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ABSTRACT 
We describe a free-form stroke-based modeling system where objects are primarily represented by means of 
variational surfaces. Although similar systems have been described in recent years, our approach achieves both a 
good performance and reduced surface leak problems by employing a coarse mesh as support for constraint 
points. The prototype implements an adequate set of modeling operations, “undo” and “redo” facilities and a 
clean interface capable of resolving ambiguities by means of suggestion thumbnails. 
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1. INTRODUCTION 
Typical 3D modeling systems are mostly designed to 
handle the creation of technical models, i.e., objects 
with precise measures or which must obey well-
defined geometric rules. Such systems are not well-
suited to handle so-called free-form models, which 
can be regarded as 3D models akin to 2D free-hand 
sketches. One reason for this is the fact that 
interaction in 3D relies almost exclusively on 2D 
projections, since the only feasible alternative for 
effectively working in 3D space is by employing 
costly and cumbersome virtual reality gear. Thus, the 
user must ultimately manipulate 2D features in order 
to accomplish 3D editing tasks. 

Perhaps the most salient features of any given 3D 
model are its edges and silhouette lines. Igarashi et 
al. [Iga99] used this observation to build a prototype 
3D free-form modeler called Teddy. In contrast with 
common 3D modelers, Teddy is easy and intuitive 
enough to be used even by small children. It relies on 
a scheme by which free-hand drawing strokes 
representing silhouette lines are used to build and 
modify smooth closed surfaces. Teddy also innovates 
over other 3D modelers by not using the standard 

WIMP (Windows, Icons, Menus and Pointers) 
interface paradigm. Rather, all interaction is based 
upon stroke recognition and a very small number of 
command buttons. 

Another key aspect that must be addressed in the 
construction of stroke-based interfaces is the 
resolution of ambiguities that may arise during a 
modeling session. For instance, a new stroke drawn 
by the user may be interpreted either as the cue for 
creating a new shell or as the profile of an extrusion 
operation. Our system copes with this problem by 
using a suggestive interface similar to the approach 
described in [Iga01]. Namely, thumbnail images 
representing the alternative results are displayed in a 
corner of the main display window, which must then 
be clicked by the user in order to select the desired 
outcome. 

The remainder of this paper is organized as follows. 
Section 2 presents some relevant work related to the 
problem at hand. An overall description of the 
proposed system is presented in Section 3 and some 
concepts of the variational surfaces are introduced in 
Section 4. The involved algorithms are described in 
detail in Section 5. Some key aspects of the 
implementation are discussed in Section 6 and some 
results and limitations are presented in Section 7. 
Finally, some concluding remarks and suggestions 
for future work can be found in Section 8. 

2. RELATED WORK 
In the last few years, several experimental systems 
have been proposed which offer interfaces for the 
specification and construction of different types of 
three-dimensional scenes starting from 2D strokes 
[Zel96, Tol99, Mar99, Coh99, Coh00, Tol01, Iga01, 
Tai04]. Specially worthy of note is the Teddy system 
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proposed by Igarashi et al. [Iga99], which can be 
used to create simple models with spherical topology 
with only a few strokes. An initial model is created 
by drawing a simple closed curve which is then 
inflated resulting in a blob-like object such that the 
curve approximates its silhouette. Additional strokes 
can then be used to extrude protrusions, cut, bend or 
smooth the model.  

Modeling operations in Teddy are performed on a 
polygonal mesh representation of the surface. Some 
of these operations necessarily require the 
subsequent use of smoothing algorithms on the 
edited mesh. Nevertheless, some models end up with 
undesirable protuberances and wrinkles due to 
triangles with awkward characteristics. Besides, 
Teddy does not support the creation of multiple 
objects in the same scene and therefore operations to 
combine these are unavailable. 

Karpenko et al. [Kar02] deal with the problem of 
undesired surface roughness by using Variational 
Surfaces as the main representation scheme. These 
surfaces are zero-sets of a class of implicit functions 
known as RBF-based implicits. The term RBF -- or 
Radial Basis Functions -- refers to the fact that the 
basis functions used in the creation of the implicit are 
radially symmetric. The key advantage of variational 
surfaces lies in that they are naturally smooth, since 
their construction can be regarded as an energy 
minimization process. This, however, leads to other 
problems. For instance, models with creases and tips 
cannot be easily created. Also, the performance of 
the system is heavily dependent on the number of 
constraint points used in defining the implicit. This is 
worsened by the fact that model editing operations 
are performed using a great number of mesh vertices 
produced by the visualization process. 

Owada et al. [Owa03] present a system that generates 
volumetric models from 2D strokes. Besides making 
it possible to create, cut and extrude surface features, 
their approach also allows the specification of 
internal structures in the models with arbitrary 
topology. The main disadvantage of that system is 
that simple smooth surfaces can be modeled only 
with high storage and computation costs. 

Blobmaker [Ara03] is prototype system quite similar 
to the one presented by Karpenko et al. Its main 
contribution lies in the use of skeletons for model 
construction. This allows the creation of objects with 
arbitrary topology and an efficient application of 
edition operations. However, the use of constraint 
points positioned irregularly on the surface may lead 
to surface leaks after a few modeling steps. 

Recently, Tai et al. [Tai04] described a system based 
on convolution surfaces for the construction of free-
form models starting from a silhouette curve. The 

resulting shape has circular cross-section, but can be 
conveniently modified through a sketched profile or 
shape parameters. But, unlike the prototypes 
discussed above, their system employs menus and 
sliders in its modeling interface. 

3. SYSTEM DESCRIPTION 
The prototype system allows the user to quickly 
create simple 3D models by drawing 2D strokes 
directly on the system window. Once the model is 
created, it can be further edited with operations such 
as merging, extrusion and piercing, which are also 
specified by inputting additional 2D strokes. Thus, 
the execution of an operation depends solely on the 
stroke form and where it was made, making it 
unnecessary to press any button or select menu 
options. 

The user interface is composed of a design window 
and five command buttons. The init button starts a 
new modeling session, save saves the polygonal 
mesh of the modeled object, undo cancels the effects 
of the last operation, redo cancels the most recent 
undo command, and the quit button exits the system. 
Operations undo/redo work on a linear history of 
editing operations starting at the most recent 
invocation of the init command. This mechanism 
enables the user to review all operations made during 
a modeling session. 

Input strokes are drawn by dragging the mouse with 
the left button pressed. A model can be moved on the 
xy plane by positioning the mouse over the model 
and then dragging it with the right button pressed. 
Translation along the z axis is accomplished in a 
similar way, but the middle button is used instead. 
Rotation uses an arc-ball interaction style: first, the 
center of rotation is specified by clicking on the 
model with the right button, the rotation angle and 
direction is then input by dragging the mouse with 
the right button. 

Operations 
A modeling session begins with an empty design 
window. The user specifies the model silhouette to 
be constructed by drawing a simple closed curve 
with a single stroke. The system then constructs a 
plausible 3D model based on the input silhouette. 
This is accomplished by inflating the curve in both 
directions by an amount proportional to its width, 
this is, narrow areas will become thin regions while 
wide areas generate fat regions [Iga99]. Figure 1 
shows examples of input strokes and the 
corresponding 3D models constructed by the system.  

Object creation operations may be performed many 
times, thus allowing the construction of scenes with 
multiple objects (see Figure 1(d)). 



 
Figure 1. (a), (b) and (c) Object creation 

examples. (d) Scenes with multiple objects. 
 

 
Figure 2. (a) Model merging. (b) Model piercing. 

 

Model merging creates a new surface that 
approximates two previously existing models which 
are then discarded. The effect is to obtain a single 
implicit representation that smoothly blends two 
given shapes. The user commands this operation by 
drawing a simple open stroke starting inside the first 
input model and ending inside the second. The two 
input models must overlap in space for this operation 
to take place. Figure 2(a) shows an example. 

The piercing operation can be used to make a hole in 
a model. The user must first draw a closed curve 
lying entirely inside the silhouette of the target 
model. This stroke can be interpreted in two ways by 
the system: either as a cue for performing a piercing 
operation or as an auxiliary element for performing 
an extrusion. At this point, the system will signal the 
ambiguity by displaying in the upper-left corner of 
the window a thumbnail image showing the result of 
the piercing operation. The user must click on this 
image in order to accept the operation (see Figure 
2(b)). Any other action will trigger the other 
interpretation. 

Extrusion is a modeling operation which allows the 
creation of a new protrusion on some part of a 
model. The extruded feature is described by a profile 
curve which is input as a simple open curve starting 

and ending inside the model's silhouette but 
extending beyond it. The area on which the 
protrusion will be “glued” can be defined either 
explicitly or implicitly. In the former case the gluing 
area is delimited by a closed curve drawn previously 
--see the preceding paragraph. In the latter case, the 
gluing area will correspond to a roughly circular 
region touching the two endpoints of the profile 
curve. Figure 3 illustrates this operation. 

 
Figure 3. Extrusion examples: (a) using a base 

curve, and (b) automatic extrusion. 

4. VARIATIONAL SURFACES 
Although a through discussion of the math of 
implicit object modeling is outside the scope of this 
paper, for the sake of completeness, we try to lay 
down a few key concepts below. The interested 
reader is referred to the excellent introduction to the 
subject in [Tur99a]. 

The term “Variational Surface” refers to the zero-set 
of a RBF-based implicit function. Such functions are 
used in the context of scattered data interpolation. 
This is a problem where, given a set of n distinct 
constraint points { } 3

21 ,,,, ℜ∈cccc nK  and a set 

of n function values{ }nvvv ,,, 21 K , it is sought a 

smooth function ℜ→ℜ3:f  such that 

ii vcf =)( , for ni K1= . The smoothness criteria 
usually involve some “deformation” energy that must 
be minimized. This entails the solution of a linear 
system with n equations. Solving this system is 
perhaps the most computationally intensive part of 
the system. We use a standard LU-decomposition 
algorithm for this task. 

A variational surface can be modeled simply by 
choosing an adequate set of constraint points and 
associated values. The most used approach requires 
the placement of n/2 points with value equal to zero -
-these are known as boundary constraint points. 
Another set of n/2 points are obtained by displacing 
each boundary point by a small amount along the 
direction of the estimated surface normal at that 
point. These points, known as normal constraint 
points, are associated with a small positive constant 
w (see Figure 4). 



 
Figure 4. The normal constraint points ni are 
placed along the estimated normal vector at a 
distance d from boundary constraint points qi. 

The function f is such that f(x) < 0 for x inside the 
curve and f(x) > 0 outside the curve. 

 
Figure 5. (a) 2D input stroke. (b) Coarse 
polygonal mesh of support for surface 

specification (177 vertices and 350 triangles). (c) 
Visualization of implicit surface f = 0, using 

smooth shading and (d) the triangular mesh (3620 
vertices and 7236 triangles) 

Any standard method for visualizing implicit objects 
can be used to render the modeled surface. In most 
cases, a polygonization scheme is employed and the 
resulting set of polygons is rendered using standard 
graphics hardware. It should be noted, however, that 
the polygonization scheme should be carefully 
chosen in order to minimize the number of function 
evaluations, since these are costly operations. We use 
a hierarchical variant of the Marching Cubes 
algorithm [Lor87]. 

5. ALGORITHMS 

Creation 
The creation algorithm consists essentially in 
specifying an adequate set of constraint points based 
on the user's input silhouette curve. The constraint 
points are chosen to coincide with the vertices of a 
coarse mesh built from the input stroke using an 
inflation algorithm. Figure 5 illustrates a global idea 
of the algorithm. 

The construction of the coarse mesh follows the 
method described in [Iga99]. We found that this 
approach yields more pleasing results than the 
simpler algorithm adopted in [Kar02]. 

Merging 
The merging operation consists in creating a new 
variational surface whose shape approximates the 
union of two other given surfaces. The algorithm 
consists of eliminating constraint points which are 
contained in the intersection of the two input shapes. 
Let us call h the resulting function and f and g the 
two input functions. Then, h contains a boundary 
constraint point x of f only if g(x) > 0. Similarly, h 
contains a boundary constraint point y of g only if 
f(y) > 0. Additionally, if a boundary constraint point 
is eliminated in this process, then the corresponding 
normal constraint point is also discarded. Figure 6 
illustrates the idea. 

 
Figure 6. Merging illustration in 2D. (a) 
Constraint points positioned inside the 

intersection of the models represented for f and g 
are eliminated. (b) The new model represented by 
function h is built with points that remained after 

the elimination process. 

Piercing 
Let f be the function representing the model to be 
edited, C the 2D closed curve drawn by the user 
(represented by a simple polygon), and h the 
resulting model from this operation. Then, the 
piercing algorithm comprises the following steps: 
1. Project each vertex Ci of C on the front-facing 

triangles of the polygonized model surface. Let 
Fi be the corresponding projected point. If the 
projection of any Ci yields more than one 
projected point, the piercing algorithm is 
aborted. 



2. Similarly, project the vertices of C on the back-
facing triangles of the polygonized model 
surface and call Bi the resulting projected 
vertices. As before, abort the algorithm if the 
more than one projection point is found for any 
given vertex. 

3. Interpolate k evenly spaced points along each 
line segment FiBi. Let us call such points Mj. In 
our implementation, k = 3, i.e., three points are 
generated between each pair of vertices Fi and 
Bi. 

4. Create an interpolating function g, which will be 
built by the creation procedure, but using Fi, Bi 
and Mj as boundary constraint points. The 
surface orientation is defined by placing an 
additional constraint point p placed at the 
approximate center of the shape and mapped to a 
negative value (-1 in our implementation). The 
position of p is estimated by computing the 
coordinate-wise average of all boundary 
constraint points. If this point does not lie inside 
curve C, then the piercing algorithm is aborted. 

5. Perform the merging operation on f and g. 

Explicit Extrusion 
This type of extrusion is defined by two strokes: a 
base curve drawn directly on the model surface 
which defines the model area affected by the edition 
process, and a profile stroke. If f is the input model 
function, then the explicit extrusion is computed as 
follows: 
1. Project the base curve on the polygonized object 

using the same rationale described in item 1 of 
the previous Sub-section. Let us use C to refer to 
this projected curve. 

2. Project the profile curve on the plane that passes 
through the base curve's barycenter and is 
parallel to the viewing plane. Let us call P the 
resulting curve. 

3. Create an interpolating function g using the 
vertices of C and P as boundary constraint 
points. Additionally, estimate normal constraint 
points by displacing the vertices of P outward. 

4. Apply the merging operation to f and g. 

Implicit Extrusion 
This operation requires only an extrusion profile 
[Kar02]. The procedure is the following: 
1. Select the silhouette vertices of the model's 

polygonized mesh vertices. A silhouette vertex is 
any vertex incident on two triangles whose 
normals point to opposite sides of the viewer 
plane. Find S and E, the silhouette vertices 
which are closest to the initial and end points of 
the profile curve, respectively. 

2. Project the extrusion profile curve on the plane 
that passes by the middle point of line segment 
SE and is parallel to the viewing plane. 

3. Create an interpolating function g using the 
vertices of the projected curve computed in the 
previous step as boundary constraint points. For 
each of these, add a normal constraint point by 
displacing it outward with respected to the 
curve. 

4. Apply the merging operation between f and g. 

6. IMPLEMENTATION DETAILS 
The prototype system was written in the C++ 
language and the OpenGL library was used to render 
the polygonized models. All example models shown 
in this paper were built by the prototype system in a 
PC equipped with a 1.3 GHz AMD-Duron processor 
and 256 MB of main memory. 
The system uses two main data structures: a scene 
representation and a command list. The scene is the 
model repository and the command list records the 
history of a modeling session (Figure 7). 
Every time a new modeling operation is issued by the 
user, a corresponding command is inserted at the end 
of the command list. Depending on the command 
type, its execution can insert and/or remove models 
from the scene. For instance, a command “merge” 
will insert a new model in the scene, and will remove 
the input models. 



 
Figure 7. Main data structures of the system. 

 
Figure 8. Stages for the command determination to execute starting from a 2D stroke. 

 
Figure 9. System class hierarchy. 

 
Thus, the Undo/Redo mechanism works by scanning 
the command list in both directions replaying or 
undoing the commands appropriately. 
The system determines the command type to be 
executed in response to the input 2D strokes using 
the following three-step approach (see Figure 8): 
1. The classification stage determines the stroke 

type, i.e., simple or non-simple, closed or open. 
2. Depending on the place where the stroke was 

drawn and on its type, the inference stage creates 
the appropriate command. 

3. If an ambiguity is detected, the user is prompted 
to choose the desired outcome. The resolution 
stage then inserts the command in the list and 
executes it. 

This approach is based on the ambiguities resolution 
proposal of Alvarado et al. [Alv2001]. 
A brief description of the system class hierarchy is 
presented in Figure 9. The class attributes labeled 
p_shape are pointers to models, while the absence of 
the prefix p_ means a reference to the model itself. 
Superclass Command is an abstract class with two 
methods: execute() and undo(). Method execute() 
executes the suitable actions for a command, while 
method undo() undoes the actions done by method 
execute(). For instance, in an extrusion operation, 
undo() removes the resulting model from the 
extrusion operation shape, and inserts the unextruded 
model p_shape again. 
Create is a class that implements the model creation 
process. Extrude modifies the model pointed to by 
p_shape generating a resulting model NewShape. 



The same happens with class Pierce. Merge 
produces a new shape NewShape starting from 
models p_shape1 and p_shape2. Rigid motions 
(rotations and translations) are implemented in class 
Transformation. 
Class Shape stores object geometry using two 
representations: f, an analytical representation of a 
RBF-based implicit function, and a triangle mesh 
generated by applying a polygonization algorithm on 
f. 
Finally, class Scene contains a (possibly empty) 
model list that is manipulated by methods insert() 
and remove(). 
 

 
Figure 10. 3D models constructed with the 

prototype system. 

7. RESULTS AND LIMITATIONS 
Figure 10 shows some models built with our 
prototype system. They are smooth surfaces of 
arbitrary topology and exhibit a loose “look” which 
is characteristic of free-hand 2D drawings. The 
interested reader may access 

http://www.lcg.ufrj.br/Projetos/ffmodelling and 
download some of these models in OFF format 
[Ros89]. 
Due to the nature of the radial basis functions used in 
the underlying representation of our system, models 
with creases or sharp features cannot be created. 
Also, sometimes the result of a modeling operation is 
unintuitive. This is the case, for instance, when two 
small objects containing relatively few constraint 
points are merged (see Figure 11). 
Another current limitation of the system lies in the 
fact that the piercing operation cannot be applied 
other than on relatively simple local geometries. For 
instance, if the intended hole would pierce the 
surface more than once, then the operation fails (see 
Figure 12(a)). In some other cases, the hole fails to 
properly pierce the model (Figure 12(b)). 
Some modeling operations may incur in a problem 
known as surface leak. This is due to the constraint 
points being distributed irregularly. Figure 13 
illustrates this problem. We deal with this problem 
by using a coarse polygonal mesh introduced in the 
model creation process (see the Creation sub-
section). 

 
Figure 11. Merging two small models may yield 

unintuitive results. 

 
Figure 12. Limitations of the piercing operation. 
(a) Piercing fails in complicated situations. (b) 
Hole may fail to pierce the surface completely. 

 
Figure 13. Surface leak problem. (a) Initial 
interpolation. (b) Extrusion. (c) Leak after 

extrusion. 

8. CONCLUSIONS AND FUTURE 
WORK 
Free-form modeling supported by RBF-based 
implicits enjoys quite a few advantages over 



traditional approaches employing parametric 
surfaces. In particular, the generated models are 
naturally smooth and many intuitive modeling 
operations can be implemented with relative ease. Its 
foremost limitations can be attributed to the time 
complexity of the scattered point interpolation 
scheme used. 
Therefore, a natural extension of the present work 
consists of adopting more eficient interpolation 
schemes such as the FastRBF [Car01], which will 
enable our system to handle models with increased 
complexity. This, in turn, will help us cope with the 
surface leaking problems. Another venue that should 
be explored is the adoption of a more careful 
sampling strategy for the constraint points. 
The set of modeling operations available in our 
systems is somewhat limited still. We are working on 
an enhanced algorithm for the piercing operation, as 
well as other operations such as cutting and bending. 
Regarding the visualization process, we are 
experimenting with a novel polygonization approach 
with some promising results (access 
http://www.lcg.ufrj.br/Projetos/ffmodelling for 
details). 
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