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ABSTRACT 
Spiral Architecture (SA) is a novel image structure which has hexagons but not squares as the basic elements. 
Apart from many other advantages in image processing, SA has shown two unbeatable characters that have 
potential to improve image compression performance, namely, Locality of Pixel Density and Uniform Image 
Partitioning. Fractal image compression is a relatively recent image compression method which exploits 
similarities in different parts of the image. The basic idea is to represent an image as fixed points of Iterated 
Function Systems (IFS). Therefore, an input image can be represented by a series of IFS codes rather than pixels. 
In this way, an amazing compression ratio 10000:1 can be achieved. The application of fractal image 
compression presented in this paper is based on Spiral Architecture. Since there is no mature capture and display 
device for hexagon-based images, the experiments are implemented on a newly proposed mimic scheme, called 
Virtual Spiral Architecture (VSA). The experimental results in the paper have shown that introducing Spiral 
Architecture into fractal image compression will improve the compression performance in image quality with 
little trade-off in compression ratio. A lot of research work exists in this area to further improve the results. 
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1. INTRODUCTION 
Needless to say, visual information is of vital 
importance if human beings are to perceive, 
recognize and understand the surrounding world. 
With the tremendous progress that has been made in 
computer power, the corresponding growth in the 
multimedia market and the advent of the World Wide 
Web, it is becoming more than ever possible for 
images to be widely utilized in our daily life. In 
general, an image file contains much more data than 
a text file. An image with a large amount of data 
requires much memory to store, takes longer to 
transfer, and is intricate to process. For example, a 

grey scale image with 256 × 256 pixels requires 
about 64 KB of memory space and more than 18 
seconds to download using a 28.8K Dialup Modem. 
As a consequence, image compression becomes 
necessary due to the limited communication 
bandwidth, CPU speed and storage size. Image 
compression has been one of the most challenging 
fields in the image processing research.  
Fractal image compression is a relatively recent 
image compression method which exploits 
similarities in different parts of the image. For 
example, with a picture of a fern (Figure 1) one can 
see easily where these similarities lie: each fern leaf 
resembles a smaller fern. This is known as the 
famous Barnsley fern [Barnsley1985]. During more 
than two decades of  development, the Iterated 
Function System (IFS) based compression algorithm 
stands out as the most promising direction for further 
research and improvement [Barnsley1993]. The basic 
idea is to represent an image as the fixed points of 
IFSs. An appropriately chosen IFS consists of a 
group of affine transformations [Fisher1995]. 
Therefore, an input image can virtually be 
represented by a series of IFS codes. In this way, a 
compression ratio 10000:1 can be achieved 
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[Barnsley1988]. In short, for fractal image 
compression an image is represented by fractals 
rather than pixels. Each fractal is defined by a unique 
IFS consists of a group of affine transformations. 
Therefore the key point for this algorithm is to find 
fractals which can best approximate the original 
image and then to represent them as a set of affine 
transformations.  
 
 
 
 
 

Figure 1.  A fern leaf 
The application of fractal image compression 
presented in this paper is based on a novel image 
structure, Spiral Architecture [Sheridan1991], which 
is inspired from anatomical considerations of the 
primate’s vision [Schwartz1980]. On The Spiral 
Architecture, an image is a collection of hexagonal 
elements [Sheridan2000]. In the case of human eye, 
these elements (hexagons) would represent the 
relative position of the rods and cones on the retina. 
Each pixel on The Spiral Architecture is identified by 
a designated positive number, called Spiral Address 
as shown in Figure 2. The numbered hexagons form 
the cluster of size 7n. The hexagons tile the plane in a 
recursive modular manner along the spiral direction 
[He1999]. Any hexagonal pixel has only six 
neighboring pixels which have the same distance to 
the centre hexagon of the seven-hexagon unit of 
vision. 
This paper is organized as follows. Beginning with a 
review of fractal image compression in Section 2, an 
introduction of the Spiral Architecture is presented in 
Section 3. In Section 4, we describe the procedure of 
adopting the fractal image compression algorithm on 
The Spiral Architecture and the experimental results 
are supplied in Section 5 with some quantified 
analysis. We conclude in Section 6 by summarizing 
the opportunity of better performance for fractal 
image compression on the Spiral Architecture and by 
mentioning areas for future research. 

 
Figure 2.  A collection of 72 = 49 Hexagons with 

labelled addresses 

2. CONCEPTS OF FRACTAL IMAGE 
COMPRESSION 
In the following section, the basic concepts of fractal 
image compression on the traditional square structure 
would be introduced. Before delving into details, 
there are some highlights of fractal image 
compression. 

 It is a promising technology, though still 
relatively immature. 

 The fractals are represented by Iterated 
Function Systems (IFSs). 

 It is a block-based lossy compression method. 
 Compression has traditionally been slow but 

decompression is fast. 

Theory and Math Background 
The fundamental principle of fractal image 
compression consists of the representation of an 
image by an iterated function system (IFS) of which 
the fixed point is close to that image. This fixed point 
is named as ‘fractal’ [Fisher1995]. Each IFS is then 
coded as a contractive transformation with 
coefficients. Banach’s fixed point theorem 
guarantees that, within a complete metric space, the 
fixed point of such a transformation may be 
recovered by iterated implementation thereof to an 
arbitrary initial element of that space [Kreyszlg1978].  
Therefore, the encoding process is to find an IFS 
whose fixed point is close to the given image. The 
usual approach is based on the collage theorem, 
which provides a bound on the distance between the 
image to be encoded and the fixed point of an IFS 
(more details please refer to [Fisher1995] chapter 2). 
A suitable transformation may therefore be 
constructed as a ‘collage’ from the image to itself 
with a sufficiently small ‘collage error’ (the distance 
between the collage and the image) guaranteeing that 
the fixed point of that transformation is close to the 
original image [Wohlberg1999]. 
In the original approach, devised by Barnsley, this 
transformation was composed of the union of a 
number of affine mappings on the entire image 
[Barnsley1993]. While a few impressive examples of 
image modelling were generated by this method 
(Barnsley’s fern, for example [Barnsley1988]), no 
automated encoding algorithm was found. Fractal 
image compression became a practical reality with 
the introduction by Jacquin of the partitioned IFS 
(PIFS) [Jacquin1993], which differs from an IFS in 
that each of the individual transformation operates on 
a subset of the image, rather than the entire image. 
Since the image support is tiled by ‘range blocks’, 
each of which is mapped from one of the ‘domain 
blocks’ as depicted in Figure 3, the combined 
mappings constitute a transformation on the image as 
a whole. The transformation minimizing the collage 



error within this framework is constructed by 
individually minimizing the collage error for each 
range block, which requires locating the domain 
block which may be made closest to it under an 
admissible block mapping. This transformation is 
then represented by specifying, for each range block, 
the identity of the matching domain block together 
with the block mapping parameters minimizing the 
collage error for that range block. 

 
Figure 3. Each range block is constructed by a 

transformed domain block 

Basic Fractal Image Encoder 
The encoder has to solve the following problem: for 
each range block R the best approximation 
                             R ≈ sD + oI                            (2.1) 
needs to be found, where D is a codebook block 
transformed from a domain block to the same size as 
R. The coefficients s and o are called scaling and 
offset. We work out this problem with the Euclidean 
norm.  That is, to minimize  

                                                              (2.2) 
we can use the well known method of least squares to 
find the optimal coefficients directly as follows.  
Given a pair of blocks R and D of n pixels with 
intensities r1,…, rn and d1,…, dn we have to 
minimized the quantity   
                                .                                                    

          (2.3) 
The best coefficients s and o are 

                                                                    (2.4) 
and 
                            .                                                        

    (2.5) 
With s and o given the square error is  

  
 

(2.6) 
If the denominator in equation 2.4 is zero then s = 0 
and o =  .              .  
In summary the baseline fractal encoder with fixed 
block size operates in the following steps. 

1. Image segmentation.  Segment the given 
image using a fixed block size, for instance, 
4×4. The resulting blocks are called ranges 
Ri. 

2. Domain pool and codebook blocks 
definition. By stepping through the image 
with a step size of l pixel(s) horizontally and 
vertically create a set of domain blocks, 
which are four times as the size of range 
blocks. By averaging the intensities of four 
neighboring pixels each domain blocks 
shrinks to match the size of the ranges. This 
produces the codebook blocks Di. 

3. The search of best s and o. For each range 
block Ri an optimal approximation Ri ≈ sDi 
+ oI in the following steps: 
a) For each codebook block Di compute an 
optimal approximation Ri ≈ sDi + oI in three 
steps: 

i. Perform the least squares optimization 
using formulas 2.4 and 2.5, yielding a 
real coefficient scalar s and an offset o. 
ii. Quantize the coefficients using a 
uniform quantizer. 
iii. Using the quantized coefficients s and 
o compute the error E(Ri, Di).  

b) Among all codebook blocks Di find the 
block Dk with minimal error  

E(Ri, Dk)= mini E(Ri, Di). 
c) Output the code for the current range 
block consisting of indices for the quantized 
coefficient s and o and the index k 
identifying the optimal codebook block Dk.  

3. SPIRAL ARCHITECTURE AND 
IMAGE REPRESENTATION 
A digital image contains thousands of pixels to 
represent the real world and when we touch the term 
‘pixel’ so far, that means a rectangular box in an 
image. Almost all the previous image processing and 
image analysis research is based on this traditional 
image structure. However, we do have a relatively 
new image structure called Spiral Architecture (SA) 
[Sheridan1996]. Spiral Architecture is inspired from 
anatomical considerations of the primate’s vision 
[Schwartz1980]. From the research about the 
geometry of the cones on the primate’s retina (See 
Figure 4) we can conclude that the cones’ 
distribution has inherent organization and is featured 
by its potential powerful computation abilities. The 
cones with the shape of hexagons are arranged in a 
Spiral clusters. This cluster consists of the 
organizational units of vision. Each unit is a set of 
seven hexagons compared with the traditional 



rectangular image architecture using a set of 3×3 
vision unit as shown in Figure 5. 
 
 
 
 
 

Figure 4. Distribution of Cones on the Retina 
 
 
 
 
 
 

Figure 5. Unit of vision in the two image 
architectures 

Spiral Addressing 
The first step in SA formulation is initially labeling 
each of the individual hexagons with a unique 
address. The addresses of these hexagons will then 
be simply referred to the hexagons. This is achieved 
by a process that is initially applied to a collection of 
seven hexagons. Each of these seven hexagons is 
labeled consecutively with addresses 0, 1, 2, 3, 4, 5 
and 6 as displayed in Figure 6. 
 
 
 
 

 
Figure 6. A collection of seven hexagons with 

unique addresses 
Dilate the structure so that six additional collections 
of seven hexagons can be placed about the addressed 
hexagons, and multiply each address by 10. For each 
new collection of seven hexagons, label each of the 
hexagons consecutively from the centre address as 
we did for the first seven hexagons (see Figure 7). 

 
Figure 7. A collection of 72 = 49 hexagons with 

labelled addresses 

The repetition of the above steps permits the 
collection of hexagons to grow in powers of seven 
with uniquely assigned addresses. It is this pattern of 
growth of addresses that generates the Spiral. 
Furthermore, the addresses are consecutive in base 
seven.  
The important aspect of each hexagon is that it has 
six neighboring hexagons. This establishes the 
property that for all hexagons, the centre of each 
hexagon has a constant distance from every one of its 
six neighbors. According to Umbaugh 
[Umbaugh1996], the difference of light intensities 
between pixels is highly related to the distance 
between them: the closer they are, the less difference 
observed. Hence, the light intensity of a hexagonal 
pixel can be considered being equally affected by the 
light intensities of its six neighboring pixels 
[He1999]. Moreover, each set of seven hexagons 
may enjoy very similar light intensities and the 
difference between the centre and others would be 
quite small. This idea is the foundation stone when 
considering image compression on SA. 

Spiral Counting 
Spiral Counting [Sheridan1996] is an algorithm that 
designates a sequence of hexagons in SA. It can be 
considered as a Spiral movement that given a 
commencing hexagon, counts for a pre-determined 
number and terminates at another certain hexagon. 
Any hexagon in an image can be reached by Spiral 
counting from any other given hexagon in the same 
image. When applying Spiral counting, it is strictly 
dependent on a pre-determined key define by 
Sheridan in [Sheridan1991].  A key is the first 
hexagon to be reached in an instance of a Spiral 
counting, which determines two important 
parameters: the distance and the orientation. For 
instance, given a Spiral address 15, the key of 15 can 
determine two values. One is the distance between 
the given hexagon 15 to the hexagon 0; the other is 
the orientation of hexagon 15 from hexagon 0. We 
could use the angle ω to represent the orientation (see 
Figure 8).  
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Figure 8. The key of hexagon 15 

(a) Rectangular Architecture (b) Spiral Architecture
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Spiral counting is used to define two operations in 
the SA, which are Spiral Addition and Spiral 
Multiplication [Sheridan1991]. Let a and b be Spiral 
addresses of two arbitrarily chosen hexagons in SA. 
Then, 

 Spiral addition of a and b, denoted by a + b, 
is the Spiral address of the hexagon found 
by Spiral counting b hexagons in the key of 
Spiral address 1 from the hexagon with 
Spiral address a; 

 Spiral multiplication of a and b, denoted by 
a x b, is the Spiral address of the hexagon 
found by Spiral counting b hexagons in the 
key of Spiral address a from the hexagon 
with Spiral address 0.  

Spiral Architecture together with the operations of 
Spiral Addition and Spiral Multiplication is a 
Euclidean Ring  [Sheridan1991]. This property is 
necessary to further implement SA for image 
compression. 

Virtual Spiral Architecture 
SA has two unbeatable characters that are expected 
to improve image compression performance: Locality 
of Pixel Intensity and Uniform Image Partitioning 
[Hintz2003]. However due to the lack of capture and 
display devices, SA has not yet been widely used in 
image processing. In order to make SA applicable on 
the current available devices, Wu constructed a 
mimic scheme called Virtual Spiral Architecture 
(VSA) [Wu2004], with which images on rectangular 
structure can be smoothly converted to SA. 
VSA mimicking scheme is so called ‘virtual’ because 
it only exists on computer memory during the 
procedures of image processing. The processing 
result will still be displayed on the traditional 
rectangular structure (see Figure 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to keep the resolution, hexagonal and square 
pixels are defined as the same size, i.e. 1 unit area. 
Then if we map the SA on a traditional image and 
then let N denote the number of square pixels 
covered by a hexagonal pixel and let is represent the 
size of overlapped area in a certain square pixel i 
(See Figure 10), so the contribution of gray level 
given by this square pixel to the hexagonal pixel is 
measured by the percentage of the overlapped area, 
i.e. pi. 

%1001/ ×= ii sp                     (3.1) 

Therefore the grey value of this hexagonal pixel is 

∑
=

⋅=
N

i
iSquHex pgg

i
1

)( ,              (3.2) 

where
iSqug is the grey level of the i square pixel.  

 
 
    
 
 
 
 
As a result, the grey level information for SA is now 
available during the procedure of image processing 
and the experiment result can be displayed back on a 
traditional square-structure-based device following 
the similar mapping method (see Figure 11) 

 
Figure 11. Boat in Square Structure and Virtual 
Spiral Architecture Displayed on Normal Device 

4. FRACTAL IMAGE COMPRESSION 
ON SPIRAL ARCHITECTURE 
In this preliminary research on adopting fractal image 
compression into Spiral Architecture, we follow the 
same idea applied on square structure, i.e. PIFS as 
described earlier. Firstly we separate the image into 
range blocks of seven hexagonal pixels and define 
the domain blocks of seven times more, i.e. 49 pixels 
(see Figure 12). Each pixel in the image can be the 
centre of a domain block. Then we include the 
neighboring 48 pixels around it based on Spiral 

Figure 10. The relationship between a virtual 
hexagonal pixel and overlapped square pixels. 
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Figure 9. Flowchart of image processing on virtual 
Spiral Architecture 
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counting to form a domain block unless any pixel of 
this domain block is out of the given image. 

 
          range block                           domain block 

Figure 12. Range and domain blocks in Spiral 
Architecture 

A number of researchers have noticed a tendency for 
a range block to be spatially close to the matching 
domain block, [Beaumont1990; Barthel1994], based 
on the observed tendency for distributions of spatial 
distances between range and matching domain blocks 
to be highly peaked at zero [Jacquin1993; 
Woolley1995]. Motivated by this observation, the 
domain pool for each range block may be restricted 
to a region about the range block [Jacquin1990], or a 
spiral search path may be followed outwards from 
the range block position [Beaumont1990; 
Barthel1994]. Therefore, in order to reduce the 
computational complexity, for each range block we 
only search for up to 343 domain blocks, which are 
around this range block. Each of those range blocks 
has at most 343 domain blocks in the domain pool 
and the centers of domain blocks in the pool are the 
first 343 pixels counting from the centre of range 
block through spiral direction. 

5. EXPERIMENTAL RESULTS 
We use the same algorithms mentioned before on 
square and Spiral Architecture for four popular 
images: a building, a boat and a house. Figures 13 
through 18 show the experimental results and we 
summarize them in two tables.   
 

 
Figure 13. Original and compressed ‘building’ in 

square structure 

 
Figure 14. Original and compressed ‘boat’ in 

square structure 

 
Figure 15. Original and compressed ‘house’ in 

square structure 

Figure 16. Original and compressed ‘building’ in 
Spiral Architecture 

Figure 17. Original and compressed ‘boat’ in 
Spiral Architecture 

 
Figure18. Original and compressed ‘house’ in 

Spiral Architecture 

ω



Image Compression ratio PSNR 

Building 3.37 23.40 

Boat 3.37 26.56 

House 3.37 22.41 

Table 1. Summary for images on square 
structure 

Image Compression ratio PSNR 

Building 2 25.43 

Boat 2 29.73 

House 2 26.20 

Table 2. Summary for images on Spiral 
Architecture 

 As the range block on SA is of 7 pixels (compare 
with 16 pixels in square structure), the compression 
ratio is slightly lower but the quality of 
decompressed image has increased.  

6. CONCLUSIONS AND FUTURE 
WORK 
According the experiments done so far, we have 
found that Spiral Architecture has a great potential in 
improving fractal image compression. Knowing the 
fact that there have been a large number of methods 
found to optimize fractal image compression on 
traditional image structure, we would try some of 
them on Spiral Architecture. Moreover, we may take 
advantage of spiral multiplication to find out the self-
similarity in an image with less computational 
complexity. The following are some proposed 
methods:  

1. Apply spiral multiplication to have a 
number of sub-images with 7n pixels as 
range blocks. Define domain blocks as the 
sub-images with 7n+1 pixels obtained by 
spiral multiplication to form the domain 
pool. This method is expected to take 
advantage of the self-similarity introduced 
by spiral multiplication so that the time to 
search pairs between range and domain 
blocks will reduce significantly. 

2. In order to have a more accurate domain 
pool, instead of averaging the neighboring 
seven pixels intensities to scale a domain 
block to be a codebook block, the medium  
value of these seven pixels could be used to 
represent their intensity. 

3. Based on lots of experimental results, the 
larger errors between fractals and the 
original images always happen along the 
contour or edge of objects in the image. We 

are able to classify the range blocks into 
three categories by their frequency in 
intensity – shade, edge and midrange. 
During the search process, we then can 
enlarge the domain pool for range blocks 
with higher frequency. 

In short, with the implement results it can be seen 
that introducing Spiral Architecture into fractal 
image compression has great future in improving the 
compression performance and a lot of researches 
exist in this area. 
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