
Shape from Silhouette:
Image Pixels for Marching Cubes

Bruno Mercier
SIC Lab, Bât. SP2MI, téléport 2

Bd Marie et Pierre Curie
86962 Futuroscope Chasseneuil, France

mercier@sic.univ-poitiers.fr

Daniel Meneveaux
SIC Lab, Bât. SP2MI, téléport 2

Bd Marie et Pierre Curie
86962 Futuroscope Chasseneuil, France

daniel@sic.univ-poitiers.fr

ABSTRACT

In this paper, we propose to use image pixels for geometry reconstruction with a shape from silhouette approach.
We aim at estimating shape and normal for the surface of a single object seen through calibrated images. From the
voxel-based shape obtained with the algorithm proposed by R. Szeliski in [18], our main contribution concerns the
use of image pixels together with marching cubes for constructing a triangular mesh. We also provide a mean for
estimating a normal inside each voxel with two different methods: (i) using marching cubes triangles and (ii) using
only voxels. As seen in the results, our method proves accurate even for real objects acquired with a usual camera
and an inexpensive acquisition system.
���������
	���

Geometry reconstruction from images, shape from silhouette, marching cubes.

1. INTRODUCTION
Since the early years of computer vision, much effort
has been dedicated to automatically digitizing shape
and reflectance of real objects. For instance, Stan-
ford Digital Michelangelo [11] project aims at digitiz-
ing large statues, Callet. et al. [1] digitize statuettes
and reconstruct plaster models covered with bronze.
Hasenfratz et al. [7] use a digitize shape for placing a
real actor in a virtual environment so that shadows and
lighting be properly computed.

In most cases, acquisition hardware play a major role
for reconstructing objects shape and research efforts
have increased a lot during the last decade. Our concern
is about objects only described with a set of calibrated
photographs. Our final goal is to insert real objects
(corresponding to lightfields/lumigraphs or described
by a series of images) into virtual environments with
����������������������� �"!$#��&%'��(��)�*!$+,�$�.-/!0�*%21���3/���4�5�$67!$+�+
�$�839!:���8�$6;��-'�<�>=?�$��#56@�$�83A�������$�9!$+B�$�814+<!$���C���D�$�FE'���
���G($�*!0�H���4%I=
�)��-'��E'��6J�4�K3'���:LH�<%'�M%N��-9!:�G14�$3/���4� !:���
�/�0�O�"!�%'�5�$�P%Q�<�C������R'E'���M%S6J�$�P3Q���$T/�U�$�P14�������V��14�<!$+
!�%QL�!0�H�*!0(��8!$�/%7��-9!:�W1���3/���4�XRA�M!0�Y��-/���Y�/�0���<1��Z!0�9%���-'�
6JE'+<+�14�)�*!0�����$�.���[��-'�,T/���C�\3/!$($��]_^`�U14�$3Da5�0��-/����=
������b
���P����3/E/R'+��<��-cb����53A�$�C�d����������Le�����,�$�f���P���M%'���C������R/EQ���
����+����C���4bD���MgDE/�)���4�h3'�����$�i��3A�414�)T/1j3A�V�����<�������$��!$�/%9k0�0�l!m6@�4��]

n�o/p�qHr0sQt*uAv$w�rCxzyY{`|~}l���'r�w<�J�$�$���*{'{Q���:�Q�$�e�����D���
yX{�|~}�� �Q�����$��qHv$u/s'v$t*�Y�H���J��p4��t*s'v$t*�;�'�h�Q�����
�
w �:pVu'�j|��:p��*oW�
p��9s'�4w ���:�
� ��3DaH����(�-D�
�m�¡ �¢m�5£¡(����/1�a"¤?¥Q14���4�'14�������4���4]

proper lighting and global illumination. The whole
problem is thus not only geometry estimation but also
initial light sources position, reflectance properties for
the real object as well as rendering process. This paper
only addresses a small part of the whole work: geom-
etry and normal estimation.

The basis of our work is the voxel-based shape from
silhouette technique presented by Szeliski in [18]. We
propose a new method for combining the marching
cubes algorithm with image pixels for precisely re-
covering a triangular mesh corresponding to the ob-
ject shape. We also propose two methods for esti-
mating surface normal. As shown in the results, our
method has a consequent impact on geometry. Based
on this method, we have successfully recovered light
sources geometry and object surface reflectance prop-
erties [14].

This paper is organized as follows. We firstly describe
work most related to our concerns. Section 3 presents
the acquisition system we use and work overview. We
then detail our reconstruction and normal estimation
method. Finally, we provide a series of results before
we conclude.

2. RELATED WORK
The literature concerning geometry reconstruction is
vast and this section only presents a quick run through
the area for most closely related works.

{���pVt�p�r��M������r$u
[5, 2] uses two cameras located close one

to another so that images of the object be slightly dif-
ferent. Internal and external camera parameters knowl-
edge help to determine corresponding points on images
and deduce depth with the help of textures, laser grids
or structured light.

{QoQvV�'p¡xVtCr����Co'v
	0�Ju��
methods aim

at recovering objects shape with the assumption that
surfaces are lambertian (or almost lambertian) [16, 8].

Shape from silhouette approaches [13, 3] are more
adapted to our problem since we do not want to make
any assumption about images. Objects can have glossy
surfaces, with or without textures and we cannot use
active laser grids or test patterns to reconstruct the ob-
ject geometry. Most shape from silhouette methods
rely on a voxel-based datastructure and the approach
described by R. Szeliski in 1993 [18] is often used as a
basis. For such methods, a well-known drawback con-
cerns cavities. For example a coffee cup handle will
be recovered since the hole can be deduced from the
visual hull on the image, but the inside will be filled-up
with material (unless there is no bottom). Improve-
ments have been proposed for solving this problem
with voxel coloring [15], space carving [9] or gradient
voxel flux [4] with the assumption that objects surface
is mostly lambertian.

From voxels, the marching-cubes algorithm can easily
generate a triangular mesh corresponding to the object
surface [17]. For example Hasenfratz et al. use such a
reconstruction method for interactively integrate a real
person into a virtual environment [7]. Our method fo-
cuses on such approaches and aims at improving the
triangular shape accuracy. To achieve this goal, we
propose to use image pixels for guiding the marching
cubes algorithm and estimating accurate surface nor-
mal.

3. WORK OVERVIEW

Acquisition System
For this work, we used images of both virtual objects
and real objects. Virtual objects are convenient for val-
idating the method and providing result quality since
camera parameters and object geometry are known.
For real objects, we devised the acquisition system de-
scribed in figure 1. Object and light sources are fixed
on a turntable: a camera is located on a tripod with
fixed aperture and shutter speed. During acquisition,
camera position does not change. Every 5 degrees,
two images are acquired with the same viewpoint. The
first one is overexposed with an additional light source
for separating object from background (a lambertian
black cloth) while the second one is used for acquiring
the actual object radiance. After one turn, the camera
is raised of several centimeters. In practice, only 1
turn (76 viewpoints) is necessary for precisely recov-
ering the object shape, but we also used this system for

acquiring complete image-based objects.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���

Turntable

Diode

CameraLight sources

��������������� �"!
#$����%&�('&�()�*+%-,$%-'-�/.10

Image Processing
For separating background from the object, we use a
powerful light source for overexposing images. The
object is so bright that it is easy to determine the black
background with a seed-fill algorithm even with dark
regions on the object. Except background, only 2 con-
nected regions remain: the object and the red diode
used for estimating camera orientation. Background
pixels are then set as perfectly black on images: (0,0,0)
for R,G,B values.

The diode is used to determine the rotation axis of the
turntable seen on photographs. Focal length is known
a priori (fixed camera parameters) and 3D position is
manually estimated. Orientation can thus be deduced
from the red diode. We did not use any test pattern for
estimating camera parameters.

Reconstruction Process
Our reconstruction method is composed of 3 main
steps:

1. the shape from silhouette approach proposed by
R. Szeliski in [18] provides a set of voxels;

2. a triangular mesh is generated from marching
cubes and image pixels;

3. a normal is estimated for each voxel either with
the marching cubes triangles or with a method
using only voxels.

4. SHAPE FROM SILHOUETTE
Octree Construction
As a first (rough) approximation of the object geometry,
we used the shape from silhouette approach proposed
in [18]. With this approach, all the images are used it-
eratively to hierarchically sculpt the object. The shape
initially corresponds to a voxel, recursively refined dur-
ing the reconstruction process. For each view of the
object, the octree voxels obtained so far are projected
onto the image plane and compared to image pixels.
When a voxel is seen outside the object for one image,
it is actually marked as

r$s��
(figure 2(a)); when a voxel

is seen inside the object for all the images, it is marked

as
�Ju

(figure 2(b)); all the others are often seen inside
the object and sometimes on the object boundary, they
are marked as

v��;��� �$s'r$s��
(figure 2(c)) and subdivided

into 8 sub-voxels. This process is repeated until no am-
biguous voxels exist or a minimum size criterion has
been reached. For our method, the algorithm should

� !��.��E'��¤
L����Q�4+

� R��?���'¤ Le���Q�4+ � 1��P!0� RQ¤
Le���'��+

� �(�������	� ��
)
� ��� !�����%&%&��� !��/'&�()�* 0

stop when ambiguous voxels correspond to a series of
4 (or 9) pixels for more reliable results. Figure 3 shows
some results for a clown (real object). Note that for a
256x256 image, pixel resolution corresponds to a depth
of 8 in the octree.

� �(��������� ��� � !)�*�%-'-� � ! '&�()�* � � %&����'&%��)����(�����
��%��! �"
��*$#&% 0

Obviously, all ambiguous voxels have the same size,
according to the reconstruction process. At the oppo-
site, voxels marked as

�Ju
or
r$s��

are not further subdi-
vided and have various sizes.

Practical Aspects
For our method, voxel projection on the image plane
is performed with raytracing. This will be further used
with marching cubes in the following section. Each
pixel corresponds to a ray originating at the image
center-of-projection and going through the pixel (figure
4). These rays are called

�9�('Dp�w)��t�v$� �
from now on. Pixel-

rays corresponding to the object silhouette are called�Ju/� tCv$���
since they hit the object and rays corresponding

to background are called
r$s���� tCv$���

.

Surface Thickness
The reconstruction process results in a set of ambigu-
ous voxels called

	$�(����t�p ��p���sHtJx4v��Vp
. For marching cubes,

this surface needs to be 6-connected which is not en-
sured by the previous algorithm. To achieve this goal,
we propose to modify the discrete surface with an ad-

Background
(out−ray)

(in−ray)

Object

� �(��������)��+* ��� �
��, ����,�% 0

ditional process applied every time ambiguous voxels
are subdivided. Voxels classified as in or out can be
reclassified as ambiguous when the discrete surface is
not 6-connected (as illustrated in figure 5): when two
adjacent in and out voxels do not correspond to the
same hierarchy level in the octree, we choose to re-
classify the smallest one, -/.1032�454 , as ambiguous (since
- .10326454 parents had been longer classified as ambigu-
ous). In the case of two voxels with similar size, we
consider that out-voxels should remain outside the ob-
ject according to the sculpture method seen above; the
in-voxel will consequently be reclassified as ambigu-
ous. A final operation reduces the surface thickness
while keeping the 6-connection.

� !�� � R/� � 1��

out−voxel
amb−voxel
in−voxel

discontinuity problem
voxel to be modified

� �(�������7� �8
)
�$�
��% ��� !�����%&%&�(� !���'-�()�*:9;�$07<�=�)/���/%�> ��*
'�=�� %&�����?��! �/9A@ 0B��)�� �
��%�'-)7@ � .)!# ��� ��#C9 !/0�.)!# ��,
� �
#D#���%&! ����'-� %&�$�E�?��!���FHG
, !)�* *�� ! '-�
��*&�JILK�0

5. PIXELS FOR MARCHING CUBES
Original Marching Cubes
For reconstructing a triangular mesh from a set of am-
biguous voxels, marching cubes [12] are obviously
well-suited to the problem. Originally, the algorithm
is dedicated to medical images and uses some density
values (weights) associated with each voxel vertex; as
a rough simplification, positive weights correspond to
points inside the object and negative weights are out-
side the object. A linear interpolation provides the
(estimated) intersection between each voxel edge and
the actual object surface. According to these intersec-
tions, a triangular mesh can be defined for each voxel
with a limited number of configurations (see figure 6).

� �(������� G ��� �/��!E= ��*$� !
� @ � % !)�* � ��������'&��)�* % F ���$,� ������# '-) ��.�@ ������)�� % ��)�� �
��%)�*$�(, K� @ ����!���#�)�'-% ��* ,
��! ��'-��������'&��! � %8�() !��/'-�
)���'&%&� #$� '6=�� %&����� ��! ��0

Since weighting values cannot be computed directly
from the discrete surface, edges centers are often used
for generating triangles. However, as explained in the
following, it is possible to use pixel-rays with march-
ing cubes so that triangles fit the model shape more
precisely.

Refining the Method
As a first estimation, voxel vertices are classified ac-
cording to neighborhood. Each voxel vertex of the
6-connected discrete surface has (at least) either one
in-voxel or one out-voxel neighbor. For placing trian-
gles in

v������ �$s/r0s � �0r�'Dp�w �
, we also use pixel-rays (figure

7).

� �(������� " ��� ��' , ��� ,$%"%�=�)���� #+*�)�' '-)�� ! = '�=$� %&����,
�?��! � ��* %&� #�� ��* ��.�@ �(����)���% ��)
�$�
� 9$��* , �E��,$% ����� *�)�'
� %-�
0

Our algorithm firstly computes the intersection points
between out-rays and voxel faces (figure 8). Then, a
line corresponding to the object surface on each face is
estimated (called

��sHt@x4ve�*pBw �JuAp
from now on). This line

is placed as close as possible to all intersection points
and out vertices. Let us consider the 2D convex hull
associated to all these points 	�

��� . It can be shown
that for the general case, such a line corresponds to a
convex hull line segment ��� . The surface line is thus
chosen among 	������ so that the following function be
minimized: ��� ��� ����� �

��� � � �
 �"! �#� �%$

Unfortunately, in some cases, a surface line cannot be
computed using the convex hull (see figure 8(d) for
example). For such cases, the surface line is defined
directly using in-vertices.

Finally, the intersection between surface lines and voxel
edge defines the point (

���4� �$pVt ��pH'
) used for marching

cubes. Note that when the surface line contains a face
vertex, our algorithm slightly shift the mc-vertex for
avoiding degenerated triangles.

� !��

&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&
('('('('('('(('('('('('('(('('('('('('(('('('('('('(('('('('('('(('('('('('('(

� R�� � 1��

surface line
mc−vertex
out−ray intersection
out−vertex
in−vertex

� %J�
� �(�������*) �,+ * '-��� %-� ! '&�()�* @ ��'.- ��� *)���' , ����,�%&��*�#
��)
�$�
� �?��! � %�, %-�������E�J� !���%-�/%�9 �$0&�)�� � %&�$�J� ! ��%-� %�9
@ 00/ !/01- �('6= � # ��%&!)�* *�� ! '-�
%&�$�E�?��!�� 9;# 0���)�� �
�
������'&��! � % � %-�
#D��% � @)�� *�#$�/� ,�0

The defined surface line is bounded by voxel vertices
according to classification so that surface continuity be
maintained (figure 8(d)). For two adjacent faces, the
corresponding surface lines have to be connected (see
figure 9(a)). The only adequate choice consists in using
the mc-vertex closer to the

�Ju/� �$pVt ��pH'
since the other one

would re-introduce out-rays intersection points inside
the object surface. Finally, the same principle applies
to adjacent voxels on the discrete surface (figure 9(b)).

6. SURFACE NORMAL
For some application, a normal can be needed for sur-
face voxels (for instance, for estimating light sources
properties and BRDF of the object [14]). We propose
two methods: the first one uses the triangles gener-
ated by our adapted marching cubes algorithm while
the second one relies on the discrete surface and its
neighborhood.

Normal from Triangles
Inside each ambiguous voxel, several triangles define
the object surface. We propose to compute the average
triangle normal weighted by area.

Using triangles located in only one voxel leads to a

� !�� � R/�
� �(���$� �	% ���$����� ��! � !)�* '&��* � �(' , ��*�# . !E,H����� '-��! � % 0

� !��
Object

� R��
� �(������� ���$���)�� . ���A� ��) . .	��� !E= ��*�� !
�$@ � % ' ������* ,
�/�(� %�9 '6=�� %&����� ��! � ��%��	��
���
�0

bumpy normal, introducing artifacts for light sources
estimation or during the rendering process (figure 10(b)
and 11). This is why we propose to smooth normals
according to neighbor voxels triangles. In our applica-
tion, a parameter called

� �;rMr��@oH�Ju � 	$��� � v$u9�*p
is fixed by

the user. Practically, with an octree depth equal to 7,
our best results have been obtained with a smoothing
distance set to 3 or 4 voxels (depending on the object
geometry).

� �(������� ����� ��)�� !
�������
# %&����� ��! � %� �#���� '-)	# ��%&!�� ��'-�
��� � ���/%-� * '6��'-�()�*: '6=�� .	�/� ! = �(*�� ! �$@ �/% ���(��)�� �('�= .
#�) � % *�)�''���)
�$� #�� %�.))�'�= %&�$�E�?��!��/% 0
Discrete Normal
Intuitively, a normal estimated from marching cubes
should be quite representative of the object surface.
However, it is also possible to define a normal in
each voxel directly with the discrete surface. Par-
ticularly, if a surface mesh is not needed, acceptable
results can be obtained. Normal is estimated according
to out-voxels in the given neighborhood (figure 12):�� � � ����� �����

��
- � ����� , where

��
- � corresponds to the unit

vector going from the current voxel center to the

��� �

neighbor voxel center;
�

is the number of voxels used.
With this method, normals are defined by a fixed num-
ber of directions which could be useful for compression
algorithms.

out−voxel

amb−voxel

in−voxel

current voxel

� �(������� ��� �!�)���.	�J� � %-'&��.	�/'&�()�* � ��) . ��)
�$�
��% 0

7. RESULTS
Object Shape
Before actually using our method with real objects,
validation has been done with known geometric objects
(a sphere and a cube). As shown in table 1, using image
pixels with marching cubes (MC in the figure) improves
consequently shape precision. For the experiments we
made, the error is noticeably reduced compared to a
marching cubes algorithm with edges centers. Note
that when hierarchy depth increases, the two methods
tend to provide the same results because the number of
pixel-rays becomes lower. Our method will obviously
be more accurate with a low-depth hierarchy.

"$#$%�&('*)�+-,�./,0%�1�23&4+5,*.6,	%�798�:;,	%6,
<>=�?A@�BCBEDFBCG0?�H I J K

LNM6O*P/QERSPUT�V P/W>X(Y Z�[*\3]_^`^ a	\3b_^c^]�\da!^`^
egfih*P/j klW�monoQ>XpY qo\ r-^`^ q*\�s!^c^ qo\tsu^`^

";#4%�&v'*)S+5,�./,	%`w!2�1;.x:vyuz9{|,
<>=�?A@�BCBEDFBCG0?�H I J K

LNM6O*P/QERSPUT�V P/W>X(Y }0qo\ r-^`^ Z*a	\ r-^c^ Z	qo\tsu^`^
egfih*P/j klW�monoQ>XpY }�Z�\i}~^`^ Z*a	\3Z_^c^ Z*]�\tqu^`^

� �J@��(� ��� � ����������� # ��%-'6��* ! � @ � '.- � � * ���/!�)�* ,
%-'-� � ! ' ��# ' ������*��/���/%8��*�#D��!�'&�$���)�@�� �/!�' %&����� ��! ��0

Note that a cube is the worst example. A polygon is
difficult to reconstruct with a shape from silhouette ap-
proach (as any flat surface) since the camera viewpoint
is never perfectly located on the polygon plane.

Normal Estimation
This paper describes two different methods for estimat-
ing normal inside each voxel. The first one is based
on marching cubes triangles while the second one only
relies on voxels. For each case, it is possible to smooth
normal values according to a user-specified smoothing
distance. For estimating normal quality, we compared
the estimated normal with the actual (known) surface
normal (table 2)

As for surface accuracy, a surface normal obtained with
the help of pixel-rays is sensibly more precise (20-
25%) than with using edges centers marching cubes or

"$#$%�&('*)�+-,�./,0%�1�23&4+5,*.6,	%�798�:;,	%6,
<>=C?A@�BCB DFBCG0?AH I K

�������x?AH��
	��uD��
��?�
�	0=UB � � �
�EfdQ�R/W�P/V PcT��oW�^umoj Z*Z�\dZ�� Zo}0\3Z�� }	\db��
L M/O�PUQERSP/T�V P/W>XpY �	\�s � q*\3b � }	\dZ �
eNf h�PUj klW�m*noQ>X(Y b	\3b�� r4\3a�� Z�\d]��

� �J@��(� � � � ����������� ��*$�/�(� % # ��� �����/*�! � F1#���������� %EK
@ ��' - ���/* � %-'&��.	�/'-�
# *�)���.	�J�L��*�# ��! '&� ���)�@�� � ! '
*�)���.	�J� 0

the discrete surface. Our method provides a precision
with an error less than 5

�
even without any smoothing.

When smoothing, normal precision is about one degree
(with a smoothing distance of 5 voxels). Note that with
the discrete surface, the smoothing distance should not
be less than 3 voxels.

Rendering using Normals
From geometry and normal we have generated new
views. Triangles can be directly with Graphics Hard-
ware (OpenGL). For example, figures 13, 15 and 14
show new images.

� !�� � R/�
� �(������� �
� ��� �/*$#������(*�� � %&��*$� '-� ����*��/�(� %�9B� 0 - �('�=
������� ��!�"���#%$&��'�� .	�/��!E= ��*$� ! �$@ �/%�9 @ 0 - �('�= � ��� �
��,
����,�% . ��� ! =���*���!
� @ � % 0

� !�� � R�� � 1��
� �(������� �)�� � � *�#���� ��*��1� %&��*�� ��)
� ��� *�)���.	����- �('�=
%�.))�'�=���*��$9 �$0 - �('�= �(�)��� ��!�"���#*$&��' � . ��� ! =���*��
!
�$@ � % *�)�'-� '�=��8@ � . �$, %&�����?��! �)�*)�@�� � ! ' %&� ��=�)�� ,
��'-'-�/9�@ 0�- �('�= � ��� �
��, ����,�%� . ��� ! =���*��+!
�$@ � % !�)�* ,
'-)��$� ��% %�.))�'6=�����9$!/0 - �('6=	��!�'&�$���$%�� =������ *�)�� . ��� 0
Rendering using Voxel Radiances
It is also possible with pixel-rays (in-rays) to estimate
an average radiance emitted by the voxel (figures 16).

� !�� � R��

� 1��
� �(���������
� ��� � *�#$� � ��*$��� %&��*�� ��)�� �
� *�)�� . ��� � ��* �
��)
�$�
� !����� '6=�� '-� ����*��/�(� % *$)���.	����%+����� � � � ����! �
#�@$,
'�=�� ��)�� �
� *$)���.	��� 0 �$0 - �('6= ������� ��!�"���#%$&��'�� � ��� !E= ,
��*�� !
�$@ � %�9 @ 0 - �('6=0� ��� �
��, ����,�%�9�!/0 - �('�= %�.))�'�=��
#
�)���.	�J�BF1# �(%-'6�� !��)�� �	��)
�$�
��%EK&0

8. CONCLUSION
This paper presents a method for using image pixels to-
gether with marching cubes for a shape from silhouette
application. Our work relies on a 6-connected discrete
surface obtained with the method proposed by Szeliski
[18]. We also propose two methods for estimating the
normal inside voxels, using either triangular mesh or
discrete surface. As seen in the results, our method
proves robust even for a cheap acquisition system with
usual camera and turntable.

In the future, we aim at combining the reconstructed
information with image-based techniques such as ligh-
fields/lumigraphs [10, 6] for integrating (real) objects
into virtual environments with realistic relighting and
global illumination. This method has already been used
for estimating light sources positions from images [14].

9. ACKNOWLEDGMENTS
We would like to pay a tribute to Alain Fournier (Imager
Lab, University of British Columbia, Vancouver) with
whom the overall framework around this paper has
been initiated in 1999. The quad has been designed by
Stewart Cowley who kindly accepted to let us use this
model for our work.

10. REFERENCES
[1] P. Callet. Rendering of binary alloys. In

�0|~| ��}
�Q�e���

, sep 2004.
[2] Q. Chen and G. Medioni. A volumetric stereo

matching method: Application to image-based

� !�� � R/�

� 1�� � %�� � ���
� �(������� �
G � � ������*��/��� !)/��)�� !)�� ��� %��)�*�# %1'-) '�=��
�������E�/���1�E�J# ����* ! �&�)�� ����!E= ��)�� �
� 9+�$0 �)�� � �$�(��,
'&�$�J� #$� ��#:9 @ 0 �)�� � ������� !���)�- * F '-)/,�K�9 !/0 �"! ,
'&�$�J� � =�)�'-)������ ��=:9�# 0	�)�� � ������� -))!# ,��) - � � 9���0-))!# ,��)�- ��� - �('�= .)!# �(� �
���(�/= '&��*$��0

modeling. In
| �A�i�

, pages 29–34. IEEE
Computer Society, 1999.

[3] C H Chien and J K Aggarwal. Volume/surface
octrees for the representation of
three-dimensional objects.

|�r��m�/s ���m�c������r$u
}lt�v*�'o/��� ��v&�Dp¡�~tCrM�Vp � ���

, 36(1):100–113, 1986.
[4] C. Hernández Esteban and F. Schmitt. Silhouette

and stereo fusion for 3d object modeling. In���m��� �Q���$�
, pages 46–53, 2003.

[5] Olivier Faugeras and Renaud Keriven. Complete
dense stereovision using level set methods.
��p�� � sHt�p � r���p � �Jud|�r��¡�9s���pVt�{A��� pVu9�Vp

, 1406:379+,
1998.

[6] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
� |	� |�r��m�9s���pVt"}ltCvV�'oH��� �

, 30(Annual
Conference Series):43–54, August 1996.

[7] Jean-Marc Hasenfratz, Marc Lapierre,
Jean-Dominique Gascuel, and Edmond Boyer.
Real-time capture, reconstruction and insertion
into virtual world of human actors. In

�c������r$u'�
����	Dp�rYv0u�	>}lt�vV�QoH��� �

, pages 49–56. Eurographics,
Elsevier, 2003.

[8] D. R. Hougen and N. Ahuja. Adaptive
polynomial modelling of the reflectance map for
shape estimation from stereo and shading. In| �A�i�

, pages 991–994, 1994.
[9] Kiriakos N. Kutulakos and Steven M. Seitz. A

theory of shape by space carving. Technical
Report TR692, , 1998.

[10] Marc Levoy and Pat Hanrahan. Lightfield
rendering.

|�r��m�9s���pVt"}ltCvV�'oH��� �
, 30(Annual

Conference Series):31–42, August 1996.
[11] Marc Levoy, Kari Pulli, Brian Curless, Szymon

Rusinkiewicz, David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3D scanning of
large statues. In Kurt Akeley, editor,

{/� �&�$tCvV�'o
�Q�e�e�:�j|�r �m�9s���pVt"}lt�v*�'oH��� �¡�lt�rM�*p�p 	$�Ju����

, pages
131–144. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000.

[12] William E. Lorensen and Harvey E. Cline.
Marching cubes: A high resolution 3d surface
construction algorithm.

� |	� |�r��m�/s ��pVt
}lt�v*�'oH��� �

, 21(Annual Conference
Series):163–169, July 1987.

[13] W. N. Martin and J. K. Aggarwal. Volumetric
descriptions of objects from multiple views.��
�
�
�n/tCv$u��Vve� � � r$u��Br$uX�
v�����pVt*u � uAv$w ��������v0u�	
�Zve�*oH�@u p��*u/��p�wJw � �DpVu9�Vp

, 5(2):150–158, March
1983.

[14] B. Mercier and D. Meneveaux. Joint estimation
of multiple light sources and reflectance from
images. In

�0|~| ��}O�Q�e�V�
, sep 2004.

[15] S. Seitz and C. Dyer. Photorealistic scene
reconstruction by voxel coloring, 1997.

[16] Hemant Singh and Rama Chellappa. An
improved shape from shading algorithm.
Technical Report CS-TR-3218, Department of
Computer Science, University of Maryland
Center for Automation Research, College Park,
MD, February 1994.

[17] G. Slabaugh, B. Culbertson, T. Malzbender, and
R. Schafer. A survey of methods for volumetric
scene reconstruction from photographs. In��}j�e�

, pages 81–100, 2001.
[18] Richard Szeliski. Rapid octree construction from

image sequences. In
| ��}i�C��
�� �;v&�Dp

��u�	DpVt � � v0u�	$�Ju �
, volume 1, pages 23–32, July

1993.

