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ABSTRACT 
Complex models generated e.g. with a laser range scanner often consist of several thousand or million triangles. 
For efficient rendering this high number of primitives has to be reduced. An important property of mesh 
reduction – or simplification – algorithms used for rendering is the control over the introduced geometric error. 
In general, the better this control is, the slower the simplification algorithm becomes. This is especially a 
problem for out-of-core simplification, since the processing time quickly reaches several hours for high-quality 
simplification. 
In this paper we present a new efficient algorithm to measure the Hausdorff distance between two meshes by 
sampling the meshes only in regions of high distance. In addition to comparing two arbitrary meshes, this 
algorithm can also be applied to check the Hausdorff error between the simplified and original meshes during 
simplification. By using this information to accept or reject a simplification operation, this method allows fast 
simplification while guaranteeing a user-specified geometric error. 
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1. INTRODUCTION 
Today, polygonal meshes have become ubiquitous as 
three-dimensional geometric representation of 
objects in computer graphics and some engineering 
applications. They are used for rendering of objects 
in a broad range of disciplines like medical imaging, 
scientific visualization, computer aided design 
(CAD), movie industry, etc. New acquisition 
techniques allow the generation of highly detailed 
objects with a permanently increasing polygon count. 
The handling of huge scenes composed of these 
high-resolution models rapidly approaches the 
computational capabilities of any graphics hardware. 
Therefore, level-of-detail techniques become 
inevitable. In order to build such level-of-detail 

representations many simplification algorithms exist 
that produce high-quality approximations of complex 
models with a reasonable amount of polygons. 

However, for many applications it is very important 
to have precise control over the geometric error 
introduced by simplification. The common way to 
provide an accurate error control, which can be used 
to calculate image space errors during visualization, 
is to measure the Hausdorff distance between the 
simplified and original meshes. However, this 
distance can only be approximated by sampling, and 
therefore, the better the accuracy is, the slower the 
measurement algorithm becomes. When used to steer 
simplification, the performance of the simplification 
algorithm is reduced accordingly. 
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The main contribution of this work is an efficient 
algorithm to measure and update the Hausdorff 
distance between a simplified mesh and the original 
model. The superior speed of our approach is mainly 
due to its ability to quickly determine regions of high 
geometric distance (or during simplification, regions 
where the distance is above the desired value) and 
adapt sampling there. 



2. PREVIOUS WORK 
Since mesh simplification is one of the fundamental 
techniques used for polygonal meshes, there is an 
extensive amount of different methods. Since there 
are detailed reviews of simplification algorithms (e.g. 
[Lue01]), we give only a short overview of the most 
related methods. 

Rossignac and Borrel [Ros93] introduced the family 
of vertex clustering methods. Although very fast, 
their algorithm and its derivative methods (e.g. 
[Low97]) allow almost no control over the error (it is 
bound by the cell size), and the reduction rate is quite 
low in flat parts of the model.  

Cohen et al. [Coh96] developed simplification 
envelopes to guarantee fidelity bounds while 
enforcing local and global topology. The 
simplification envelopes consist of two offset 
surfaces at some distance ε  from the original 
surface. Since these envelopes are not allowed to 
self-intersect, ε  is decreased at high curvature 
regions. By keeping the simplified surface inside 
these envelopes, the algorithm can guarantee a 
geometric deviation of at most ε , and additionally it 
checks that the surface does not self-intersect. While 
this algorithm has the advantage to guarantee a 
geometric error bound, it is quite slow and requires 
an orientable manifold for the construction of the 
offset surfaces. Zelinka and Garland [Zel02] 
modified this approach by using permission grids – 
spatial occupancy grids, where an operation is only 
performed if all cells that are intersected by the new 
triangles are allowed to be occupied. Although the 
algorithm is much faster than [Coh96] and doesn’t 
need an orientable manifold mesh, the simplified 
model often contains much more triangles due to the 
discrete grid and the fact that the Manhattan distance 
is used instead of the Euclidean. 

The vertex pair contraction operation introduced at 
the same time by Popović and Hoppe [Pop97] and 
Garland and Heckbert [Gar97] has become the most 
common operation and is used in many 
simplification methods. In conjunction with the 
quadric error metric introduced in that work, it offers 
flexible control over the quality, still at very high 
reduction speed. However, the quadric metric mostly 
overestimates the real geometric error which results 
in non-optimal reduction rates and the need to 
measure the exact error after simplification. 

Klein et al. [Kle96] first used the Hausdorff distance 
between the original and simplified mesh to control 
the simplification error, although with significant 
computational effort. In [Bor03a] Borodin et al. have 
produced high-quality results by combining 
generalized pair contractions – an extension of the 

vertex pair contraction – with the control of the 
distance between the original and simplified models 
during the whole simplification process. 

In the area of mesh comparison, Cignoni et al. 
[Cig98] introduced the first method dedicated 
exclusively to measurement of errors on simplified 
surfaces, which allows to compare quality of 
different simplification methods. Another method, 
presented by Aspert et al. [Asp02], is more efficient 
in terms of speed at the cost of higher memory use. 
Both algorithms are based on sampling of the 
geometry of the two models to be compared, where 
the sampling density depends on the desired 
accuracy. In order to double the accuracy the number 
of samples needs to be multiplied by four. Therefore, 
these algorithms quickly become slow for higher 
accuracy. 

3. TERMINOLOGY 
First we define the distance  between a 
point  on a surface  and another surface 

(d p,S ′)
p S S ′  as: 
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where ( )d p, p′  is the Euclidian distance between 
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The geometric distance – also called one-sided  or 
single-sided Hausdorff distance – between two 
surfaces  and S S ′  is then defined as: 
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Note, that this distance is not symmetric in general, 
i.e. ( ) ( )d S ,S d S ,S′ ′≠ . The symmetrical Hausdorff 
distance is defined as: 

( ) ( ) ( )( )sd S ,S max d S ,S ,d S ,S′ ′= ′  

This value gives more accurate measure of the 
distance between two surfaces by preventing the 
possible underestimation, which can appear if using 
only one-sided distances. 

4. MESH COMPARISON 
The main idea of our new mesh comparison 
algorithm is to adapt the sampling density used for 
distance calculation to the actual geometric deviation 
in the corresponding area. Hereby, the main goal is to 
draw samples only in those regions where the 
maximum distance between both objects is expected. 

To achieve this, we first make two observations: 

• Since the Hausdorff distance is defined as the 
maximum of the distances of all points on both 
meshes to the other mesh, we should avoid 
sampling in areas, where they are closer to each 



other than the actual – yet unknown – Hausdorff 
distance. This can be achieved by comparing 
coarse voxelizations of the two objects, 
considering triangles within voxels of high 
distance first, and stopping comparison, when 
the already found distance is larger than the 
highest possible distance between remaining 
voxels. 

In order to consider cells containing triangles with 
larger distance first, the octree traversal is steered 
using a priority queue. This queue contains the 
already processed octree cells sorted by their 
maximum geometric distance. 

When a leaf cell is reached during traversal, we 
collect all contained triangles and insert them into the 
same priority queue as the cells, again according to 
their maximum possible geometric distance. 
Depending on their minimum distance we again 
update the Hausdorff distance. To prevent multiple 
insertions of the same triangle into the priority queue, 
we mark triangles and process only those yet 
unmarked. The traversal and therefore the whole 
algorithm stops if either the queue becomes empty 
(e.g. when both meshes are identical) or the 
maximum possible distance of all remaining cells and 
triangles is less than the already found Hausdorff 
distance. The main algorithm to calculate the 
Hausdorff distance is shown in Fig. 1. 

• When processing triangles inside a voxel cell, 
we only need to subsample a triangle, if its 
geometric distance can be larger than the already 
found maximum. This can only happen, if any of 
its vertices is farther away from the other mesh 
than one of its interior points, or if any of these 
distances exceeds the maximum. Therefore, a 
tight upper bound of a triangle-to-mesh distance 
is required. 

Data Structures 
To quickly determine the regions of high geometric 
distance we sort the triangles of both meshes into two 
voxel grids respectively. Note, that later on in our 
algorithms – similarly to [Cig98] and [Asp02] – this 
grid is also used to quickly find the closest point on 
one of the meshes for a given sample point. 

 MinError=0 

AddToQueue(RootCellA) 

AddToQueue(RootCellB) 

while(QueueNotEmpty) 

   GetCellWithHighestMaxDistance

   UpdateMinError 

   if(LeafNode) 

      InsertTrianglesIntoQueue 

   else 

      InsertChildrenIntoQueue 

return minError

Figure 1. Main algorithm to calculate the 
Hausdorff distance. 

The grid dimensions depend on the objects’ 
bounding boxes and the number of triangles. We aim 
to have 10 triangles per occupied cell in average. 
This can be achieved approximately by calculating 
the number of required cells for a cube tessellated 
with the same number of triangles as is in the larger 
mesh. This leads to a resolution 10 6

# trianglesr ⋅= . To 
avoid memory problems we restrict ourselves to 
resolutions of . 3256

Cell-Based Distance To speed up finding voxels of high distances 
between both voxelizations we use an octree 
structure for each of them, build upon the entries 
within the grids. In order to get full octrees we allow 
only resolutions of . 2 2 2n n n× ×

To quickly find the closest cell, when traversing the 
octree from a node to its children, we store all indices 
of occupied cells, for which the minimum distance 
was less than the maximum distance to the closest 
cell. Then we need to check only the children of 
these cells when calculating the distances of the 
cells’ child nodes. Note, that for the root nodes 
calculating the closest cells and the distances is 
trivial. 

Main Algorithm 
Initially, we set the current Hausdorff distance to 
zero. We start traversing the octree structures of both 
meshes simultaneously, measuring the distance of 
each cell to all other cells on the same level in order 
to find the closest one in the other mesh. If for the 
current cell the closest other cell is found, we can 
calculate the minimum and maximum distances 
between two points inside these cells. If the 
minimum distance is larger than the current 
Hausdorff distance, we update the Hausdorff 
distance accordingly. If the maximum distance is less 
than or equal to the current Hausdorff distance, 
traversal of the subtree is skipped. 

To simplify the distance calculation, we use the 
bounding box of the union of both meshes to 
construct the grid. Furthermore, we restrict ourselves 
to cubic grid cells, which further simplifies the 
distance calculation to calculations based on the cell 
coordinates. 



Distance of a Triangle 
To calculate lower and upper bounds for the 
geometric distance between a triangle and the other 
mesh, we first need to calculate the distances of its 
vertices. If a vertex is inside the currently processed 
grid cell, we can use its stored closest cells to find 
candidate triangles for the next surface point in the 
other mesh. If it is outside the current cell, we 
descend the hierarchy again to find the occupied cells 
closest to the current vertex. Then we calculate 
distances to all triangles starting with those contained 
in the closest cell. When the distance to the closest 
point found so far is closer than the distance to the 
remaining cells, the distance of the currently 
processed vertex is found. To prevent multiple 
distance calculations for the same triangle, we store 
the indices of triangles and collect only the 
unprocessed triangles from each cell. 

After the distances for the three vertices of the 
current triangle are calculated, we know that the 
minimum geometric distance of the triangle is the 
maximum of the vertex distances i iV P− , and the 
maximum geometric distance is at most the 
maximum of the vertex distances and the distances of 
the triangle barycentre  to the three vertex base 
points  (see Fig. 2). 
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Figure 2. Minimum and maximum geometric 
distances of a triangle. 

Therefore, we can determine the possible interval of 
the geometric distance  as: d
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Additionally, no point on the triangle can be farther 
away from the other mesh than its vertices from any 
of the base points, and thus  

 ( )
3 3

1 1 i ji j
d min max V P .

= =

 ≤ − 
 

 

If the closest points of all three vertices lie on the 
same triangle (see Fig. 3), the maximum vertex 
distance is already the geometric distance of the 
current triangle. Otherwise, the triangle is inserted 

into the priority queue. Note, that we have to take 
care about the fact that the closest point may lie on 
several triangles (if it falls onto an edge or into a 
vertex). 
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Figure 3. Exact geometric distance of a triangle. 

When a triangle from the queue is processed, it is 
subdivided and the distances for its children are 
calculated. To prevent repeated calculation of the 
closest point/triangle for the same vertex, we 
calculate them for the three new vertices during 
subdivision. Then we only need to calculate the 
minimum and maximum possible distances before 
eventually storing the child triangles in the priority 
queue. The subdivision algorithm is shown in Fig. 4. 

 CalculateSubdivisionBasePoints 
for(allChildTriangles) 

   minDistance=max(vertexDistances) 

   if(AllBasePointsOnSameTriangle) 

      maxDistance=minDistance 

   else 

      maxDistance=max(barycenterDistances)

  InsertIntoQueue

Figure 4. Subdivision sampling algorithm. 
Note, that calculating the base points and checking if 
they all lie on the same triangle is also necessary, 
when a leaf cell is processed in order to add all 
contained triangles to the queue. 

5. APPLICATION TO 
SIMPLIFICATION  
To control the Hausdorff error during simplification, 
only the part of the mesh affected by the current 
operation needs to be considered. Therefore, the 
affected triangles of the simplified mesh are directly 
inserted into the queue, and the error measurement 
for the original model is restricted to the region 
around these triangles using their common bounding 
box. Since the error of neighbouring triangles in the 
original model may also be affected, we need to 
extend this bounding box by the current Hausdorff 
error. 

Furthermore, it is not necessary to calculate the exact 
geometric error, but only to check if it is below a 
user-specified threshold. Therefore, we do not need 



to insert cells or triangles, for which the maximum 
possible distance is below this threshold, into the 
queue, and thus refine sampling only in regions, 
where the error may be above this value. 
Analogously, if the minimum error found so far is 
above this threshold, we can immediately stop the 
calculation and reject the simplification operation. 
When calculating the geometric error of a triangle, 
we can also immediately stop searching for the base 
points  as soon as we found one that is closer than 
the desired error minus the maximum length of the 
two edges adjacent to the current vertex (according 
to the triangle inequation no vertex can be farther 
from a point than the distance of any vertex to this 
point plus the distance to this vertex). 

iP

The fact that only an accept/reject decision is 
required to decide, if a simplification operation will 
be performed, allows for some additional simple tests 
to quickly find an answer in most cases. 

The simplification algorithm delivering the best 
trade-off between speed and quality of the simplified 
model is the one based on the quadric error metric 
[Gar97]. Choosing this simplification algorithm as 
base for our method, we get the additional advantage: 
the error quadric gives an (admittedly sometimes 
largely overestimated) upper bound for the Hausdorff 
error and can thus be used as a criterion to accept an 
operation without further tests. 

Then two additional simple tests are possible to 
quickly reject an operation. First, the distance of the 
new vertex to the simplified mesh before the current 
edge collapse operation is calculated. If this exceeds 
twice the desired Hausdorff error ε , the operation 
can be rejected. Note, that exceeding of 2ε  is 
required due to possible configurations similar to the 
one shown in Fig. 5. 

   new vertex 

  original mesh 

  simplified mesh 

Figure 5. Quick reject tests. 
If the operation passed this test, the distance from the 
new vertex to the original mesh is calculated. If this 
exceeds the specified threshold, the operation is also 
rejected. These two tests have the advantage that they 
quickly reject many operations and no update of the 
grid is required for their calculation. 

When an operation passed these two tests without 
being rejected, the grid and octree of the simplified 
model are updated. If the operation has not been 
accepted by the quadric test, the Hausdorff distance 
between the updated meshes is calculated. When the 
operation is rejected by the Hausdorff error check, 

the vertex is split again, updating the grid and octree 
of the simplified mesh, and the operation is removed 
from the simplification queue. The overall pipeline 
of the error-checking algorithm is shown in Fig. 6. 

 

new vertex → simplified mesh 

new vertex → original mesh 

quadric error 

simplified region ↔ original mesh 

accept reject 

fail 

fail 

fail 

fail 

pass 

pass 

pass 

pass

Figure 6. Error testing pipeline. 
If the simplification queue is empty, all possible 
collapse operations that do not exceed the specified 
Hausdorff error have been performed. 

6. RESULTS  
Since our algorithm is applicable to both, measuring 
distances between meshes and controlling the 
introduced Hausdorff error during simplification, we 
compare it to previous approaches in both fields. We 
ran all tests on a PC with an Athlon 3000+ and 2 GB 
of main memory. 

Mesh Comparison 
To demonstrate the advantages of our algorithm, we 
compare its computation time with the two standard 
tools for measuring the Hausdorff distance: Metro 
[Cig98] (version 4.0) and MESH [Asp02] (version 
1.12). The models used for evaluation are shown in  
 

 
Figure 7. Models used for mesh comparison. 



Fig. 7; the numbers of their vertices and triangles are 
listed in Tab. 1. 

Figure 9. Computation times of error-measuring 
algorithms. 

Model # triangles # vertices 
Bunny (orig.) 69,451 34,834 

Bunny (simpl.)   1,001      553 

Coffee set 69,696 34,860 

Without lid 60,936 30,480 
Table 1. Models used for mesh comparison. 

Tab. 2 shows the comparison in computation time of 
the three algorithms with an accuracy of 0 0  of 
the model diameter. 

1. %
since it ran out of memory and Metro needs more 
than a day to compare the simplified and original 
bunny at . 0 001. %

 Metro MESH Our alg.  
Bunny   1,406 sec    395 sec 2.7 sec 

Coffee set 13,008 sec 1,396 sec 2.1 sec Error Control 
In the field of error control during simplification, we 
compare our method with two simplification 
algorithms that guarantee a user-specified geometric 
error: simplification envelopes [Coh96] and high-
quality simplification [Bor03a] (using the out-of-core 
simplification [Bor03b], when necessary). For 
comparison, we use different scanned objects from 
the Stanford 3D Scanning Repository [Sta3D] and 
the Digital Michelangelo Project [DigMi] shown in 
Fig. 10 and Tab. 3. 

Table 2. Computation times of error-measuring 
algorithms. 

At this accuracy our algorithm is several orders of 
magnitude faster than Metro and MESH, since we 
sample the mesh surface densely in regions of high 
geometric distance only. This is especially visible, 
when comparing the coffee set with and without lid, 
as shown in Fig. 8, where only samples in the region 
of the highest Hausdorff distance were taken. 

 

 

Figure 8. Visited octree cells and taken samples 
for coffee set scene with and without lid. 

Fig. 9 shows a detailed plot of the computation times 
of the three algorithms, when comparing the 
simplified bunny with the original model, using 
different accuracies ranging from 1  of the 
bounding box diameter (practically useless) to 

 (very accurate). 

%

0 001. %
Figure 10. Models used for simplification. It is clearly visible, that in contrast to both Metro and 

MESH, the computation time of our algorithm 
depends only very little on the desired accuracy. 
Note, that comparing the meshes with accuracy 
higher than 0 0  was not possible using MESH, 
  

1. %

Tab. 4 compares the computation times of the two 
mentioned simplification algorithms with our 
approach. For all models and algorithms the same 
simplification errors (1  and 0 1  of the model 
diameter) were used. The Hausdorff distance of 1     
 

% . %
%



Model # triangles # vertices 
Bunny      69,451      34,834 

Dragon    871,414    437,645 

Buddha 1,087,474    543,652 

David 2mm 7,227,031 3,614,098 
Table 3. Models used for simplification. 

is especially interesting for out-of-core simplification 
using hierarchical partitioning (e.g. [Bor03b]), since 
it is close to the resolution of 128

e  used for each 
octree cell. 

 [Coh96] [Bor03a] our alg. 
1%ε =  

Bunny 1:12     1:25      0:52 

Dragon n.a.    27:58      6:48 

Buddha n.a.    25:271    12:37 

David 2mm n.a. 3:01:431 1:06:22 

0 1. %ε =  

Bunny 0:46     0:46      1:28 

Dragon n.a.    15:37    14:59 

Buddha n.a.    24:081    21:13 

David 2mm n.a. 3:00:031 1:51:56 
Table 4. Computation times of simplification 

algorithms. 
Note, that the simplification envelopes restricts only 
the geometric error from the simplified model to the 
original, which is sufficient for rendering, but may 
cause inaccuracies for other applications like 
collision detection. Similarly, the high-quality 
simplification guarantees an upper bound for the 
geometric error from the original to the simplified 
model only, and thus may close large holes in the 
model, which is not always desired. Additionally, the 
accuracy is low, since only samples at vertex 
positions are taken. If out-of-core simplification is 
used, the error is only guaranteed to lie between 4

5 ε  
and ε . This means that a more aggressive 
simplification would be possible without exceeding 
the threshold. 
The computation time of the simplification envelopes  
is similar to the one of the high-quality 
simplification, but the algorithm requires orientable 
manifold meshes, and therefore worked only for the 
bunny model. Although our algorithm guarantees the 
Hausdorff distance to be below a specified threshold, 
the performance is even better than the simplification 

envelopes and the high-quality simplification for 
larger models and/or simplification errors. 

7. CONCLUSION  
We have presented an efficient algorithm to measure 
the geometric distances and the Hausdorff distance 
between two meshes. Our approach is much faster 
than existing algorithms for reasonable accuracies 
(i.e. less than  of the model diameter), since it 
needs to refine sampling only in regions of high 
distance and thus hardly depends on the required 
accuracy. This is accomplished by using a bi-
hierarchical search algorithm to quickly find regions 
of possibly high geometric distances. 

0 01. %

Furthermore, we have shown that our algorithm can 
also be applied to increase performance, efficiency, 
and accuracy of error-bounded simplification by 
using a chain of simple accept/reject tests to quickly 
determine, if exact evaluation of the Hausdorff 
distance is necessary. Instead of measuring the 
distance, we can stop traversing the hierarchy, when 
the minimum possible error is above the desired 
threshold, or the maximum possible is below. Using 
this technique, our approach is up to four times as 
fast as comparable algorithms when drastically 
simplifying the model. 
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