
Direct Volume Rendering of Unstructured Grids
in a PC based VR Environment

Paul Benölken
Fraunhofer IWU

Reichenhainer Straße 88
09126 Chemnitz

paul.benoelken@t-online.de

Holger Graf
Fraunhofer IGD

Fraunhofer Straße 5
64283 Darmstadt

holger.graf@igd.fhg.de

ABSTRACT
In this paper we present our solution for fast, direct volume rendering of unstructured grids on standard PC
workstations. We describe our modification of the incremental slicing approach for achieving high performance
as well as the application of geometry-compression methods for minimizing the memory requirements.
Furthermore, we show our implementation for the interactive modification of transfer functions (classification) in
a virtual reality environment by using 3D interaction widgets. Finally we present and discuss the results, we
achieved with our application in a VR environment.

Keywords
Direct Volume Rendering, Unstructured Grids, Geometry Compression, Virtual Reality

1. INTRODUCTION
Direct volume rendering of unstructured 3D scalar
fields has been the subject of a number of research
activities and publications over the past decade.
Many efforts are directed towards improving the
rendering performance by parallelization or
efficiently using graphics hardware. Although great
advances have been reported, many techniques are
either restricted to handling fixed cell types and
optical models or require massive parallel computing
facilities for achieving sufficient frame rates.
However, due to the increasing power and wide
availability of consumer graphic boards, different
volume rendering algorithms have been implemented
on standard PC hardware. Nevertheless, the existing
solutions still do not fully match the requirements of
interactive applications like those required in virtual
reality environments.
Beside interactive visualization, the classification of
the scalar field by generating transfer functions plays
an important role for the volume rendering process.

A favourable transfer function exposes the important
data structures and hides the non relevant parts of the
dataset. Frequently used are opacity functions
assigning colors and opacities based on scalar values.
Many datasets contain complex structures with
overlapping scalar values. Here the application of
opacity functions frequently fails. Different
techniques have been developed within the last years
for visualizing more details by applying
multidimensional transfer functions as well as for
providing more convenient user interfaces. However
the classification of unstructured volume data is not
addressed.

2. Related Work
Besides different optimizations and parallelization for
improving software solutions like ray castings
[Lev90] or splatting techniques [Wes90], several
research activities addressed the exploitation of the
graphics hardware as in [WE97]. Cell projections like
the projected tetrahedra (PT) method [ST90] have
become one of the most popular methods for
hardware accelerated volume rendering.

Different approaches have been considered for
improving the image quality [SBM94], [GRS+02],
[RE02] as well as for achieving higher frame rates by
accelerating the required cell sorting [Wil92],
[SMW98], [CKM+99]. Other hardware accelerated
methods like [WKE02] avoid the sorting process by
applying an emissive optical model and exploiting the
vertex programming facilities of current graphic
boards for implementing a view-independent cell
projection. Nevertheless, besides tetrahedral
elements, unstructured grids resulting from finite

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

element computations frequently contain different
polyhedral elements (e.g. prisms, hexahedra etc.).
Hence applying the PT algorithm for such grid types
requires a tetrahedral decomposition of each cell,
which in turn increases the amount of cells to be
processed and thus reduces the overall performance.
Hence, the recently presented approaches extend the
original PT algorithm for processing different kind of
polyhedra. Roettger and Ertl [RE03] analyse the
maximum performance of PC graphic accelerators
like the NVIDIA GeForce series of cards and apply
an emissive optical model for achieving fast
renderings.

Although several accelerations and improvements
were successfully applied as in [Mor04], the
performance of these algorithms is still below the
interactive frame rates achievable for regular grids.
Hence alternative solutions presented by [Wes01]
and [WE01] implement different strategies for re-
sampling unstructured volume data onto cartesian
grids in a preprocessing step. Interactive performance
is gained by employing texture based volume
rendering on the re-sampled dataset. Nevertheless,
these solutions are constrained by the available
texture memory on the graphic boards. Larger
datasets or higher resolutions are processed by
splitting the cartesian grids into multiple blocks
(bricks). However, due to the limited bandwidth, data
transfer from the CPU main memory to the GPU
texture memory results in performance losses.

Another solution, proposed by Max et al. [MWSC03]
implements cell projections (including cell sorting)
and slicing methods. Both methods are parallelized
for improving the performance and supplemented
with anti-aliasing techniques for handling small cells.

Further research activities are focused on the
definition and manipulations of transfer functions.
Typical graphical user interfaces are restricted to
opacity functions. Modification of the opacity
functions are done by moving control points of the
2D graph. He et al. [HHKP96] apply genetic
algorithms for finding good transfer functions. In an
iterative process the user selects the desired mapping
from an automatically generated population of small
thumbnail renderings. Marks et al. [MAB+97]
propose a Design Gallery as a visual interface to the
space of possible transfer functions. An image
difference metric is used for arranging different
renderings, from which the user selects the most
appealing one. A more data-centric approach was
presented by Kindlmann et al. [KD98]. Their semi-
automatic method exploits the relationship between
data values and their first and second derivatives in
direction of the gradient, for detecting material
boundaries. Further approaches define the transfer
functions based on the principal curvatures

reconstructed from the input data [HKG00] or apply
dynamic programming for a template based
adjustment of transfer functions [RSHSG00]. Kniss et
al. [KKC01] use a direct manipulation widget in a
desktop environment for specifying multidimensional
transfer functions based on data value, gradient
magnitude, and the second directional derivative.
Botha and Post [BP02] presented a fast method based
on slice-based preview for finding an appropriate
transfer function.

3. Interactive Direct Volume Rendering
As shown by Chopra and Meyer [CM02] fast
visualizations are feasible by using incremental
slicing. Performance improvements have been
achieved by avoiding redundant computations and
replacing the active cell and active edge list in the
original algorithm of Yagel et al. [YRLN96] with an
active region list. Inspired by the mentioned slicing
method of Max et al., our solution finally skips the
computation of the active region list which originally
was required for each change of the view direction.

Two different modes have been implemented for
computing the set of volume slices. In interactive
mode for each of the three X, Y, Z axes a set of slices
is computed in a preprocessing step with a predefined
slice distance. Since artifacts might become visible
from intermediate view points, we additionally
employ an immediate mode which computes a set of
slices from the current view direction when the rotary
motion stops.
3.1 Computation of Volume Slices
Given an unstructured grid with Nn node coordinates
ni {n0 ... nNn-1} and Nc grid elements ci {c0 ... cNc-1}
the geometry and topology of each cell ci is defined
by a list of cell nodes {nci}, where each cell node
refers to a specific node coordinate ni.
Starting with a given distance Δz of slicing planes and
a view direction xview the number of required slices
Nslices as well as the start and endpoints, zstart and zend

in object space are calculated. Afterwards, the slice
computation proceeds in the following way:

1. for each node ni

compute and store the node distance dni to the
viewplane p = zend.

2. for each cell ci

for each cell node nci

a.) compute the slice index
si = dni /(zend – zstart)Nslices

b.) determine the min/max slice index
smin and smax

c.) for each slice index si  {smin . . . smax}
compute and store the slice polygons fsi

In step 2c we applied a variant of the marching cube
method for incrementally slicing the volumetric cells.
Each cell node is classified as “0” or “1” depending
on the sign of the node distance dnci. Since in step 1
the viewplane distance dni was calculated for each
grid node, the required computations of the specific
slice-point distances dnci for each cell node nci simplify
to

dnci = dni + Δz (si + 1).
The generated bit sequence is used as an index into a
lookup table, which identifies the cell edge for the
vertex interpolation of the slice polygon. Different
lookup tables are maintained for identifying the
specific (e.g. tetra or hexa) polyhedron intersections.
Hence a decomposition into tetrahedral elements is
not anymore required. Finally each polygon set of a
specific slice is stored into an indexed list PLN

as

illustrated in figure 1. Therefore the computation of
active region lists is skipped.

Figure 1: Structure of the indexed polygon list for
storing the slice polygons.

Besides the polygon data, the indexed list structure
contains empty slices, which are indicated by a NIL-
pointer, so that intermediate slices can be inserted or
skipped.
3.2 Semi Adaptive Slicing
The computation of volume slices allows fast direct
volume renderings of unstructured grids. However
the optimal choice of the slice distance Δz is still a
problem of such slicing techniques. Small details are
missed, if the slice distance was chosen too large,
whereas small values of Δz result into over sampling.
According to Chopra [CM02], no details are missed,
if the distance Δz is chosen to be neither greater nor
equal to the smallest edge emin of the dataset.
However, this approach results into extreme large
amounts of polygons, which are hardly processed in
real-time. Hence Max et al. propose the usage of
splatting methods or cell projections for all those
cells, which have been missed by the slicing
operations.

An alternative approach is the semi adaptive
computation of volume slices. For this purpose, a set
of equidistant slices is created using our previously
described method. In this first step, all elements
which have been successfully sliced, are marked as
processed. Afterwards the number of slice regions is
doubled and the described slicing procedure is
applied to the remaining unprocessed cells with the
adapted slice distance Δzi. This step is repeated until
either all elements or a predefined percentage has
been sliced. Within each iteration step, a separate
indexed polygon list PLNi is built. Afterwards the
polygon list of the previous step PLNi-1 is completed
with the new generated one. This operation is
accomplished by simple pointer operations by
exploiting the previously mentioned indexed list
structure.

This approach enables the generation of slice stacks
with varying resolutions in z-direction. Additional
slices may be inserted or skipped in a background
process. Hence different levels of detail could be
dynamically generated according to the user defined
scaling and zooming operations.

3.3 Interactive Classification
An efficient visual analysis of the volume dataset
requires an interactive classification and hence direct
manipulation of the transfer function. Beside an
immediate update of the scalar field visualization, the
representation of the transfer functions is another
important factor for gaining insight into the dataset
and its value distribution.

Usually multi-dimensional transfer functions offer a
higher flexibility for detecting and exposing
characteristic structures. Nevertheless the creation of
a meaningful representation for more than three
independent parameters is not trivial. Therefore our
implementation was restricted on 2D transfer-
functions which appeared to be a good compromise

Figure 2: The interaction panel with the 3D
classification widget and sliders for interactive

manipulation of the transfer function.

between the flexibility of multi-dimensional transfer-
functions and one-dimensional opacity assignments.

Since one of our aims was the integration into a VR
environment, a 3D representation of the transfer
function appeared to be a natural extension for 3D
interactions and visualizations.

Figure 2 shows the interaction panel with the 3D
classification widget and the sliders we implemented
for visualizing and manipulating 2D transfer
functions. The transfer function is drawn as a height
field by mapping scalar values and gradient
magnitudes onto the tablet plane, whereas the opacity
(alpha) values define the height of the palette.

Direct manipulations are supported by using a 6DOF
interaction pen for changing individual alpha values.
Since this interaction is strongly influenced by the
assignment of alpha and height values, we examined
different mappings. Tests with linear mappings
showed significant correlations for lower alpha
values, whereas changes of higher alpha values are
reflected by minor changes in the scalar field
visualization. A better reflection of small alpha
values was achieved by employing a logarithmic
mapping with basis b using the following formula:

h = ln((b-1) α + 1) / ln(b)

Where h is the computed height value and α indicates
the corresponding transparency. The inverse function
is used for obtaining the transparency from the user
defined height value, which is:

α = (bh-1) / (b-1).

Indirect manipulations of the transfer function are
accomplished by moving one of the 3D sliders on the
interaction panel. Different operations have been
implemented for changing the global transparency as
well as for highlighting edges and material
boundaries by adjusting gradient weights. Another
operation supports the selection of specific regions by
specifying mean and range of the gradient-value
domain. Further interaction buttons have been
integrated, for storing the current transfer function,
for loading the settings from a previous session, as
well as for performing undo and redo operations on
the current transfer function. A list of transfer
functions is used for tracking the changes within a
session.
The Classification is accomplished by storing the
transfer functions as 2D texture maps. The scalar
values and gradient values are transferred to the
implemented fragment program which applies texture
mapping by taking the scalar values and gradient
magnitudes as texture coordinates for determining the
fragment color and finally performs the lighting
calculations.

4. Our Solution
This chapter describes our realization of an
interactive direct volume rendering system. It gives
an overview of the architecture and some
optimization strategies which are used in order to
optimize the data handling on common PCs.

4.1 Architectural View
Figure 3 shows the client-server architecture of our
application. Memory and CPU intensive tasks like the
slicing of the grid and the computation of gradient
values are performed by the server.

The rendering client is in charge of requesting the
processed data from the server and rendering the
generated stack of polygon slices (stack processing)
as well as for performing per fragment operations as
lightning or texture reads using its Graphics
Processing Unit or GPU. Furthermore, the rendering
client handles the user interactions like changes in the
view direction and manipulation of the transfer
function.

An optional compression and decompression of the
slice stacks can be applied for limiting the memory
requirements and obtaining an efficient usage of the
available bandwidth.

4.2 Geometry Compression
One of the requirements for the above mentioned
method to interactively render unstructured grids is
the storage of the computed polygon sets. Depending
on the underlying grid resolution and the selected
slice distance, the required storage space might easily
exceed the capacities of common workstations.
Hence for limiting the memory requirements of our
method, we integrated vector quantization and scalar
normalization operations. In our implementation we
used 16 Bit shorts for storing vertex coordinates and
8 Bit unsigned char values for each normal
component and scalar values.

Figure 3. Client-Server architecture for direct
volume rendering

Thus the required memory was reduced by a factor of
2 compared to the original floating point size. Since
the coding of the vertex positions consists of a
translation and a scaling operation, the subsequent
decoding is easily accomplished by the graphics
hardware.
As already pointed out by Deering [Dee95], the
resulting accuracy after decoding the compressed
data, is usually sufficient for display purposes.
An additional reduction of the data size is achieved
by transferring the individual slice polygons into
indexed face sets, which are efficiently displayed
using OpenGL vertex arrays. With this elimination of
redundant vertex information and the mentioned
quantization operation we achieved a reduction of the
polygon slices by 25% of the original data size.
Further reductions have been achieved by integrating
a compression scheme, which we successfully applied
for arbitrary polygon sets from CAD models [BS02].
The algorithm encodes a polygonal mesh into a byte
sequence which is finally compressed using Huffman
encodings. We applied this method to the computed
polygon slices and achieved a reduction of below 10
percent of the original size, on different slice sets.

5. Results
Our implementation was tested in our VR
environment with different datasets and PC
workstations. Figure 4 shows the interactive direct
volume rendering of the space shuttle flow field in
our VR environment.

The classification of the volume data and hence the
manipulation of the underlying transfer function is
done by directly changing the 3D classification
widget with the 6DOF interaction pen or by using the
3D menu elements on the interaction panel. The
position and orientation of the dataset is controlled by
the user by placing the tracked artifact object with its
tracking sensors in the VR environment.

The evaluation of our method was done using
different datasets with different sizes and cell
elements. The shuttle dataset shown in figure 4
consists of 226800 nodes and 215512 hexaedron-
elements. Figure 5 shows the result from a simulation
of a polymere injection of a single nozzle, which was
displayed using our direct volume rendering
method. .

The datasets consists of 87754 nodes, 223936 tetra
elements and 26900 hexahedrons. Figure 6 shows the
result of our direct volume rendering method with the
bluntfin dataset. The dataset consists of 40960 nodes
and 37479 hexaedron elements.

Some benchmarks have been driven in order to
validate our approach. Figure 7 shows the timings of
the slicing and quantization operation, which we
achieved for the used datasets with different slice
numbers.

Figure 6: Direct volume rendering of the bluntfin
dataset.

Figure 5: Direct volume rendering of a polymer
injection from a single nozzle

Figure 4: Interactive direct volume rendering the
space shuttle flow field in a VR environment.

The measurements were performed on a mobile PC
equipped with a 3,06 GHz Intel CPU, 512MB main
memory and a Windows XP operating system.

The performance of the slicing and quantization
operation is strongly related to the size of the dataset
and the number volume slices, as shown in the
diagram below. The computation of detailed slice sets
is done very quickly for small datasets whereas the
calculation for large datasets requires a delay of up to
three seconds. However, after the slice computation
is completed, the display and blending of the slice
stacks is performed by the graphics hardware.
Figure 8 summarizes the framerates we achieved for
rendering and lighting the mentioned datasets using
axis aligned slices with different slice distances and
hence polygon numbers. The measurements have
been carried out on a windows PC equipped with a
2,8 GHz Intel CPU, 1GB main memory and an
NVIDIA GeForce FX 5900 graphics board with
128MB video memory.

The diagram shows the strong dependency of the
achieved display performance from the number of
polygons which have to be processed by the graphics
hardware. As expected, small polygon sets are
displayed with high framerates, wheras the display
time slows down with the increasing number of
polygons such that the limits of these graphicscards
will be at approx. 1 million polygons.

Hence the performance of the presented approach is
predominantly defined by the rastering and blending
capabilities of the graphics hardware.

6. Conclusion
Our solution allows fast direct volume renderings of
unstructured grids on a standard PC platform. The
slicing algorithm quickly generates polygon slices for
small datasets. Larger datasets can be processed by
generating axis aligned slice sets in a preprocessing
step. Alternatively slice sets with a reduced z-
resolution might be used for previewing during the
user interaction, while additional slices are computed
in a background process.

As shown before the methods processes unstructured
grids with mixed tetra- and hexaedral elements and is
easily extended for handling further elements. A
tetrahedral decomposition is not anymore required so
that the amount of cell elements to be processed is
strongly reduced which in turn leads to faster
computations. The implemented compression
methods additionally reduce the memory
requirements so that the available bandwidth is more
efficiently used.

Moreover, the method allows an improved balancing
of the workload between GPU and CPU and hence an
improved overall performance. In contrast to this the
load of view-independent tetra-projections is
predominantly on the GPU. Furthermore the semi-
adaptive slicing approach offers an efficient
alternative for displaying small grid cells without
generating inadequate amounts of polygons.
Finally the created modules support the interactive
visualization and classification of volume data in a
VR environment. The developed 3D interaction
facilities enable a direct and convenient manipulation
of the transfer function as well as an intuitive
navigation in virtual environments.

7. Outlook
The presented work currently allows the presentation
of static volume data. Further work should
concentrate on the inclusion of dynamic and time
variant simulation data. With some modifications this
method can be used for colourised and opacity
animated renderings of scalar fields, which values
change over time. Using a time invariant geometry
the interpolation weights resulting from the slicing
operations as well as the indices of affected grid
nodes can be stored in addition to the vertex data.
During the following time steps only the indexed
nodes and the interpolation weights have to be
transferred to the GPU which eventually performs the
interpolation via a vertex program.

Figure 7: Timings for slicing the datasets with
different slice numbers.

Figure 8: Framerates for rendering and lighting
axis aligned slices with different polygon numbers
using a view port of 1024 × 768.

 REFERENCES
[BS02] P. Benölken and A. Stork. Geometry

compression for collaborative CAD
applications. In Ralph H. u.a. Stelzer,
editor, CAD 2002. Proceedings :
Corporate Engineering Research,
pages 121-129.

[BP02] C.P. Botha and F.H. Post. New technique
for transfer function speci-fication in direct
volume rendering using real-time visual
feedback. In Proc. of the SPIE Int.
Symposium on Medical Imaging, volume
4681, 2002.

[CKM+99] J. Comba, J. T. Klosowski, N.L. Max,
J.S.B. Mitchell, C.T. Silva, and P.L.
Williams. Fast polyhedral cell sorting
interactive rendering of unstructured grids.
In Computer Graphics Forum (Proc.
Eurographics ’99), volume 18, pages 369–
376, 1999.

[CM02] Prashant Chopra and Joerg Meyer.
Incremental slicing revisited: Accelerated
volume rendering of unstructured meshes.
In Proceedings of IASTED Visualization,
Imaging, and Image Processing 2002,
pages 533–538, Sept. 9-12 2002.

[Dee95] Deering, M 1995. Geometry Compression
Proceedings SIGGRAPH, 1995.

[GRS+02] Stefan Guthe, Stefan Roettger, Andreas
Schieber, Wolfgang Straßer, and Thomas
Ertl. High-quality unstructured volume
rendering on the pc platform. In ACM
Siggraph/Eurographics Hardware
Workshop, 2002.

[HHKP96] T. He, L. Hong, A. Kaufman, and H.
Pfister. Generation of transfer functions
with stochastic search techniques. In
Proceedings IEEE Visualiztaion,
pages 227–234. IEEE, 1996.

[HKG00] J. Hladuvka, A. König, and E. Gröller.
Curvature-based transfer functions for
direct volume rendering. In Spring
Conference on Computer Graphics
(SCCG 2000), pages 58–65, 2000.

[KD98] G. Kindlmann and J.W. Durkin. Semi-
automatic generation of transfer functions
for direct volume rendering. In IEEE
Symposium On Volume Visualization,
pages 79–86. IEEE, 1998.

[KKC01] J. Kniss, G. Kindlmann, and C.Hansen.
Interactive volume rendering using multi-
dimensional transfer functions and direct
manipulation widgets. In Proceedings

IEEE Visualization 2001, pages 255–
262. IEEE, 2001.

[Lev90] M. Levoy. E±cient ray tracing of volume
data. ACM Transactions on Graphics, 9
(3): 245-261, July 1990.

[MAB+97] J. Marks, B. Andalman, P.A. Beardsley,
H. Pfister, et al. Design galleries: A
general approach to setting parameters for
computer graphics and animation. In ACM
Computer Graphics (SIGGRAPH ’97
Proceedings), pages 389–400. ACM,
August 1997.

[Mor04] Kenneth Dean Moreland. Fast High
Accuracy Volume Rendering. Dissertation,
The University of New Mexico, 2004.

[MWSC03] Nelson Max, Peter Williams, Claudio
Silva, and Richard Cook. Volume
rendering for curvilinear and unstructured
grids. In Computer Graphics International,
2003.

[RE02] S. Roettger and T. Ertl. A two-step approach
for interactive preintegrated volume
rendering of unstructured grids. In
Proceedings of IEEE Volume Visualization
and Graphics Symposium 2002, pages 23–
28, October 2002.

[RE03] S. Roettger and T. Ertl. Cell projection of
convex polyhedra. In Proceedings of the
2003 Eurographics/IEEE TVCG
Workshop on Volume graphics, page
103108. ACM, 2003.

[RSHSG00] C. Rezk-Salama, P. Hastreiter, J.
Scherer, and G. Greiner. Automatic
adjustment of transfer functions for 3d
volume visualization. In Proc. Vision,
Modelling, and Visualization (VMV),
pages 357–364, 2000.

[SBM94] C. M. Stein, B. G. Becker, and N. L. Max.
Sorting and hardware assisted rendering
rendering for volume visualization. In
Symposium on Volume Visualization,
pages 83–89, 1994.

[SMW98] C. Silva, J. Mitchell, and P. Williams. An
interactive time visibility ordering
algorithm for cell complexes. In ACM /
IEEE Symposium on Volume
Visualization, pages 15–22, 1998.

[ST90] P. Shirley and A. Tuchman. A polygonal
approximation to direct scalar volume
rendering. In Computer Graphics (San
Diego Workshop on Volume
Visualization), volume 24, pages 63–70,
1990.

[WE97] R. Westermann and T. Ertl. Rendering and
re-sampling unstructured volume data by
polygon drawing. Technical Report 17,
Universität Erlangen-Nürnberg, 1997.

[WE01] Manfred Weiler and Thomas Ertl.
Hardware-software-balanced resampling
for the interactive visualization of
unstructured grids. In Proceedings of
the conference on Visualization ’01, pages
199 – 206. IEEE Computer Society, 2001.

[Wes90] L. Westover. Footprint evaluation for
volume rendering. In Computer Graphics,
volume 24, page 367-376, 1990.

[Wes01] R. Westermann. The rendering of
unstructured grids revisited. In
Eurographics/ IEEE Symposium on

Visualization 2001, pages 65–74,
2001.

[Wil92] P. Williams. Visibility ordering meshed
polyhedra. In ACM Transaction on
Graphics, volume 11, pages 103–126,
1992.

[WKE02] Manfred Weiler, Martin Kraus, and
Thomas Ertl. Hardware-based view-
independent cell projection. In IEEE
Symposium on Volume Visualization,
pages 13 - 22, 2002.

[YRLN96] R. Yagel, D. Reead, P. Law, A. Shihh,
and Shareef N. Hardware assisted volume
rendering of unsructured grids by
incremental slicing. In 1996 Volume
Visualization Symposium, pages 55-62.
IEEE Computer Society Press, 1996.

