
Fast and Accurate Hausdorff Distance Calculation
between Meshes

Michael Guthe

guthe@cs.uni-bonn.de

Pavel Borodin
University of Bonn

Institute of Computer Science II
Römerstraße 164

D-53117, Bonn, Germany

borodin@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT
Complex models generated e.g. with a laser range scanner often consist of several thousand or million triangles.
For efficient rendering this high number of primitives has to be reduced. An important property of mesh
reduction – or simplification – algorithms used for rendering is the control over the introduced geometric error.
In general, the better this control is, the slower the simplification algorithm becomes. This is especially a
problem for out-of-core simplification, since the processing time quickly reaches several hours for high-quality
simplification.
In this paper we present a new efficient algorithm to measure the Hausdorff distance between two meshes by
sampling the meshes only in regions of high distance. In addition to comparing two arbitrary meshes, this
algorithm can also be applied to check the Hausdorff error between the simplified and original meshes during
simplification. By using this information to accept or reject a simplification operation, this method allows fast
simplification while guaranteeing a user-specified geometric error.

Keywords
Mesh comparison, Hausdorff error measurement, mesh simplification.

1. INTRODUCTION
Today, polygonal meshes have become ubiquitous as
three-dimensional geometric representation of
objects in computer graphics and some engineering
applications. They are used for rendering of objects
in a broad range of disciplines like medical imaging,
scientific visualization, computer aided design
(CAD), movie industry, etc. New acquisition
techniques allow the generation of highly detailed
objects with a permanently increasing polygon count.
The handling of huge scenes composed of these
high-resolution models rapidly approaches the
computational capabilities of any graphics hardware.
Therefore, level-of-detail techniques become
inevitable. In order to build such level-of-detail

representations many simplification algorithms exist
that produce high-quality approximations of complex
models with a reasonable amount of polygons.

However, for many applications it is very important
to have precise control over the geometric error
introduced by simplification. The common way to
provide an accurate error control, which can be used
to calculate image space errors during visualization,
is to measure the Hausdorff distance between the
simplified and original meshes. However, this
distance can only be approximated by sampling, and
therefore, the better the accuracy is, the slower the
measurement algorithm becomes. When used to steer
simplification, the performance of the simplification
algorithm is reduced accordingly.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

The main contribution of this work is an efficient
algorithm to measure and update the Hausdorff
distance between a simplified mesh and the original
model. The superior speed of our approach is mainly
due to its ability to quickly determine regions of high
geometric distance (or during simplification, regions
where the distance is above the desired value) and
adapt sampling there.

2. PREVIOUS WORK
Since mesh simplification is one of the fundamental
techniques used for polygonal meshes, there is an
extensive amount of different methods. Since there
are detailed reviews of simplification algorithms (e.g.
[Lue01]), we give only a short overview of the most
related methods.

Rossignac and Borrel [Ros93] introduced the family
of vertex clustering methods. Although very fast,
their algorithm and its derivative methods (e.g.
[Low97]) allow almost no control over the error (it is
bound by the cell size), and the reduction rate is quite
low in flat parts of the model.

Cohen et al. [Coh96] developed simplification
envelopes to guarantee fidelity bounds while
enforcing local and global topology. The
simplification envelopes consist of two offset
surfaces at some distance ε from the original
surface. Since these envelopes are not allowed to
self-intersect, ε is decreased at high curvature
regions. By keeping the simplified surface inside
these envelopes, the algorithm can guarantee a
geometric deviation of at most ε , and additionally it
checks that the surface does not self-intersect. While
this algorithm has the advantage to guarantee a
geometric error bound, it is quite slow and requires
an orientable manifold for the construction of the
offset surfaces. Zelinka and Garland [Zel02]
modified this approach by using permission grids –
spatial occupancy grids, where an operation is only
performed if all cells that are intersected by the new
triangles are allowed to be occupied. Although the
algorithm is much faster than [Coh96] and doesn’t
need an orientable manifold mesh, the simplified
model often contains much more triangles due to the
discrete grid and the fact that the Manhattan distance
is used instead of the Euclidean.

The vertex pair contraction operation introduced at
the same time by Popović and Hoppe [Pop97] and
Garland and Heckbert [Gar97] has become the most
common operation and is used in many
simplification methods. In conjunction with the
quadric error metric introduced in that work, it offers
flexible control over the quality, still at very high
reduction speed. However, the quadric metric mostly
overestimates the real geometric error which results
in non-optimal reduction rates and the need to
measure the exact error after simplification.

Klein et al. [Kle96] first used the Hausdorff distance
between the original and simplified mesh to control
the simplification error, although with significant
computational effort. In [Bor03a] Borodin et al. have
produced high-quality results by combining
generalized pair contractions – an extension of the

vertex pair contraction – with the control of the
distance between the original and simplified models
during the whole simplification process.

In the area of mesh comparison, Cignoni et al.
[Cig98] introduced the first method dedicated
exclusively to measurement of errors on simplified
surfaces, which allows to compare quality of
different simplification methods. Another method,
presented by Aspert et al. [Asp02], is more efficient
in terms of speed at the cost of higher memory use.
Both algorithms are based on sampling of the
geometry of the two models to be compared, where
the sampling density depends on the desired
accuracy. In order to double the accuracy the number
of samples needs to be multiplied by four. Therefore,
these algorithms quickly become slow for higher
accuracy.

3. TERMINOLOGY
First we define the distance between a
point on a surface and another surface

(d p,S ′)
p S S ′ as:

 () (
p S

d p,S min d p, p
′ ′∈

)′ ′= ,

where ()d p, p′ is the Euclidian distance between

two points in . 3E
The geometric distance – also called one-sided or
single-sided Hausdorff distance – between two
surfaces and S S ′ is then defined as:

() (
p S

d S ,S max d p,S
∈

)′ ′=

Note, that this distance is not symmetric in general,
i.e. () ()d S ,S d S ,S′ ′≠ . The symmetrical Hausdorff
distance is defined as:

() () ()()sd S ,S max d S ,S ,d S ,S′ ′= ′

This value gives more accurate measure of the
distance between two surfaces by preventing the
possible underestimation, which can appear if using
only one-sided distances.

4. MESH COMPARISON
The main idea of our new mesh comparison
algorithm is to adapt the sampling density used for
distance calculation to the actual geometric deviation
in the corresponding area. Hereby, the main goal is to
draw samples only in those regions where the
maximum distance between both objects is expected.

To achieve this, we first make two observations:

• Since the Hausdorff distance is defined as the
maximum of the distances of all points on both
meshes to the other mesh, we should avoid
sampling in areas, where they are closer to each

other than the actual – yet unknown – Hausdorff
distance. This can be achieved by comparing
coarse voxelizations of the two objects,
considering triangles within voxels of high
distance first, and stopping comparison, when
the already found distance is larger than the
highest possible distance between remaining
voxels.

In order to consider cells containing triangles with
larger distance first, the octree traversal is steered
using a priority queue. This queue contains the
already processed octree cells sorted by their
maximum geometric distance.

When a leaf cell is reached during traversal, we
collect all contained triangles and insert them into the
same priority queue as the cells, again according to
their maximum possible geometric distance.
Depending on their minimum distance we again
update the Hausdorff distance. To prevent multiple
insertions of the same triangle into the priority queue,
we mark triangles and process only those yet
unmarked. The traversal and therefore the whole
algorithm stops if either the queue becomes empty
(e.g. when both meshes are identical) or the
maximum possible distance of all remaining cells and
triangles is less than the already found Hausdorff
distance. The main algorithm to calculate the
Hausdorff distance is shown in Fig. 1.

• When processing triangles inside a voxel cell,
we only need to subsample a triangle, if its
geometric distance can be larger than the already
found maximum. This can only happen, if any of
its vertices is farther away from the other mesh
than one of its interior points, or if any of these
distances exceeds the maximum. Therefore, a
tight upper bound of a triangle-to-mesh distance
is required.

Data Structures
To quickly determine the regions of high geometric
distance we sort the triangles of both meshes into two
voxel grids respectively. Note, that later on in our
algorithms – similarly to [Cig98] and [Asp02] – this
grid is also used to quickly find the closest point on
one of the meshes for a given sample point.

 MinError=0

AddToQueue(RootCellA)

AddToQueue(RootCellB)

while(QueueNotEmpty)

 GetCellWithHighestMaxDistance

 UpdateMinError

 if(LeafNode)

 InsertTrianglesIntoQueue

 else

 InsertChildrenIntoQueue

return minError

Figure 1. Main algorithm to calculate the
Hausdorff distance.

The grid dimensions depend on the objects’
bounding boxes and the number of triangles. We aim
to have 10 triangles per occupied cell in average.
This can be achieved approximately by calculating
the number of required cells for a cube tessellated
with the same number of triangles as is in the larger
mesh. This leads to a resolution 10 6

trianglesr ⋅= . To
avoid memory problems we restrict ourselves to
resolutions of . 3256

Cell-Based Distance To speed up finding voxels of high distances
between both voxelizations we use an octree
structure for each of them, build upon the entries
within the grids. In order to get full octrees we allow
only resolutions of . 2 2 2n n n× ×

To quickly find the closest cell, when traversing the
octree from a node to its children, we store all indices
of occupied cells, for which the minimum distance
was less than the maximum distance to the closest
cell. Then we need to check only the children of
these cells when calculating the distances of the
cells’ child nodes. Note, that for the root nodes
calculating the closest cells and the distances is
trivial.

Main Algorithm
Initially, we set the current Hausdorff distance to
zero. We start traversing the octree structures of both
meshes simultaneously, measuring the distance of
each cell to all other cells on the same level in order
to find the closest one in the other mesh. If for the
current cell the closest other cell is found, we can
calculate the minimum and maximum distances
between two points inside these cells. If the
minimum distance is larger than the current
Hausdorff distance, we update the Hausdorff
distance accordingly. If the maximum distance is less
than or equal to the current Hausdorff distance,
traversal of the subtree is skipped.

To simplify the distance calculation, we use the
bounding box of the union of both meshes to
construct the grid. Furthermore, we restrict ourselves
to cubic grid cells, which further simplifies the
distance calculation to calculations based on the cell
coordinates.

Distance of a Triangle
To calculate lower and upper bounds for the
geometric distance between a triangle and the other
mesh, we first need to calculate the distances of its
vertices. If a vertex is inside the currently processed
grid cell, we can use its stored closest cells to find
candidate triangles for the next surface point in the
other mesh. If it is outside the current cell, we
descend the hierarchy again to find the occupied cells
closest to the current vertex. Then we calculate
distances to all triangles starting with those contained
in the closest cell. When the distance to the closest
point found so far is closer than the distance to the
remaining cells, the distance of the currently
processed vertex is found. To prevent multiple
distance calculations for the same triangle, we store
the indices of triangles and collect only the
unprocessed triangles from each cell.

After the distances for the three vertices of the
current triangle are calculated, we know that the
minimum geometric distance of the triangle is the
maximum of the vertex distances i iV P− , and the
maximum geometric distance is at most the
maximum of the vertex distances and the distances of
the triangle barycentre to the three vertex base
points (see Fig. 2).

B
iP

1P

2P

3P

1V

2V

3V

B

Figure 2. Minimum and maximum geometric
distances of a triangle.

Therefore, we can determine the possible interval of
the geometric distance as: d

()

()

3

1

3

1

i i mini

min ii

d max V P d

d max H ,max B P

=

=

≥ − =

≤ −

.

Additionally, no point on the triangle can be farther
away from the other mesh than its vertices from any
of the base points, and thus

 ()
3 3

1 1 i ji j
d min max V P .

= =

 ≤ −

If the closest points of all three vertices lie on the
same triangle (see Fig. 3), the maximum vertex
distance is already the geometric distance of the
current triangle. Otherwise, the triangle is inserted

into the priority queue. Note, that we have to take
care about the fact that the closest point may lie on
several triangles (if it falls onto an edge or into a
vertex).

1P

2P

3P

1V

2V

3V
Figure 3. Exact geometric distance of a triangle.

When a triangle from the queue is processed, it is
subdivided and the distances for its children are
calculated. To prevent repeated calculation of the
closest point/triangle for the same vertex, we
calculate them for the three new vertices during
subdivision. Then we only need to calculate the
minimum and maximum possible distances before
eventually storing the child triangles in the priority
queue. The subdivision algorithm is shown in Fig. 4.

 CalculateSubdivisionBasePoints
for(allChildTriangles)

 minDistance=max(vertexDistances)

 if(AllBasePointsOnSameTriangle)

 maxDistance=minDistance

 else

 maxDistance=max(barycenterDistances)

 InsertIntoQueue

Figure 4. Subdivision sampling algorithm.
Note, that calculating the base points and checking if
they all lie on the same triangle is also necessary,
when a leaf cell is processed in order to add all
contained triangles to the queue.

5. APPLICATION TO
SIMPLIFICATION
To control the Hausdorff error during simplification,
only the part of the mesh affected by the current
operation needs to be considered. Therefore, the
affected triangles of the simplified mesh are directly
inserted into the queue, and the error measurement
for the original model is restricted to the region
around these triangles using their common bounding
box. Since the error of neighbouring triangles in the
original model may also be affected, we need to
extend this bounding box by the current Hausdorff
error.

Furthermore, it is not necessary to calculate the exact
geometric error, but only to check if it is below a
user-specified threshold. Therefore, we do not need

to insert cells or triangles, for which the maximum
possible distance is below this threshold, into the
queue, and thus refine sampling only in regions,
where the error may be above this value.
Analogously, if the minimum error found so far is
above this threshold, we can immediately stop the
calculation and reject the simplification operation.
When calculating the geometric error of a triangle,
we can also immediately stop searching for the base
points as soon as we found one that is closer than
the desired error minus the maximum length of the
two edges adjacent to the current vertex (according
to the triangle inequation no vertex can be farther
from a point than the distance of any vertex to this
point plus the distance to this vertex).

iP

The fact that only an accept/reject decision is
required to decide, if a simplification operation will
be performed, allows for some additional simple tests
to quickly find an answer in most cases.

The simplification algorithm delivering the best
trade-off between speed and quality of the simplified
model is the one based on the quadric error metric
[Gar97]. Choosing this simplification algorithm as
base for our method, we get the additional advantage:
the error quadric gives an (admittedly sometimes
largely overestimated) upper bound for the Hausdorff
error and can thus be used as a criterion to accept an
operation without further tests.

Then two additional simple tests are possible to
quickly reject an operation. First, the distance of the
new vertex to the simplified mesh before the current
edge collapse operation is calculated. If this exceeds
twice the desired Hausdorff error ε , the operation
can be rejected. Note, that exceeding of 2ε is
required due to possible configurations similar to the
one shown in Fig. 5.

 new vertex

 original mesh

 simplified mesh

Figure 5. Quick reject tests.
If the operation passed this test, the distance from the
new vertex to the original mesh is calculated. If this
exceeds the specified threshold, the operation is also
rejected. These two tests have the advantage that they
quickly reject many operations and no update of the
grid is required for their calculation.

When an operation passed these two tests without
being rejected, the grid and octree of the simplified
model are updated. If the operation has not been
accepted by the quadric test, the Hausdorff distance
between the updated meshes is calculated. When the
operation is rejected by the Hausdorff error check,

the vertex is split again, updating the grid and octree
of the simplified mesh, and the operation is removed
from the simplification queue. The overall pipeline
of the error-checking algorithm is shown in Fig. 6.

new vertex → simplified mesh

new vertex → original mesh

quadric error

simplified region ↔ original mesh

accept reject

fail

fail

fail

fail

pass

pass

pass

pass

Figure 6. Error testing pipeline.
If the simplification queue is empty, all possible
collapse operations that do not exceed the specified
Hausdorff error have been performed.

6. RESULTS
Since our algorithm is applicable to both, measuring
distances between meshes and controlling the
introduced Hausdorff error during simplification, we
compare it to previous approaches in both fields. We
ran all tests on a PC with an Athlon 3000+ and 2 GB
of main memory.

Mesh Comparison
To demonstrate the advantages of our algorithm, we
compare its computation time with the two standard
tools for measuring the Hausdorff distance: Metro
[Cig98] (version 4.0) and MESH [Asp02] (version
1.12). The models used for evaluation are shown in

Figure 7. Models used for mesh comparison.

Fig. 7; the numbers of their vertices and triangles are
listed in Tab. 1.

Figure 9. Computation times of error-measuring
algorithms.

Model # triangles # vertices
Bunny (orig.) 69,451 34,834

Bunny (simpl.) 1,001 553

Coffee set 69,696 34,860

Without lid 60,936 30,480
Table 1. Models used for mesh comparison.

Tab. 2 shows the comparison in computation time of
the three algorithms with an accuracy of 0 0 of
the model diameter.

1. %
since it ran out of memory and Metro needs more
than a day to compare the simplified and original
bunny at . 0 001. %

 Metro MESH Our alg.
Bunny 1,406 sec 395 sec 2.7 sec

Coffee set 13,008 sec 1,396 sec 2.1 sec Error Control
In the field of error control during simplification, we
compare our method with two simplification
algorithms that guarantee a user-specified geometric
error: simplification envelopes [Coh96] and high-
quality simplification [Bor03a] (using the out-of-core
simplification [Bor03b], when necessary). For
comparison, we use different scanned objects from
the Stanford 3D Scanning Repository [Sta3D] and
the Digital Michelangelo Project [DigMi] shown in
Fig. 10 and Tab. 3.

Table 2. Computation times of error-measuring
algorithms.

At this accuracy our algorithm is several orders of
magnitude faster than Metro and MESH, since we
sample the mesh surface densely in regions of high
geometric distance only. This is especially visible,
when comparing the coffee set with and without lid,
as shown in Fig. 8, where only samples in the region
of the highest Hausdorff distance were taken.

Figure 8. Visited octree cells and taken samples
for coffee set scene with and without lid.

Fig. 9 shows a detailed plot of the computation times
of the three algorithms, when comparing the
simplified bunny with the original model, using
different accuracies ranging from 1 of the
bounding box diameter (practically useless) to

 (very accurate).

%

0 001. %
Figure 10. Models used for simplification. It is clearly visible, that in contrast to both Metro and

MESH, the computation time of our algorithm
depends only very little on the desired accuracy.
Note, that comparing the meshes with accuracy
higher than 0 0 was not possible using MESH,

1. %

Tab. 4 compares the computation times of the two
mentioned simplification algorithms with our
approach. For all models and algorithms the same
simplification errors (1 and 0 1 of the model
diameter) were used. The Hausdorff distance of 1

% . %
%

Model # triangles # vertices
Bunny 69,451 34,834

Dragon 871,414 437,645

Buddha 1,087,474 543,652

David 2mm 7,227,031 3,614,098
Table 3. Models used for simplification.

is especially interesting for out-of-core simplification
using hierarchical partitioning (e.g. [Bor03b]), since
it is close to the resolution of 128

e used for each
octree cell.

 [Coh96] [Bor03a] our alg.
1%ε =

Bunny 1:12 1:25 0:52

Dragon n.a. 27:58 6:48

Buddha n.a. 25:271 12:37

David 2mm n.a. 3:01:431 1:06:22

0 1. %ε =

Bunny 0:46 0:46 1:28

Dragon n.a. 15:37 14:59

Buddha n.a. 24:081 21:13

David 2mm n.a. 3:00:031 1:51:56
Table 4. Computation times of simplification

algorithms.
Note, that the simplification envelopes restricts only
the geometric error from the simplified model to the
original, which is sufficient for rendering, but may
cause inaccuracies for other applications like
collision detection. Similarly, the high-quality
simplification guarantees an upper bound for the
geometric error from the original to the simplified
model only, and thus may close large holes in the
model, which is not always desired. Additionally, the
accuracy is low, since only samples at vertex
positions are taken. If out-of-core simplification is
used, the error is only guaranteed to lie between 4

5 ε
and ε . This means that a more aggressive
simplification would be possible without exceeding
the threshold.
The computation time of the simplification envelopes
is similar to the one of the high-quality
simplification, but the algorithm requires orientable
manifold meshes, and therefore worked only for the
bunny model. Although our algorithm guarantees the
Hausdorff distance to be below a specified threshold,
the performance is even better than the simplification

envelopes and the high-quality simplification for
larger models and/or simplification errors.

7. CONCLUSION
We have presented an efficient algorithm to measure
the geometric distances and the Hausdorff distance
between two meshes. Our approach is much faster
than existing algorithms for reasonable accuracies
(i.e. less than of the model diameter), since it
needs to refine sampling only in regions of high
distance and thus hardly depends on the required
accuracy. This is accomplished by using a bi-
hierarchical search algorithm to quickly find regions
of possibly high geometric distances.

0 01. %

Furthermore, we have shown that our algorithm can
also be applied to increase performance, efficiency,
and accuracy of error-bounded simplification by
using a chain of simple accept/reject tests to quickly
determine, if exact evaluation of the Hausdorff
distance is necessary. Instead of measuring the
distance, we can stop traversing the hierarchy, when
the minimum possible error is above the desired
threshold, or the maximum possible is below. Using
this technique, our approach is up to four times as
fast as comparable algorithms when drastically
simplifying the model.

8. ACKNOWLEDGEMENTS
We thank the Stanford 3D Scanning Repository and
the Digital Michelangelo Project for providing us
with the models. The coffee set model is courtesy of
Renzo Del Fabbro.

9. REFERENCES
[Asp02] Aspert, N. Santa-Cruz, D., and Ebrahimi T.

MESH: measuring errors between surfaces using
the Hausdorff distance. Proc. of the IEEE
International Conference on Multimedia and
Expo, pp. 705-708, 2002.

[Bor03a] Borodin, P., Gumhold, S., Guthe, M., and
Klein, R. High-quality simplification with
generalized pair contractions. Proc. of GraphiCon
’03, pp. 147-154, 2003.

[Bor03b] Borodin, P., Guthe, M., and Klein, R. Out-
of-core simplification with guaranteed error
tolerance. Proc. of Vision, Modeling and
Visualisation ’03, pp. 309-316, 2003.

[Cig98] Cignoni, P., Rocchini, C., and Scopigno, R.
Metro: measuring error on simplified surfaces.
Computer Graphics Forum, vol. 17, no. 2, pp.
167-174, 1998.

[Coh96] Cohen, J., Varshney, A., Manocha, D.,
Turk, G., Weber, H., Agarwal, P., Brooks, F., and
Wright, W. Simplification envelopes. Computer

1 Out-of-core simplification [Bor03b].

Graphics (Proc. of SIGGRAPH ’96) 30, pp. 119-
128, 1996.

[DigMi] The Digital Michelangelo Project.
http://www-graphics.stanford.edu/projects/mich.

[Gar97] Garland, M. and Heckbert, P. S. Surface
simplification using quadric error metrics.
Computer Graphics (Proc. of SIGGRAPH ’97)
31, pp. 209-216, 1997.

[Kle96] Klein, R., Liebich, G., and Straßer, W. Mesh
reduction with error control. Proc. of IEEE
Visualization ’96, pp. 311-318, 1996.

[Low97] Low, K.-L. and Tan, T.-S. Model
simplification using vertex-clustering. Proc. of
Symposium on Interactive 3D Graphics, pp. 75-
81, 1997.

[Lue01] Luebke, D. A Developer’s Survey of
Polygonal Simplification Algorithms. IEEE

Computer Graphics and Applications, 21(3), pp.
24-35. 2001.

[Pop96] Popović, J. and Hoppe, H. Progressive
simplicial complexes. Computer Graphics (Proc.
of SIGGRAPH ’97) 31, pp. 217-224, 1997.

[Ros93] Rossignac, J. and Borrel, P. Multi-resolution
approximations for rendering. Modeling in
Computer Graphics, pp. 455-465, 1993.

[Sta3D] The Stanford 3D Scanning Repository.
http://www-graphics.stanford.edu/data/3dscanrep.

[Zel02] Zelinka, S. and Garland, M. Permission
grids: practical, error-bounded simplification.
ACM Transactions on Graphics, 21(2), pp. 1-25,
2002

	INTRODUCTION
	PREVIOUS WORK
	TERMINOLOGY
	MESH COMPARISON
	Data Structures
	Main Algorithm
	Cell-Based Distance
	Distance of a Triangle

	APPLICATION TO SIMPLIFICATION
	RESULTS
	Mesh Comparison
	Error Control

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

