundary and 
internal prisms in a similar fashion to those of 
internal prisms except that the boundary vertex lies 
within another prism. Partition sets are created for all 
boundary vertices lying on the inside (with respect to 
the prism) of the half-space formed from any internal 
edge on an offset triangle and the corresponding edge 
on the surface triangle used to construct the prism.  

Each partition set represents a convex region defined 
by four half-spaces. The partition set divides space 
into a legal and an illegal region, with the prism used 
to construct the partition defined as being in the legal 
region. Each partition set is used to partition the 
prisms and the illegal regions are discarded. The 
remaining regions represent a sub-set of all legal 
collapse vertex positions. 

2.2 Measuring Simplification Error 
Surface approximation error is measured by 
projecting the simplified surface onto the original 
surface and calculating the maximum distance 

between corresponding points on the two surfaces. 
The simplified surface within each prism is projected 
by parallel orthographic projection onto the surface 
triangle used to construct the prism. The distance 
between the simplified surface and the original 
surface changes linearly within each prism. Hence, 
the maximum error will occur at a vertex on the 
simplified surface within a prism or at an intersection 
point between the simplified surface and the sides of 
a prism. An illustrative two-dimensional example is 
given in Figure 3 which shows 2D quadrilateral 
analogues to prisms. The target vertices and 
intersection points are highlighted with circles in the 
diagram. To calculate the maximum error, it is only 
necessary to project these target points onto the 
original surface within the appropriate prism 
(quadrilateral) and search for the maximum distance 
between corresponding points. 

 

 
 
 
 

Figure 3. Illustrative example of a 2D edge 
collapse showing quadrilateral analogues of 
prisms and the simplified surface (dotted). 

3 RESULTS 
The local error bound algorithm has been 
implemented to perform all legal edge collapses 
within a user specified global error bound. The global 
error bound is set manually to some fraction of the 
diagonal of the bounding box of the model. The error 
bound used in the construction of tolerance volumes 
is set to a small fraction of the global error bound and 
all legal collapses are performed. The error bound is 
gradually increased until the desired triangle count is 
reached, or the error bound exceeds the user specified 
global error bound. The results have shown that the 
algorithm is capable of large scale polygon reduction 
while preserving important surface features. 
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