
3D Free-Form Modeling with Variational Surfaces

Alvaro Cuno, Claudio Esperança, Paulo Roma Cavalcanti, Ricardo Farias
Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computação/COPPE
 Rio de Janeiro, Brazil

{alvaro, esperanc, roma, rfarias}@lcg.ufrj.br

ABSTRACT
We describe a free-form stroke-based modeling system where objects are primarily represented by means of
variational surfaces. Although similar systems have been described in recent years, our approach achieves both a
good performance and reduced surface leak problems by employing a coarse mesh as support for constraint
points. The prototype implements an adequate set of modeling operations, “undo” and “redo” facilities and a
clean interface capable of resolving ambiguities by means of suggestion thumbnails.

Keywords
Free-form modeling, stroke based modeling, RBFs.

1. INTRODUCTION
Typical 3D modeling systems are mostly designed to
handle the creation of technical models, i.e., objects
with precise measures or which must obey well-
defined geometric rules. Such systems are not well-
suited to handle so-called free-form models, which
can be regarded as 3D models akin to 2D free-hand
sketches. One reason for this is the fact that
interaction in 3D relies almost exclusively on 2D
projections, since the only feasible alternative for
effectively working in 3D space is by employing
costly and cumbersome virtual reality gear. Thus, the
user must ultimately manipulate 2D features in order
to accomplish 3D editing tasks.

Perhaps the most salient features of any given 3D
model are its edges and silhouette lines. Igarashi et
al. [Iga99] used this observation to build a prototype
3D free-form modeler called Teddy. In contrast with
common 3D modelers, Teddy is easy and intuitive
enough to be used even by small children. It relies on
a scheme by which free-hand drawing strokes
representing silhouette lines are used to build and
modify smooth closed surfaces. Teddy also innovates
over other 3D modelers by not using the standard

WIMP (Windows, Icons, Menus and Pointers)
interface paradigm. Rather, all interaction is based
upon stroke recognition and a very small number of
command buttons.

Another key aspect that must be addressed in the
construction of stroke-based interfaces is the
resolution of ambiguities that may arise during a
modeling session. For instance, a new stroke drawn
by the user may be interpreted either as the cue for
creating a new shell or as the profile of an extrusion
operation. Our system copes with this problem by
using a suggestive interface similar to the approach
described in [Iga01]. Namely, thumbnail images
representing the alternative results are displayed in a
corner of the main display window, which must then
be clicked by the user in order to select the desired
outcome.

The remainder of this paper is organized as follows.
Section 2 presents some relevant work related to the
problem at hand. An overall description of the
proposed system is presented in Section 3 and some
concepts of the variational surfaces are introduced in
Section 4. The involved algorithms are described in
detail in Section 5. Some key aspects of the
implementation are discussed in Section 6 and some
results and limitations are presented in Section 7.
Finally, some concluding remarks and suggestions
for future work can be found in Section 8.

2. RELATED WORK
In the last few years, several experimental systems
have been proposed which offer interfaces for the
specification and construction of different types of
three-dimensional scenes starting from 2D strokes
[Zel96, Tol99, Mar99, Coh99, Coh00, Tol01, Iga01,
Tai04]. Specially worthy of note is the Teddy system

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

proposed by Igarashi et al. [Iga99], which can be
used to create simple models with spherical topology
with only a few strokes. An initial model is created
by drawing a simple closed curve which is then
inflated resulting in a blob-like object such that the
curve approximates its silhouette. Additional strokes
can then be used to extrude protrusions, cut, bend or
smooth the model.

Modeling operations in Teddy are performed on a
polygonal mesh representation of the surface. Some
of these operations necessarily require the
subsequent use of smoothing algorithms on the
edited mesh. Nevertheless, some models end up with
undesirable protuberances and wrinkles due to
triangles with awkward characteristics. Besides,
Teddy does not support the creation of multiple
objects in the same scene and therefore operations to
combine these are unavailable.

Karpenko et al. [Kar02] deal with the problem of
undesired surface roughness by using Variational
Surfaces as the main representation scheme. These
surfaces are zero-sets of a class of implicit functions
known as RBF-based implicits. The term RBF -- or
Radial Basis Functions -- refers to the fact that the
basis functions used in the creation of the implicit are
radially symmetric. The key advantage of variational
surfaces lies in that they are naturally smooth, since
their construction can be regarded as an energy
minimization process. This, however, leads to other
problems. For instance, models with creases and tips
cannot be easily created. Also, the performance of
the system is heavily dependent on the number of
constraint points used in defining the implicit. This is
worsened by the fact that model editing operations
are performed using a great number of mesh vertices
produced by the visualization process.

Owada et al. [Owa03] present a system that generates
volumetric models from 2D strokes. Besides making
it possible to create, cut and extrude surface features,
their approach also allows the specification of
internal structures in the models with arbitrary
topology. The main disadvantage of that system is
that simple smooth surfaces can be modeled only
with high storage and computation costs.

Blobmaker [Ara03] is prototype system quite similar
to the one presented by Karpenko et al. Its main
contribution lies in the use of skeletons for model
construction. This allows the creation of objects with
arbitrary topology and an efficient application of
edition operations. However, the use of constraint
points positioned irregularly on the surface may lead
to surface leaks after a few modeling steps.

Recently, Tai et al. [Tai04] described a system based
on convolution surfaces for the construction of free-
form models starting from a silhouette curve. The

resulting shape has circular cross-section, but can be
conveniently modified through a sketched profile or
shape parameters. But, unlike the prototypes
discussed above, their system employs menus and
sliders in its modeling interface.

3. SYSTEM DESCRIPTION
The prototype system allows the user to quickly
create simple 3D models by drawing 2D strokes
directly on the system window. Once the model is
created, it can be further edited with operations such
as merging, extrusion and piercing, which are also
specified by inputting additional 2D strokes. Thus,
the execution of an operation depends solely on the
stroke form and where it was made, making it
unnecessary to press any button or select menu
options.

The user interface is composed of a design window
and five command buttons. The init button starts a
new modeling session, save saves the polygonal
mesh of the modeled object, undo cancels the effects
of the last operation, redo cancels the most recent
undo command, and the quit button exits the system.
Operations undo/redo work on a linear history of
editing operations starting at the most recent
invocation of the init command. This mechanism
enables the user to review all operations made during
a modeling session.

Input strokes are drawn by dragging the mouse with
the left button pressed. A model can be moved on the
xy plane by positioning the mouse over the model
and then dragging it with the right button pressed.
Translation along the z axis is accomplished in a
similar way, but the middle button is used instead.
Rotation uses an arc-ball interaction style: first, the
center of rotation is specified by clicking on the
model with the right button, the rotation angle and
direction is then input by dragging the mouse with
the right button.

Operations
A modeling session begins with an empty design
window. The user specifies the model silhouette to
be constructed by drawing a simple closed curve
with a single stroke. The system then constructs a
plausible 3D model based on the input silhouette.
This is accomplished by inflating the curve in both
directions by an amount proportional to its width,
this is, narrow areas will become thin regions while
wide areas generate fat regions [Iga99]. Figure 1
shows examples of input strokes and the
corresponding 3D models constructed by the system.

Object creation operations may be performed many
times, thus allowing the construction of scenes with
multiple objects (see Figure 1(d)).

Figure 1. (a), (b) and (c) Object creation

examples. (d) Scenes with multiple objects.

Figure 2. (a) Model merging. (b) Model piercing.

Model merging creates a new surface that
approximates two previously existing models which
are then discarded. The effect is to obtain a single
implicit representation that smoothly blends two
given shapes. The user commands this operation by
drawing a simple open stroke starting inside the first
input model and ending inside the second. The two
input models must overlap in space for this operation
to take place. Figure 2(a) shows an example.

The piercing operation can be used to make a hole in
a model. The user must first draw a closed curve
lying entirely inside the silhouette of the target
model. This stroke can be interpreted in two ways by
the system: either as a cue for performing a piercing
operation or as an auxiliary element for performing
an extrusion. At this point, the system will signal the
ambiguity by displaying in the upper-left corner of
the window a thumbnail image showing the result of
the piercing operation. The user must click on this
image in order to accept the operation (see Figure
2(b)). Any other action will trigger the other
interpretation.

Extrusion is a modeling operation which allows the
creation of a new protrusion on some part of a
model. The extruded feature is described by a profile
curve which is input as a simple open curve starting

and ending inside the model's silhouette but
extending beyond it. The area on which the
protrusion will be “glued” can be defined either
explicitly or implicitly. In the former case the gluing
area is delimited by a closed curve drawn previously
--see the preceding paragraph. In the latter case, the
gluing area will correspond to a roughly circular
region touching the two endpoints of the profile
curve. Figure 3 illustrates this operation.

Figure 3. Extrusion examples: (a) using a base

curve, and (b) automatic extrusion.

4. VARIATIONAL SURFACES
Although a through discussion of the math of
implicit object modeling is outside the scope of this
paper, for the sake of completeness, we try to lay
down a few key concepts below. The interested
reader is referred to the excellent introduction to the
subject in [Tur99a].

The term “Variational Surface” refers to the zero-set
of a RBF-based implicit function. Such functions are
used in the context of scattered data interpolation.
This is a problem where, given a set of n distinct
constraint points { } 3

21 ,,,, ℜ∈cccc nK and a set

of n function values{ }nvvv ,,, 21 K , it is sought a

smooth function ℜ→ℜ3:f such that

ii vcf =)(, for ni K1= . The smoothness criteria
usually involve some “deformation” energy that must
be minimized. This entails the solution of a linear
system with n equations. Solving this system is
perhaps the most computationally intensive part of
the system. We use a standard LU-decomposition
algorithm for this task.

A variational surface can be modeled simply by
choosing an adequate set of constraint points and
associated values. The most used approach requires
the placement of n/2 points with value equal to zero -
-these are known as boundary constraint points.
Another set of n/2 points are obtained by displacing
each boundary point by a small amount along the
direction of the estimated surface normal at that
point. These points, known as normal constraint
points, are associated with a small positive constant
w (see Figure 4).

Figure 4. The normal constraint points ni are
placed along the estimated normal vector at a
distance d from boundary constraint points qi.

The function f is such that f(x) < 0 for x inside the
curve and f(x) > 0 outside the curve.

Figure 5. (a) 2D input stroke. (b) Coarse
polygonal mesh of support for surface

specification (177 vertices and 350 triangles). (c)
Visualization of implicit surface f = 0, using

smooth shading and (d) the triangular mesh (3620
vertices and 7236 triangles)

Any standard method for visualizing implicit objects
can be used to render the modeled surface. In most
cases, a polygonization scheme is employed and the
resulting set of polygons is rendered using standard
graphics hardware. It should be noted, however, that
the polygonization scheme should be carefully
chosen in order to minimize the number of function
evaluations, since these are costly operations. We use
a hierarchical variant of the Marching Cubes
algorithm [Lor87].

5. ALGORITHMS

Creation
The creation algorithm consists essentially in
specifying an adequate set of constraint points based
on the user's input silhouette curve. The constraint
points are chosen to coincide with the vertices of a
coarse mesh built from the input stroke using an
inflation algorithm. Figure 5 illustrates a global idea
of the algorithm.

The construction of the coarse mesh follows the
method described in [Iga99]. We found that this
approach yields more pleasing results than the
simpler algorithm adopted in [Kar02].

Merging
The merging operation consists in creating a new
variational surface whose shape approximates the
union of two other given surfaces. The algorithm
consists of eliminating constraint points which are
contained in the intersection of the two input shapes.
Let us call h the resulting function and f and g the
two input functions. Then, h contains a boundary
constraint point x of f only if g(x) > 0. Similarly, h
contains a boundary constraint point y of g only if
f(y) > 0. Additionally, if a boundary constraint point
is eliminated in this process, then the corresponding
normal constraint point is also discarded. Figure 6
illustrates the idea.

Figure 6. Merging illustration in 2D. (a)
Constraint points positioned inside the

intersection of the models represented for f and g
are eliminated. (b) The new model represented by
function h is built with points that remained after

the elimination process.

Piercing
Let f be the function representing the model to be
edited, C the 2D closed curve drawn by the user
(represented by a simple polygon), and h the
resulting model from this operation. Then, the
piercing algorithm comprises the following steps:
1. Project each vertex Ci of C on the front-facing

triangles of the polygonized model surface. Let
Fi be the corresponding projected point. If the
projection of any Ci yields more than one
projected point, the piercing algorithm is
aborted.

2. Similarly, project the vertices of C on the back-
facing triangles of the polygonized model
surface and call Bi the resulting projected
vertices. As before, abort the algorithm if the
more than one projection point is found for any
given vertex.

3. Interpolate k evenly spaced points along each
line segment FiBi. Let us call such points Mj. In
our implementation, k = 3, i.e., three points are
generated between each pair of vertices Fi and
Bi.

4. Create an interpolating function g, which will be
built by the creation procedure, but using Fi, Bi
and Mj as boundary constraint points. The
surface orientation is defined by placing an
additional constraint point p placed at the
approximate center of the shape and mapped to a
negative value (-1 in our implementation). The
position of p is estimated by computing the
coordinate-wise average of all boundary
constraint points. If this point does not lie inside
curve C, then the piercing algorithm is aborted.

5. Perform the merging operation on f and g.

Explicit Extrusion
This type of extrusion is defined by two strokes: a
base curve drawn directly on the model surface
which defines the model area affected by the edition
process, and a profile stroke. If f is the input model
function, then the explicit extrusion is computed as
follows:
1. Project the base curve on the polygonized object

using the same rationale described in item 1 of
the previous Sub-section. Let us use C to refer to
this projected curve.

2. Project the profile curve on the plane that passes
through the base curve's barycenter and is
parallel to the viewing plane. Let us call P the
resulting curve.

3. Create an interpolating function g using the
vertices of C and P as boundary constraint
points. Additionally, estimate normal constraint
points by displacing the vertices of P outward.

4. Apply the merging operation to f and g.

Implicit Extrusion
This operation requires only an extrusion profile
[Kar02]. The procedure is the following:
1. Select the silhouette vertices of the model's

polygonized mesh vertices. A silhouette vertex is
any vertex incident on two triangles whose
normals point to opposite sides of the viewer
plane. Find S and E, the silhouette vertices
which are closest to the initial and end points of
the profile curve, respectively.

2. Project the extrusion profile curve on the plane
that passes by the middle point of line segment
SE and is parallel to the viewing plane.

3. Create an interpolating function g using the
vertices of the projected curve computed in the
previous step as boundary constraint points. For
each of these, add a normal constraint point by
displacing it outward with respected to the
curve.

4. Apply the merging operation between f and g.

6. IMPLEMENTATION DETAILS
The prototype system was written in the C++
language and the OpenGL library was used to render
the polygonized models. All example models shown
in this paper were built by the prototype system in a
PC equipped with a 1.3 GHz AMD-Duron processor
and 256 MB of main memory.
The system uses two main data structures: a scene
representation and a command list. The scene is the
model repository and the command list records the
history of a modeling session (Figure 7).
Every time a new modeling operation is issued by the
user, a corresponding command is inserted at the end
of the command list. Depending on the command
type, its execution can insert and/or remove models
from the scene. For instance, a command “merge”
will insert a new model in the scene, and will remove
the input models.

Figure 7. Main data structures of the system.

Figure 8. Stages for the command determination to execute starting from a 2D stroke.

Figure 9. System class hierarchy.

Thus, the Undo/Redo mechanism works by scanning
the command list in both directions replaying or
undoing the commands appropriately.
The system determines the command type to be
executed in response to the input 2D strokes using
the following three-step approach (see Figure 8):
1. The classification stage determines the stroke

type, i.e., simple or non-simple, closed or open.
2. Depending on the place where the stroke was

drawn and on its type, the inference stage creates
the appropriate command.

3. If an ambiguity is detected, the user is prompted
to choose the desired outcome. The resolution
stage then inserts the command in the list and
executes it.

This approach is based on the ambiguities resolution
proposal of Alvarado et al. [Alv2001].
A brief description of the system class hierarchy is
presented in Figure 9. The class attributes labeled
p_shape are pointers to models, while the absence of
the prefix p_ means a reference to the model itself.
Superclass Command is an abstract class with two
methods: execute() and undo(). Method execute()
executes the suitable actions for a command, while
method undo() undoes the actions done by method
execute(). For instance, in an extrusion operation,
undo() removes the resulting model from the
extrusion operation shape, and inserts the unextruded
model p_shape again.
Create is a class that implements the model creation
process. Extrude modifies the model pointed to by
p_shape generating a resulting model NewShape.

The same happens with class Pierce. Merge
produces a new shape NewShape starting from
models p_shape1 and p_shape2. Rigid motions
(rotations and translations) are implemented in class
Transformation.
Class Shape stores object geometry using two
representations: f, an analytical representation of a
RBF-based implicit function, and a triangle mesh
generated by applying a polygonization algorithm on
f.
Finally, class Scene contains a (possibly empty)
model list that is manipulated by methods insert()
and remove().

Figure 10. 3D models constructed with the

prototype system.

7. RESULTS AND LIMITATIONS
Figure 10 shows some models built with our
prototype system. They are smooth surfaces of
arbitrary topology and exhibit a loose “look” which
is characteristic of free-hand 2D drawings. The
interested reader may access

http://www.lcg.ufrj.br/Projetos/ffmodelling and
download some of these models in OFF format
[Ros89].
Due to the nature of the radial basis functions used in
the underlying representation of our system, models
with creases or sharp features cannot be created.
Also, sometimes the result of a modeling operation is
unintuitive. This is the case, for instance, when two
small objects containing relatively few constraint
points are merged (see Figure 11).
Another current limitation of the system lies in the
fact that the piercing operation cannot be applied
other than on relatively simple local geometries. For
instance, if the intended hole would pierce the
surface more than once, then the operation fails (see
Figure 12(a)). In some other cases, the hole fails to
properly pierce the model (Figure 12(b)).
Some modeling operations may incur in a problem
known as surface leak. This is due to the constraint
points being distributed irregularly. Figure 13
illustrates this problem. We deal with this problem
by using a coarse polygonal mesh introduced in the
model creation process (see the Creation sub-
section).

Figure 11. Merging two small models may yield

unintuitive results.

Figure 12. Limitations of the piercing operation.
(a) Piercing fails in complicated situations. (b)
Hole may fail to pierce the surface completely.

Figure 13. Surface leak problem. (a) Initial
interpolation. (b) Extrusion. (c) Leak after

extrusion.

8. CONCLUSIONS AND FUTURE
WORK
Free-form modeling supported by RBF-based
implicits enjoys quite a few advantages over

traditional approaches employing parametric
surfaces. In particular, the generated models are
naturally smooth and many intuitive modeling
operations can be implemented with relative ease. Its
foremost limitations can be attributed to the time
complexity of the scattered point interpolation
scheme used.
Therefore, a natural extension of the present work
consists of adopting more eficient interpolation
schemes such as the FastRBF [Car01], which will
enable our system to handle models with increased
complexity. This, in turn, will help us cope with the
surface leaking problems. Another venue that should
be explored is the adoption of a more careful
sampling strategy for the constraint points.
The set of modeling operations available in our
systems is somewhat limited still. We are working on
an enhanced algorithm for the piercing operation, as
well as other operations such as cutting and bending.
Regarding the visualization process, we are
experimenting with a novel polygonization approach
with some promising results (access
http://www.lcg.ufrj.br/Projetos/ffmodelling for
details).

9. ACKNOWLEDGMENTS
We are grateful to CNPq for providing financial
support for the first author.

10. REFERENCES
[Alv01] Alvarado, C. and Davis, R. Resolving

ambiguities to create a natural computer based
sketching environment. In Proceedings of IJCAI-
2001, pages 1365-1371.

[Ara03] Araujo, B. and Jorge, J. Blobmaker: Free-
form modeling with variational implicit surfaces.
In 12o Encontro Portugues de Computação
Grafica (EPCG) - 2003.

[Car01] Carr, J. C., Beatson, R. K., Cherrie, J. B.,
Mitchell, T. J., Fright, W. R., McCallum, B. C.,
and Evans, T. R. Reconstruction and
representation of 3D objects with radial basis
functions. In Proceedings of SIGGRAPH 2001,
pages 67-76. ACM Press. 2001.

[Coh00] Cohen, J. M., Hughes, F., and Zeleznik, R.
C. Harold: A world made of drawings. In
Proceedings of NPAR 2000, pages 83-90. ACM.

[Coh99] Cohen, J. M., Markosian, L., Zeleznik, R.
C., Hughes, J. F., and Barzel, R. An interface for
sketching 3D curves. In Proceedings of
Symposium on Interactive 3D Graphics, pages
17-21. ACM Press.

[Din02] Dinh, H. Q., Turk, G., and Slabaugh, G.
Reconstructing surfaces by volumetric
regularization using radial basis functions. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24(10):1358-1371, 2002.

[Iga01] Igarashi, T. and Hughes, J. A suggestive
interface for 3D drawing. In Proceedings of ACM
UIST'01, pages 173-181, 2001. ACM Press.

[Iga99] Igarashi, T., Matsuoka, S., and Tanaka, H.
Teddy: A sketching interface for 3D freeform
design. In Proceedings of SIGGRAPH 99, pages
409-416. ACM Press.

[Kar02] Karpenko, O., Hughes, J. F., and Raskar, R.
Free-form sketching with variational implicit
surfaces. Computer Graphics Forum, 2002.

[Lor87] Lorensen, W. and Cline, H. Marching cubes:
a high resolution 3D surface construction
algorithm. Computer Graphics, 21(4):163-169,
1987.

[Mar99] Markosian, L., Cohen, J. M., Crulli, T., and
Hughes, J. Skin: a constructive approach to
modeling free-form shapes. In Proceedings of
SIGGRAPH 99, Annual Conference Series, pages
393-400. ACM Press, 1999.

[Owa03] Owada, S., Nielsen, F., Nakazawa, K., and
Igarashi, T. A sketching interface for modeling
the internal structures of 3D shapes. In
Proceedings of 3rd International Symposium on
Smart Graphics, pages 49-57. Springer, 2003.

[Ros89] Rost, R. J. (1989). A 3D object file format.
http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/off.spec.
[Tai04] Tai, C., Zhang, H., and Fong, C. Prototype

modeling from sketched silhouettes based on
convolution surfaces. Computer Graphics Forum,
23(1):71-83, 2004.

[Tol99] Tolba, O., Dorsey, J., and McMillan, L.
Sketching with projective 2D strokes. In
Proceedings of the 12th annual ACM symposium
on UIST, pages 149-157, 1999.

[Tol01] Tolba, O., Dorsey, J., and McMillan, L. A
projective drawing system. In Proceedings of
2001 ACM Symposium on Interactive 3D
Graphics, pages 25-34, 2001.

[Tur99a] Turk, G. and O'Brien, J. Shape
transformation using variational implicit
functions. In Proceedings of SIGGRAPH 99,
pages 335-342, 1999.

[Tur99b] Turk, G. and O'Brien, J. Variational
implicit surfaces. Technical Report, Georgia
Institute of Technology, 1999.

[Tur02] Turk, G. and O'Brien, J. Modelling with
implicit surfaces that interpolate. ACM
Transactions on Graphics, pages 855-873, 2002.

[Zel96] Zeleznik, R. C., Herndon, K. P., and Hughes,
J. F. SKETCH: An interface for sketching 3D
scenes. In SIGGRAPH 96 Conference
Proceedings, pages 163-170, 1996

