Efficiently Keeping an Optimal
Stripification over a CLOD Mesh

Riccardo Scateni
Dip.to Matematica e Informatica
Universita di Cagliari
Via Ospedale, 72
[-09124, Cagliari, Italy

riccardo@unica.it

Nicola Sanna
Dip.to Matematica e Informatica
Universita di Cagliari
Via Ospedale, 72
1-09124, Cagliari, Italy

nsanna@unica.it

Massimiliano B. Porcu
Dip.to Matematica e Informatica
Universita di Cagliari
Via Ospedale, 72
1-09124, Cagliari, Italy

massi@dsf.unica.it

ABSTRACT

In this paper we present an agorithm of smple implementation but very effective that guarantees to keep an optimal
gripification (in term of frames per seconds) over a progressive mesh. The agorithm builds on-the-fly the stripification
on amesh at a selected level-of-details (LOD) using the gtripifications built, during a pre-processing stage, a the lowest
and highest L ODs. To reach thisgoal the agorithm uses two different operations on the dua graph of the mesh: when the
user changes the mesh resol ution the mesh+stripslocal configuration islooked up in atable and, after a vertex split opera-
tion, the strips are rearranged accordingly, immediately after a sequence of specia topologicd operation cdled “tunnel-
ing” with short tunnel length are started till the number of isolated triangles in the mesh get under 10% of the total num-
ber of grips. Moreover, when the user select ardevant LOD it can trigger a tunnelling with higher tunnel Iength to opti-
mize the gtripification. Using these operations we are able to keegp the progressive mesh dripified in a time of the same
order of magnitude of the time needed to change the resolution and, only if required, to perform a time-demanding opti-
mization. Only the stripifications generated by explicit user requests are stored to serve as optima starting points for fur-
ther ingpection. In thisway we can aways feed the graphics board with a triangle strip representation of the mesh at any
LOD.

The results we present demonstrate that we can tightly couple each sequence of vertex splits used to increase the resolu-
tion of the progressive mesh with: asimple rearrangement of the strips followed by avery chesp stripification search with
a predetermined dtrategy. A strong feature of the method is that the locd rearrangement leads to an implementation that
keeps dmost congtant the execution time. The results of the visualization benchmarks are very good: comparing the ren-
dering of the sripified (using this strategy) and the non stripified meshes we can, on average, double the frames per sec-
ondsrate.

Keywords
Geometry compression — Stripification — Progressive meshes.

ing efficient ways to best render these meshes on current
computer graphics hardwere.

1. Introduction
Three different lines of research are active in trying to

improve the management of large meshes. developing
efficient dgorithms for the compression of the meshes
representation; improving the methods for the construc-
tion of a multiresolution data structure and easily sdlect a
mesh among al the ones stored in the structure; develop-

Permisson to make digital or hard copies of dl or part of this
work for persond or classroom use is granted without fee pro-
vided that copies are not made or digtributed for profit or com-
mercid advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior pecific per-
mission and/or afee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG' 2005, January 31-February 4, 2005
Plzen, Czech Republic.

Copyright UNION Agency — Science Press

73

A good example of the first type of investigation is repre-
sented by the Edgebresker agorithm and dl its im-
provements [Tau98, Ros99, P00, Gan02]. Thiskind of algo-
rithms alow to losdess encode meshes and collection of
meshes (smplicid complexes) of any type using a re-
duced number (even less than two) of bits per vertex. The
methods start from a seed triangle and grow on the free
frontier (the boundary with other triangles not aready
encoded) till al the triangles are encoded.

The most popular method for building multiresolution
gructure is the progressive mesh method (PM) and dl its
improvements [Hop96, Hop97, Pop97, Hopgs, P&00)]. Its great
popularity derives dso from the fact to be available as
part of Microsoft's DirectX sncetherelease 5.0.

Ancther way to try to compress the geometrical represen-
tation of a triangle mesh is the attempt to reduce the
throughput between the CPU and the Graphics Process-
ing Unit (GPU). The most common and diffused way to
reach this god is to rearrange the information describing
each single triangle in the mesh in structured forms asthe
triangle strips and the triangle fans [Hae03).

A triangle strip is a set of connected triangles where a
new vertex implicitly defines a new triangle. Triangle
strips are used to accelerate the rendering of objects rep-
resented as triangle meshes, in a pre-processing stage the
mesh is partitioned in a set of triangle strips (each of one
can possibly be composed of one single triangle) and
then each drip is passed to the GPU for rendering. The
advantage of the strip representation over rendering each
triangle separately, is that it makes it theoreticaly poss-
ble to reduce the number of vertices sent to the GPU
from 3n (where n is the number of triangles in the mesh)
tont+2inthebest case.

In this work we couple a sdlection and a dripifica
tion technique: the choice of a LOD over a PM with a
method to accelerate its rendering.

The rest of thiswork is organized asfollows: in sec-
tion 2 we briefly go over the previous work done in ge-
ometry compression, focusing on selection methods and
gripification agorithms; we then show, in section 3, the
relations existing between the triangle mesh and its dud
graph, introduce the tunndling operator and explain how
to build a gripification over the lowest resolution LOD of
a progressive mesh; section 4 is dedicated to detail how
the dripification is kept consstent while varying the
LOD in the progressive mesh; in section 5 we show the
results we obtained using our agorithm on a mesh we
acquired from cultura heritage manufacts, and, finadly, in
section 0 we draw our conclusons and describe the fu-
ture evolutions of thiswork.

2. PreviousWork

Deering [Deess] was the firgt to introduce the term
geometry compression, to describe a sat of techniques
capable of reducing the space occupancy of ageneralized
triangle mesh detigtically encoding XY Z positions, RGB
colors and normals. These techniques operate mainly on
the geometry of the mesh (i.e,, the positions and the at-
tributes of the vertices) relying on the triangle mesh struc-
ture to compress the information on the topology (i.e,
how the vertices are connected to form the triangles).
Since the goa of the work was to suggest a series of dif-
ferent operations the designer can perform to reduce the
pace occupancy of a triangle mesh, there wasnt any
conclusion on the red possibility to move on the graphics
board some of these stages.

Evenif it isquite arough classification, Snce there can be
found many mixing approaches, we can divide the ge-
ometry compression methodsin three main families:

74

e Compresson methods. Allow to reduce the data
needed to represent a mesh; they are well suited
for transmitting and/or archiving the meshes;

e Sdection methods. Allow to sdlect the resolution
that best fits the graphics hardware available for
rendering; they are wel suited for transmission
with a preview effect; they are used to sdlect arep-
resentation of the object described by the mesh,
given atriangle/frame-rate budget;

¢ Rendering accelerating methods Allow to reduce
the time spent in sending the information describ-
ing the mesh from the CPU to the GPU thus result-
ing in getting a higher frames per second rate with-
out changing the number of triangles of the mesh
(itsgeometry).

Compresson Methods

After Deering [Dece95] severa subsequent works [Taugs,
Tougg|, centered their attention on the problem of com-
pressing the description of the topology arriving at arede-
vant result with the Edgebresker method [Ros99, RsS99]
which claims to reach less than two bits per triangle to
encode a planar mesh homeomorphic to adisc.

All these techniques need a decompression stage that is
not yet implemented in commercid graphics hardware,
even using new programmable boards. This means that
they are very eficient for transmission and archiving but
cannot be used for feeding the GPU.

It is worth to mention that a useful consequence of the
Edgebreaker encoding is the easy production of triangle
strips while processing and decoding the compressed
dataset [Rs309).

Sdlection Methods

Many authors presented solutions to generate multireso-
Iution structures from an origind mesh alowing the user
to select agiven LOD. We jugt limit ourselvesto remind
it's possible to divide the methods presenting a fixed
number of LODs (usudly less than ten) from the meth-
ods ranging on a continuous variation of LODs
(CLODs).

Even if we don't want to rehearse al these works let's
just briefly remind the main characterigtics of the one we
used in our implementation.

Progressive meshes (PM) represent the most popular type
of continuous LOD meshes. They alow the usersto eas-
ily encode a complex mesh using a single topological
operation (Figure 1) caled edge collapse (EC) and its
complement, vertex split (VS). On the PM is possible to
peform two different but equaly important tasks. to
sdlect the representation best fit for the available hard-
ware, and to progressively transmit the mesh.

Figure 1. Thetwo complementary oper ations per-
formed on a progressive mesh

The origind proposa [Hops] has been refined during the
last years. a hybrid compresson and sdection scheme
trying to get the best of Edgebresker compression and
progressve meshes [P400], a further improvement, in
term of hits per vertex [All01], and the extension of these
techniquesto arbitrary smplicia complexes|[Gan02).

In our implementation we built a PM representation from
the origind following the longest edge rule: we collapse
edges in order of decreasing length. We decided to use
such asimple approach since the pre-processing in which
we build the PM can be changed without affecting the
rest of the process and, at this stage of development, we
wanted to focus on the gripification scheme.

Stripification Techniques

The greatest advantage in using triangle strips consists of
the availability of such a primitive in the OpenGL graph-
ics library. Generating the gripification of a mesh means
to be able to feed the GPU with the obtained structure
without any further effort. It is actualy to point out that
OpenGL supports, without any vertex replication, only
the sequentid triangle gtrips. Generalized gtrips could
thus bring to send more than once some vertices to the
GPU.

Rearranging the order in which the vertices are stored is
the typical way to face the problem of reducing the CPU-
GPU throughput. The strips obtained are smdler than the
original mesh when coming to the find rendering since,
while the single triangle needs 3 vertices for its visuaiza:
tion to be sent to the GPU, the sequentid triangle strip
needs n+2 vertices to be sent to the GPU to render n tri-
angles, and the generdized triangle strip n+s+2 where s
is the number of swaps. The optima sngle sequential
strip encoding the whole mesh would reduce the number
of vertices sent to the GPU by afactor of three.

Severd papers illustrate geometricd and topological
properties of a dripification [Arkes] and many variaions
of dgorithms to partition a triangle mesh in grips [Evads,
Cho97, I1se01, Est02]. The most relevant work coupling mul-
tiresolution structure and stripification techniques is due
to El-Sana et d. [EIs99, EIS0]. They introduce a data
structure caled Skip Strip that is used to generate the
triangles gtrips. The method maintains a stripified pro-
gressve mesh during the refinement and coarsening
process. This is an approach similar to the one we pro-
pose, but it relies on amuch more complex data structure.

75

Working on the Dual Graph

Each triangle mesh can be dternatively represented by its
dual graph. It isagraph in which each node is associated
to atriangle of the origind mesh and an edge represents
an adjacency relaion. One trivia property of such a
graph is that each node has, a mogt, three incident arcs.
In case the origind mesh is homeomorphic to a sphere
and has genus 1, each node has exactly three incident
arcs.

It is quite common to use this representation to elaborate
sripification agorithms; it dlows to use a regular and
compact data structure to represent the mesh and one can
use dl the results obtained from the graph theory. Unfor-
tunately it has been proven [Arko6,. Gar7e] that a problem
equivaent to searching the optimal single strip (finding a
Hamiltonian path on the dua graph) is an NP-complete
problem, thus the dripification process should be based
on loca heurigtics.

Two approaches for finding a stripification on the mesh's
dua graph have been proposed: one is to compute a
gpanning tree on the dud graph, partition it into triangle
strips, and then concatenate these gtrips into larger ones
[Tousg], the second one is the so-called tunnelling algo-
rithm and it isexplained in detail in section 3.

3. Triangle Strip over the Progressve Mesh

Let usfirg briefly summarize the steps our method per-
formsto keep the Stripification at itsbest. They are:
1. Build the PM over the given mesh;

2. Build the dripification on the lowest LOD
meshes using the procedure detailed in section 3;

3. Moveover the PM performing either avertex split
operation (VS) on the mesh to increase the LOD or
an edge collapse (EC) to decrease the LOD;

4. Rearrange the dripification using topologica op-
erations described in section 4;

5. Minimize the isolated triangles generated at the
previous step using the tunneling agorithm with
short paths;

6. Build an optima dripification using the tunnelling
agorithm with longer paths, on demand and store it
in the dripification data structure.

The step number 1 and 2 are pre-processing steps, we
perform them on the mesh and then we can store the re-
aultsin two supplementary data files, one for the PM and
another onefor the gripifications.

The Tunndling Algorithm

The tunnelling algorithm, asinitialy proposed by Stewart
[se01] and substantialy improved by Porcu and Scateni
[Por03], performs the stripification of the mesh using a
smpletopologica operation onitsdua graph.

To do so we need to think the graph edges as colored in
two possible ways (see Figure 2):

e olid edges linking nodes associated to triangles in
the same gtrip;

e dashed edges linking nodes associated to adjacent
triangles not belonging to the same strip.

»c

Figure2: A gripified mesh (each color encodesa dif-
ferent strip) and itsdual graph.

In every node there are, a most, two incident solid edges.
The nodes with only one incident solid edge are terminal
nodes (corresponding to termind triangles of the stripifi-
cation). The nodes with three incident dashed nodes cor-
respond to isolated trianglesin the stripification.

The first step of the operation congsts, then, of searching
aspecia kind of path in the graph cdled atunnd. A tun-
nel is an dternating sequence of solid and dashed edges,
dtarting and ending with a dashed edge, connecting two
terminal nodes. Itslength is always odd and we denote by
k-tunnd atunnd of length k.

If atunnd is found, the second step consigts, Ssmply, of
complementing the path, that is, changing each solid edge
in a dashed edge and vice-versa. After this operation the
number of solid paths (strips in the triangulation) on the
graph isreduced by one. See Figure 3 for example.

Figure 3: An exampleof tunnédling. Inthetoprow a
1-tunnd isfound; in the bottom row thereareno 1-
tunnelsbut only a 3-tunnd. Noticethat the number of
stripsdecreasesfrom threeto two after thefirst op-
eration and to one after the second.

76

This technique can be used both to improve an existing
gripification or to create a stripification from scratch. In
the latter case the dtarting dud graph will have only
dashed edges and every path of length one can be chosen
as atunnd. It is worthwhile to point out that isolated tri-
angles are dways considered as termina nodes of a one-
triangle strip.

The main problem when implementing the agorithm is
the possibility that the graph traversal for tunnelling could
sdlect paths that, when complemented, would generate
loops. It is thus necessary to follow two additiond rules
(we call them the no-loop rules) during the tunnel search
to avoid this situation:

1. Thelast edgein atunne cannot connect two nodes
belonging to the same gtrip (see Figure 4).

2. When a non-final dashed edge, e say, in the tunnd
joins two nodes belonging to the same gtrip, the next
solid edge should go back in the direction of the
leading node of e (see Figure 5).

To be able to respect the no-loop rules, we need to distin-
guish between the different grips in the graph. This is
done tagging each node of the graph (triangle) with an
identifier corresponding to the Stripsit belongsto.

,
’
¢
/ s /
’ ’ Q
/ \ R / \ R
| , | ,
/ /
/ /

Figure4: Anincorrect tunndling that generatesa

Figure5: Thenon-final edge ein thetunnd joinstwo
nodes beonging to the same gtrip. Of the two next
possible steps, we must select the one corresponding
tothedirection that comesback to the leading node of
e (bottom row), otherwiseit will generatealoop (top
row). One such step always exiss because the leading
and trailing nodes of earein the samedrip.

The only minor drawback of the tunndling algorithm is
that we are not able to keep the strips sequentid, we are
forced to use generalized strips and then introduce swap
operations. This is to the fact that by its definition, the
tunnelling operation change the turnsin the graph.

A sequentid gtrip (Figure 6.3) is, in the dud graph, apath
of solid edges in which, a each node, we aternatively
make a left and right turn. When tunndling over the
graph it is not possible to keep the strips sequentiad and
we are thus obliged to use generalized gtrips (Figure 6.b).

123456578981081153
(b)
Figure 6:A sequential strip (a) and a generalized one
(b). For both weligt the verticesto be sent to the CPU.
Theextravertices(swaps) arein red. Thegrey edges
mark thewrong turns.

4. Strip Rearrangement

The core of the dgorithm is the rearrangement (a graph
expanson or contraction) of the dripification when
changing LOD. There are two method to consecutive
operations applied to recolor the augmented graph: the
first oneistotaly loca to the triangle loop where the new
vertex has been inserted and uses a look-up table; the
second is glocal, it condgts in launching a tunndling on
the modified stripification with a predefined stop rule.

Firs Step: Using a L ook-up Table

We classified many different configurations that can be
used to restructure the strips after a VS, Each single VS
Fplit operation insert two new triangles in the mesh, and
three new edgesin the dud graph.

We actually completed the task only for 4-vertices (loops
of length 4 in the dual graph), where the VS can lead to
two different topologies: two 4-vertices (two 4-loops
sharing an edge) or a 3-vertex plus a 5-vertex (a 3-loop
and a 5-loop sharing an edge). In this case al the possible
configuration (9+9) dlow graph recoloring without iso-
lated triangles. In Figure 11 we list the nine configura:

77

tions of the 4-loop transforming in a 3-loop plus 5-loop.
Each couple of new triangles can be assigned to asingle
triangle gtrip, increasing its Sze by two. Asit is possible
to natice from the figure the strip section added is dways
asequentia one.

When dedling with higher degree vertices (longer loops)
the cases increase rapidly. Splitting a 6-vertex, the most
commonly found in triangular mesh, can lead to three
different topologies: a 3-vertex plus a 7-vertex, a4-vertex
plus a6-vertex and two 5-vertices. The problemisthat, in
this case, we are no longer able to aways recolor the
graph without leaving isolated triangles. We can see in
Figure 7 a split with complete recolor while in Figure 8
there is a split leaving an isolated triangle. With 8-
vertices, that appear very sddom in triangular meshes, we
can be obliged even to leave both the inserted triangles
isolated.

Figure7: An example of possiblegraph recoloring
after aVSs.

Figure8: A configuration wherethegraph recoloring
after aVSleavesan isolated triangle (marked grey).
In Figure 9 we can appreciate how the mechanism works.
Passing from a LOD to a finer one the strip form stays
more or less the same while its average length increases

and alot of isolated triangles appear.

B

\ ool B T

, S
Figure 9: A close-up view of alocal rearrangement
performed on the Dea madre dataset.

Second Step: Using the Tunnelling Oper ator
Extensive benchmarks performed over different datasets,
of different genus and size resulted in a percentage of
recoloring operations introducing isolated triangles quite

congtant: it varies in the range 45%-50%. In other words
this corresponds to the insartion of an isolated triangle
every second V'S operation.

We thus need to repair the strips structure using what we
have cdled a glocal tunnelling. The tunnelling operation
is performed transparently from the user, and uses the
isolated triangles as seeds for searching very short tunnds
(starting from 1-tunnels). Since we apply the globd op-
erator in alocal surrounding of these triangles we can say
that it isused glocaly. Thetunnelling isthen iterated until
the number of isolated triangles reach a number that is
smadler than 10\% of the tota number of srips. This
vaue is quite empirica: we noticed that when reaching
this ratio, the frames per second rate amost doubles at
any resolution for any dataset we used.

In Figure 10 we can gppreciate how the rearrangement
via the tunnelling works. The grips are completely re-
sructured, there are many less isolated triangles and the
average length increase while the maxima length tends
to decresse.

P J & =i
Figure 10: A close-up view of arearrangement per-
formed on the Dea madre dataset using atunneling

operation.

At any stage the user has the possihility to invoke the
gripification process explicitly, specifying the maxima
tunne length. We decided to leave this possibility more
for completeness than for real need. It is, in fact, quite
difficult to significantly improve the results obtained
automatically.

5. Resultsand Discussion

We have performed al our benchmark on a PC with
aPentium IV 1.5 GHz CPU with 512 MB of RAM, and
a NVIDIA GeForce Tl 4600 GPU with 128 MB of
RAM.

For sake of smplicity we present here only the results
obtained on the largest dataset we used.

In Table 1 welist the characteristics of the obtained stripi-
fications. We can notice that the number of isolated trian-
gles depends more on the tunnel length than on the over-
al number of trianglesin the mesh.

78

Maximal tunndl length

LOD% Only local 5 9 3

6.139 1676 841 489

13 4.456 489 140 46
1211 44.38 8844 152.10

17592 3.025 1536 869

27 9.017 496 141 52
8.77 51.04 88.13 14759
27.766 5115 2617 1489

52 11.741 785 281 107
10.70 58.13 11362 199.70

Table 1: In each cdl thefirst row showsthe number
of grips, the second the number of isolated tri'sand

thelast themean gtrip length.

In Table 2 we show the time, in seconds, used to refine
the stripification obtained with only loca refinement. We
remind that the cost of the local refinement isincluded in
the cogt of performing aresolution change.

Maxima tunnel length

LOD% 5 9 13
13 6.484 4.438 5312
27 4.360 1.750 2579
52 8.750 5.155 4.156

Table2: Timein secondstorefinethe gripifications.
Average CacheMissRatio

The number of vertex cache misses plays a fundamenta
role in rendering efficiency [Dee95]. If we want to
achieve a good rendering sequence than, the Average
Cache Miss Ratio (ACMR), whose vaue ranges from 0.5
to 3, should be kept as low as possible. To get this godl,
severd reordering agorithms has been proposed, for
gtandard meshes [Cho97], triangle stripes [Hop99] and
progressive meshes [Bog02].

We evauated ACMR for severd data set, using stripes
generated with our system using the tunnelling agorithm.
Without any kind of reordering mechanism, ACMR is
~0.7 for a cache of 32 postions for al data sets, com-
pared to atypicd ACMR of ~1.0 for standard stripifica
tion procedures. This suggests that stripes calculated with
tunndling agorithm have a built-in cache friendly atti-
tude.

In Table 3 severd ACMR vadues for different data sets
areligted, depending on cache size.

The tunnelling agorithm behaves well because of the
stripes shape. As one can seg, for ingtance, in Figure 12,
stripes appear to be packed instead of being dongated as
usud. This preserves locdity also in vertex ordering and
then cachefriendly behavior.

Cachesize
Data Set 16 2 64
Qilpump 0.77 0.70 0.64
David 0.78 0.71 0.68
DeaMadre 0.78 071 0.67

Table3: ACMR valuesfor threedifferent data sets
based on thecachesize.

6. Conclusonsand FutureWork

We presented a simple but very effective adgorithm al-
lowing to compute an optimal gripification on a progres-
sive mesh. Optimd, in this context, means to at least
double the frames per second rate with respect to non
ripified mesh.

The method we used is a two steps one: first we recolor
the dual graph of the mesh using alook-up table and then
we trangparently launch a tunneling agorithm with a
short tunne length.

We are dready planning to get a better insight about the
look-up table. As we dready mentioned we are not able
to automaticaly avoid the creation of isolated triangles
only looking at the strips passing through the loop of
triangles sharing the vertex to split. We think that extend-
ing the andysis aso to the neighbor triangles (say, the
triangles that can be reached from the split vertex travers-
ing two edges) can help to increase the number of recol-
oring without crestion of isolated triangles.

Ancther line of development regards a better anaysis of
the capabiilities of vertex arrays on the GPU. At present
we dont clip the triangle gtrips in chunks the best fit on
the arrays and we should insert a further parameter in the
visuaization tool to take thisinto account.

The last improvement we are planning is on the fine tun-
ing of the rendering. At present we can select the LOD
and then verify the fps obtainable. In the next release it
will be possible to set the fps budget and let the system
select the possible LOD visudizable.

Acknowledgements

The Dea madre dataset was obtained from tridimensional
scans of manufacts exposed a the Museo Archeologico
Nazionde in Cagliari. We are indebted to its director,
Carlo Tronchetti, for letting us use these digital data and
to the VCG of the ISTI-CNR in Pisa for the hardware
and software used in the acquisition and recongtruction.

We thank Danidle Vacca for his work on the visudiza-
tion tool.

7. References

[All01] Alliez P. and Desbrun M. Progressive compression for losdess
transmission of triangle meshes. In Proceedings of the 28th annua
conference on Computer graphics and interactive techniques, pages
195-202. ACM Press, 2001.

[Ark96] ArkinE. M., Held M., Mitchdl J. S. B., and Skiena, S. S. Ham-
iltonian triangulations for fast rendering. The Visud Computer 12,
9(1996), 429-444.

[Bog02] Bogomjekov A. and Gotsman, C. Universal Rendering S=-
quences for Trangparent Vertex Caching of Progressve Meshes. In
Computer Graphics Forum 21, 2 (June2002)

[Cho97] Chow M. M. Optimized geometry compression for real-time
rendering. In |EEE Visudization' 97 (Nov. 1997), pp. 346-354.

79

[Deed5] Deering, M.F. Geometry Compression. In Proceedings of SIG-
GRAPH 95, pp. 13-20.

[EIS00] El-Sana, J, Evans F., Kdaiah, A., Varshney, A., Skiena, S, and
Azanli, E. Efficiently computing and updating triangle drips for
real-time rendering. Computer-Aided Design 32, 13 (Oct. 2000),
753-772.

[EIS99] El-SanaJ A., Azanli E., and Varshney A. Sdp strips Maintain-
ing triangle strips for view dependent rendering. In |EEE Visudiza-
tion’99 (Oct. 1999), pp. 131-138.

[Est02] Estkowski R., Mitchell J. S. B., and Xiang, X. Optimal decom-
position of polygonal models into triangle srips. In Proceedings of
the eighteenth annua symposium on Computational geometry
(2002), ACM Press, pp. 254-263.

[Eva96] Evans F., Skiena S. S, and Varshney A. Optimizing triangle
grips for fast rendering. In IEEE Visudization ' 96 (Oct. 1996), pp.
319-326.

[Gan02] Gandoin P.M. and Devillers O. PROGRESSIVE LOSSLESS
COMPRESSION OF ARBITRARY SIMPLICIAL COMPLEXES.
In 2002 Proceadings of the 29th annuad conference on Computer
graphics and interactive techniques, San Antonio, Texas, ACM
Press, pp. 372-379.

[Gar76] Garey M. R., Johnson D. S, and Tarjan R. E. The planar hamil-
tonian circuit problemis NP-complete. SIAM Journd of Computing
5, 4 (Dec 1976), 704-714.

[Hae03] Haeyoung L., Desbrun M. and Schrdder, P. Progressive encod-
ing of complex isosurfaces. In ACM Trans. Graph. 22, 3, pp. 471—
476.

[Hop96] Hoppe H. Progressve meshes. In Proceedings of the 23rd
annua conference on Computer graphics and interactive techniques,
1996, ACM Press, pp. 99-108.

[Hop97] Hoppe, H. View-Dependent Refinement of Progressive Meshes.
In Proceedings of SIGGRAPH 97, pp. 189-198.

[Hop98] Hoppe, H. Efficient implementation of progressive meshes. In
Computers& Graphics 22, 1, pp. 27-36.

[Hop99] Hoppe, H. Optimization of mesh locality for transparent vertex
caching. In Proceedings of SIGGRAPH 99 (Aug. 1999), Computer
Graphics Proceedings, Annua Conference Series, pp. 269-276.

[1se01] Isenburg M. Triangle strip compression. Computer Graphics
Forum 20, 2 (2001), 91-101.

[Pg00] PgarolaR. and Rossignac J. Compressed Progressive Meshes.
In 2000 | EEE Transactions on Visudization and Computer Graphics
6, 1 (Jan. - Mar. 2000), pp. 79-93.

[Pop97] Popovic J. and Hoppe H. Progressve Snplicial Complexes. In
Proceedings of SIGGRAPH 97, pp. 217-224.

[Por03] Porcu M. and Scateni R. An Iterative Sripification Algorithm
Based on Dual Graph Operations. In Proceedings of Eurographics
2003 (short presentations) (Sep. 2003) pp. 69-75.

[Ros99] Rossignac J. Edgebreaker: Connectivity Compresson for
Triangle Meshes. In 1999 |EEE Transactions on Visudization and
Computer Grgphics5, 1 (Jan. - Mar. 1999), pp. 47-61.

[RsS99] Rossignec J. and Szymezak A. Wrap& Zip decompression of the
connectivity of triangle meshes compressed with Edgebreaker. In
Computationa Geometry 14, 1-3 (1999), pp. 119-135.

[Sped7] Speckmann B. and Snoeyink J. Easy triangle grips for TIN
terrain models. In Canadian Conference on Computationd Geome-
try (1997), pp. 239-244.

[Se0l] Sewart A. J. Tunnding for triangle strips in continuous level-
of-detail meshes. In Grgphics Interface (June 2001), pp. 91-100.
[Taug8] Taubin G. and Rossignac J. Geometric Compression Through
Topological Qurgery. In 1998 ACM Transactions on Graphics 17, 2

(Apr. 1998), pp. 84-115.

[Toud8] Touma C. and Gotsmen C. Triangle Mesh Compression. In
Graphics Interface '98 (Jun. 98), pp. 26-34.

[Xia99] Xiang X., Held M., and Mitchel J. S. B. Fast and effective
gripification of polygonal surface modes. In 1999 ACM Sympo-
sumon Interactive 3D Graphics (Apr. 1999), pp. 71-78.

Figure 11: Thegraph rewriting rulesto apply when inserting a new vertex with a VS operation. In each couple,
on theleft the configuration beforethe VS (the vertex to be split ismarked in red), on theright the configuration
after theVS (thenew inserted vertex ismarked in blue).

Figure 12: An example of LOD changeon the“Deamadre’ dataset. From left toright: the 9% L OD optimally
gripified (51,511 tri'sand 10 strips); the 13% L OD obtained from the 9% one only with local mesh restructuring
operations (thisand the subsequent are meshesof 74,381 tri's, 6,139 sripswith 4,456 isolated tri's); thesame
mesh after a 6-tunndssearch (1,676 stripswith 489 isolated tri's); after a 10-tunnels search and graph recoloring
(841 stripswith 140isolated tri's); after a 14-tunnels search and graph recoloring (489 stripswith 46 isolated
tri's).

80

	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	pg:
	P4:
	stampTemplate:
	pg: 73

	P5:
	stampTemplate:
	pg: 74

	P6:
	stampTemplate:
	pg: 75

	P7:
	stampTemplate:
	pg: 76

	P8:
	stampTemplate:
	pg: 77

	P9:
	stampTemplate:
	pg: 78

	P10:
	stampTemplate:
	pg: 79

	P11:
	stampTemplate:
	pg: 80

