
Cellular Automata for 3D Morphing of Volume Data

SK Semwal
 Department of Computer Science

University of Colorado
Colorado Springs, CO. 80933, USA

semwal@cs.uccs.edu

K Chandrashekhar
Department of Computer Science

University of Colorado
Colorado Springs, CO. 80933, USA

kchandra@uccs.edu

ABSTRACT
Morphing involves the smooth transformation of one model, called the source to another, called the target.
Several methods have been employed in this field both for two and three dimensional morphing. This paper
performs morphing through the usage of cellular automata. The goal was to develop morphing algorithms that
would minimize the need for both the user input and correspondence specification between source and the
target. Two algorithms, the bacterial growth model and the core increment model have been designed and
implemented in C++. Both algorithms utilize simple automata rules and are stable over dissimilar data. Results
are presented that display the efficiency of the approach.

Keywords
Animating Volume Data, Local Interaction creating global phenomena.

1. INTRODUCTION
Morphing is a technique in graphics that results in
the transformation of an object, called the source
model, into another, called the target model, in a
gradual and smooth fashion. Apart from many
movies, morphing now finds usage in 3D games that
are in the market such as Alter Echo [outrage2003]
and Perimeter [K-DLab2004]. The concept of
morphing extends to other applications as well.
Some example applications are: Visualization during
cranio-facial surgery [Fang1996]; evolution by
morphing the skulls of primates and modern humans
[Rodier1997]; environmental changes on sea levels
and forest cover [geoplace2004]; continental drift
[Bourke2001] or erosion; and understanding
biological processes such as plant growth and fetal
development [pbs2004].

Both 2D and 3D morphing methods have been
developed. Several good papers can be found on 2D
Morphing 1992 [Beier1992,Sederberg1992] and

recently in [Abraham2004]. The biggest benefit of
3D morphing over 2D is that it is independent of
lighting and other environmental effects which are
inherent in the images. In addition, the view of the
camera can be changed in real-time in order to
provide a much clearer understanding of the
morphing process. We focus on the 3D variety.

Many 3D morphing algorithms require a
correspondence that maps features of the source
model to that of the target model. We wanted to
investigate approaches that are free of this restriction.
Most morphing algorithms also rely on user-defined
control points that guide the way the source model
morphs to the target model. While this is useful in
guiding morphing in the manner that the user desires,
we felt that there is room for exploring techniques
using minimal user input because this
correspondence process can be tedious and tiring for
the user. While this perhaps takes away from the
artistic impressions that users are allowed when the
correspondence is defined manually, minimal manual
specification has its own benefits. Our approach uses
the concept of cellular automata in order to perform
morphing. Cellular automata are dynamic systems
where an N dimensional space is created with each
cell containing a value which changes according to
pre-determined rules depending on the
neighborhood. From this simple local concept,
complex global patterns and behavior emerge as the
morphing animation considers the collective response
of the cells within the lattice. We developed two new

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

algorithms morphing algorithms using the CA the
core-increment and the bacterial-growth model. The
rules that have to be written for each cell in the
automata to perform this morphing are simple and
hence easy to update or replace. There is no
correspondence required between models except that
identical 3 dimensional volume sizes are required of
the source and destination volumes. No control
points are needed to drive the morph. Our approaches
work really well in situations where there is no pre-
defined transformation path required between the
source and target.

2. PAST RESEARCH
Cohen et al [Cohen-Or1998] explain the problem of
morphing or metamorphosis as follows: ‘Given a
source model S and a target model T, morphing
constructs a series of transformations {Wt |1 t є
[0,1]} such that W0 = S and W1 = T’ [Lerios1995]. A
sample morph from one of our algotihms is displayed
below (Figure 1).

Figure 1: Gradual transition from source to target.

Mesh Morphing and Volume Data Morphing based
upon the data which they use. Polygonal morphing is
the process of metamorphosis where the source and
target are polygonal or polyhedral meshes. A mesh
can be defined as a linear surface that consists of a
set of polygons that can be described either as a set
of vertex/face/edge/graph structures or as a set of
vertices [Kanai2000]. One of the important
characteristics of a mesh model is that it describes the
topology of the model. It is the basis of intense
research with the majority of papers in the morphing
field concerning this area. Several methods have
already developed for entertainment industry. The
input mesh-models are easy to create and many
packages support model [Maya2004] creation in this
format and light effects are computationally faster to
process and render as they are well supported.
However, complex topologies are difficult to morph,
especially if they require user control. In addition,
many applications such as medical and geological
world produce large amount of volume data and may
have to be converted into polygonal mesh. Both
correspondence and interpolation problems are
documented in Kent et al [Kent1992]. Kanai et al use
the concept of merging of two meshes in a common

domain [Kanai2000] and use harmonic mapping
method [Kanai2000]. Lee et al [Lee1999] describe a
process of correspondence that uses both the source
and target meshes at several resolutions and coarse
base domains or simplified meshes.

3. VOLUMETRIC MORPHING

Volume morphing uses three dimensional volumes as
input for the morphing process. Models are
described in terms of voxels (short for volume pixels,
the smallest box shaped unit of volume). Chen et al
[Chen1995] define a volume as a collection of
scattered voxels, with each voxel being associated
with a set of values of size S, i.e, the volume V is
given by:

 V = {(xi, vi) | xi Є R3 , vi Є RS, i = 1 .. n }

The most popular format for representing volume
data is in the form of a 3 dimensional grid. Each
(i,j,k) position represents a voxel which has a value
associated with it.

The volumetric approach is not as popular as
polygonal formats in the entertainment industry. It is
computationally intensive to process and render.
However, volumetric approach is free of restrictions
of topology and geometries. Volume morphing can
easily be applied to meshes by converting them to
volumetric data while the reverse can result in
topologies which are difficult to morph. A large
amount of data in the medical, geological and energy
fields is generated in the volumetric format and needs
to be morphed directly. Most volumetric algorithm
do not need a bijective mapping between vertices of
the source and target formats like mesh morphing
techniques. The simple format allows implementation
ease.

4. CELLULAR AUTOMATA
Cellular Automata (CA) were originally proposed as
formal models of self-reproducing organisms
[Sarkar2000]. CAs are dynamical systems that
occupy a uniform, regular lattice, work in discrete
steps of time and are characterized by local
interactions [Wolfram1984]. They utilize a discrete
lattice of sites Discrete time steps drive the
simulation. Each site can only take a finite set of
values. Each site evolves according to the same
deterministic rules. The evolution of a site only
depends on the neighborhood. The main advantage
of CAs is that complex patterns and behaviors can be
achieved using simple local interactions. CAs have
been used in many applications [Sarkar2000,] ,
Bezzi2000, Sloot2002,Hamagami2003, Forsyth2002,
Droun2003]. Sosič and Johnson [Sosič1995] use the

concept of CA to describe a growing automaton.
Sloot et al [Sloot2002] describe a non-uniform model
used to simulate drug treatment for HIV infection.
Bezzi [Bezzi2000] describes the simulation of
several biological processes using CAs. Claudia et al
[Claudia2001] discuss the use of the CAs for
simulating the effects of a landslide. [Droun2003]
uses a cellular automaton to deforming 3 dimensional
objects, not 3D morphing.

Most 3D morphing techniques utilize the idea of
correspondence, which is mapping where each point
in the source model will end up in the target model
[Kanai2000, Lee1999, Kent1992, Chen1995, Cohen-
Or1998, Lerios1995]. This becomes inconvenient if
there are complex topologies that would require
many control-points to describe the morphing
accurately.

We looked at volumetric morphing as a collection of
voxels comprising the source model trying to achieve
similarity with the voxels in the target model. The
cellular automata which was used in our design has
the following characteristics: It is a 3 dimensional
lattice. The dimension of the lattice is that of the
volume. Each cell can either be empty or contain one
value. All cells are equal, in the sense that a change
of value within a position does not change the
behavior of the entities occupying the automata. The
cellular automaton is non-circular.

Using cellular automata as a base, we have
developed 2 algorithms that perform morphing. In
both cases, the volume is treated as a cellular
automaton. Each non-empty voxel is treated as an
independent agent.

5. CORE-INCREMENT ALGORITHM
The core-increment algorithm works using the
intersecting parts of the morphs as a base. The
intersection part of the source and the target is used
to create a core. The core is then grown or
incremented in a step-wise fashion so that it fills the
space of both the source and target models. More
specifically, for each voxel position present in the
core, the source and target models are checked to see
if any voxels within them surround the position. If
so, the voxels are added to the core at the same
position that they were found in the source or target.
At each step, the voxel positions that are needed to
occupy the space of the source and target are
recorded in the delete-array and add-array
respectively. The arrays contain the points added to
them as separate sets during each iteration. The core-
increment process completes when there are no more
positions either in the source or target that the core
can grow into.

Next, the source model is loaded into a new volume.
The add and delete-arrays are scanned, one forward
and the other in reverse. At each step, the voxel
positions mentioned in the delete-array for that
iteration is removed from the source model and the
corresponding voxels are added from the add-array.
In this way, gradually, voxels are removed from the
source model where they do not intersect with the
target model and voxels added where the target
model is supposed to be. The forward and reverse
iterations give the morphing a smooth, organic
quality. The pseudo-code is as follows:
proc core-increment

 // Loading of volumes and tests

 Load source volume as srcVol;

 Load target volume as tgtVol;

 If (dimension(srcVol) != dimension(tgtVol))

 print error and exit endif

 Create core with dimensions of srcVol

 // Initialization of core

 for each voxel position (i,j,k)

 if (both tgtVol and srcVol’s has object present)

 add (i,j,k) to the core at (i,j,k)

 endii

 end for

 // Iteration to create add and delete arrays

 do

 for each non-empty voxel position (i,j,k) in core

 if voxel found surrounding (i,j,k) in srcVol

 add to core at (i,j,k)

 add (i,j,k) to del-array

 end if

 if voxel found surrounding (i,j,k) in dstVol

 add to core at (i,j,k)

 add (i,j,k) to add-array

 end if

 end for

until core cannot increment further

Load source volume as morphVol

// Morph iterations.

 for i = 0 to sizeof(add-array)

 // iterating through the add-array

 get position at add-array[i] as (i,j,k)

 add voxel at (i,j,k) to morphVol

 // iterating through del-array in reverse

 get position at del-array[size(add-array)-i] as

 (i,j,k)

 add voxel at (i,j,k) to morphVol

 // Rendering the deformed volume

 Render morphVol

 endfor

endProc

The rules that define the behavior of the cellular
automata that makes up the core are simple, hence
easy to upgrade or replace. The algorithm uses 3
dimensional arrays containing the position data from
volumetric models. This means that most popular
formats of representation of volumetric data can be
used directly. No complex data-types or intensive
pre-processing is required. There is no
correspondence required between the source and the
target models. In the above example, it is clear that
there is no correspondence information present.

The morph can be controlled because of the add and
delete arrays containing the information of each
iteration as separate sets. In cases where many points
are added in the add array as compared to the del
array or vice versa, by controlling the sets released
per iteration from the arrays, the morph can be made
to be a gradual process. This is important in cases
where the source model is very small in comparison
to the target model or vice versa. In the normal case,
if the source were small, the non-intersecting parts of
the source would either disappear quickly while the
target would grow slowly, or if the target were small,
the target would grow to completion while the source
was still disintegrating. By coordinating the release
of points this problem can be avoided.

By using random probabilities in the points being
selected for each iteration, the morphing gains an
organic quality (Figures 4 and 5). The growth of the
morph can be made to start with an uneven texture to
the surface that clears up during the end of the morph
to give the texture of the target model. The method
requires the creation of four volumes, two for the
source and target models to be loaded, one for the
core and one for the source model during the morph
iterations. Since the implementation of the method
results in the first instances of the source and target
models being destroyed, the source cannot be reused
during the morph iteration. This makes the
implementation memory-heavy if very large models
are used. The algorithm requires the volumes

containing the source and target models to be of the
same dimensions. However, there is no restriction on
the size of the models themselves.

6. BACTERIAL GROWTH MODEL
Several papers during my research into cellular
automata have mentioned its use for simulating the
behavior of bacteria given certain environmental
conditions. Each bacterium is modeled as an entity
within a lattice and rules govern its reaction to the
environment and other bacteria. Researchers have
succeeded in simulating complex behavior for
bacteria using the simple rules required for CAs.
This gave rise to the idea of using the bacterial
growth model as a method of morphing (Figures 1
and 2).

The following rules govern the behavior of bacteria:

(a) Bacteria are non-motilee. (b)All bacteria are of
the same type and governed by the same rules. (c) A
bacterium has 2 needs, the need for food and the
need to reproduce, the latter being dependent on the
former. (d) A bacterium will reproduce if it finds
food and has space to place its offspring by making a
copy of itself. (e) A bacterium creates only one
offspring per iteration. (f) A bacterium with food at
its current location will live and reproduce infinitely
given enough space. (g) A bacterium will die if food
is not present in its current position. (h) Bacteria
cooperate to keep each other alive. If a bacterium is
completely surrounded by other bacteria, it does not
die even if its current position contains no food. (i)
Each non-empty voxel within the target volume is
considered as a source of food. Each source contains
an infinite supply of food.

Each ‘bacterium’ within the source volume checks to
see if it has food in its current position. If not, and if
it is not completely surrounded in 26 directions by
other bacteria, it dies with a certain probability. If it
finds food, it looks for a empty place in the
neighborhood to reproduce and place its progeny,
with a certain probability. In this way, bacteria in
parts of the source volume that do not intersect with
the target volume begin to die out, thus removing the
feature. Bacteria that intersect the target volume
begin to breed, placing their progeny in places where
the target volume is supposed to be. This results in
features of the target growing to form the final shape
of the target volume. The pseudo-code is as follows:

Proc core-increment

 // Loading of volumes and tests

 Load source volume as srcVol;

 Load target volume as tgtVol;

 if (dimension(srcVol) != dimension(tgtVol))

 print error; exit;

 endif

 for each non-empty voxel position (i,j,k) in srcVol

 do

 if (voxel at position (i,j,k) is non-empty)

 // food at current position

 if (voxels surrounding (i,j,k) have a

 non-empty position (i1,j1,k1))

 reproduce by placing copy of voxel at

 (i,j,k) in (i1,j1,k1) with probability p1.

 else if (not completely surrounded by

 voxels at position (i,j,k))

 die by removing voxel at (i,j,k)

 with probability p2

 endif

 endif

 render srcVol;

 enddo

 end core-increment

7. RESULTS AND ANALYSIS OF THE
PROPOSED APPROACHES
The above two algorithms that were developed were
implemented in C++ using the Visualization Tool Kit
[vtk2004] library as the rendering engine. The
Visualization ToolKitVTK [VTK2004] was free and
provided open-source C++ library that supports
several graphics related activities including image
processing and 3D visualization. It has inherent
support for volume data and runs on all popular
machine-platforms. The tests of algorithms were
done with the following datasets with certain
characteristics on a PC with dual Pentium III
processors running at 1 GHz with 1.5 Gb memory.
In both Table 1 and 2, these cases are identifies as
(a)-(d) as follows: Case (a) is the morph sequence
where source is Input.bin and target is Fuel.bin.
Both these data sets are are 64 x 64 x 64 datasets
with about 17,000 non-empty voxels (Figure 1). The
source model intersects to a large extent with the
target. Case (b) is the morph between
Cube256x256x256.bin to aneurism.bin. These are
256 x 256 x 256 sized datasets. There are about 1.1
million voxels in total. The target (aneurism.bin)
model is dissipated throughout the volume, being
branch-like. There is no central core volume as in
other models, hence there is very small amount of

overlap between the source (cube) and target
(aneurism) model. This leads to a large amount of
voxel additions and deletions. Case (c) morphs
Cube256x256x256.bin to MRI-head.bin. Once again
the data sets are of size 256 x 256 x 256. They have
around 7.1 million non-empty voxels between them.
The source is a cube that is centered across the
volume. The target volume is a MRI of a head that
envelops the cube; hence most of the voxel
manipulations are addition operations. Finally, Case
(d) is the morph between MRI-head.bin to
bonsai.bin. These are again 256 x 256 x 256 sized
datasets. The total of the non-empty voxels of both
source and target is 7.3 million. The source model
overlaps the target to a large extent and hence, most
of the operations in this morph involve the deletion
of voxels. Figures 2-5 show the results of our two
algorithms.

The best and worst case complexity of this algorithm
is n3 where n is the size of one dimension of the
source or target volume. As shown in Tables 1 and
2, normally we find that the amount of time taken for
each iteration as well as the number of iterations
depend on the size of the volume and the number of
non-empty voxels within it..

In case of test Case (b), the small amount of overlap
leads to a large amount of additions and deletions. In
this case, the number of iterations became large for
the bacterial growth algorithm, with the iterations
during the end of the morph yielding very small
numbers of voxels. These do not contribute
significantly to the quality of the morph. The
performance of this algorithm is better than the core
increment method described earlier. This should not
be assumed to be a reflection of the efficiency of the
algorithm. The main reason for this is that the
bacterial growth algorithm incorporates an iso-
surfacing algorithm. This means that only the voxels
on the surface of the intermediate volumes are
processed. The core increment algorithm does not
easily support such a scheme and hence the current
implementation processes all the voxels present in its
core. Bacteria growth algorithm seems to do well in
cases where there is a large percentage of overlap
between volumes. The quality of the morphs is in
general worse than the core-increment algorithm and
this can be assessed by looking at Figures 2-5.

Table 1 and 2 also show the time taken to create
morphing sequences, and the average time taken to
complete a sequence during morph.

Our implantation results indicated that the core
increment algorithm is more stable and provide better
visual results with a varied type of source and target
models than the bacterial growth models. In
comparison to other existing 3D algorithms, the

solution provides a morph which does not require
any human-intervention, and the morphing sequences
has better visual appearance as in both cases
morphing sequences are expected to grow gradually
in spatial domain, avoiding frequency interpolation
based aliasing completely.

8. CONCLUSIONS AND FUTURE
RESEARCH
We have presented two algorithms which
successfully demonstrate the 3D Morphing. The
methods presented in this paper can handle branching
structures and topological mismatches, which have
been a problem for the past algorithms, without any
human-intervention. Our current design requires that
the volumes intersect. An important improvement
would be to handle is that non-intersecting volumes.
Our method can be extended by merging the current
design with the distance field metamorphosis
technique [Cohen-Or1998] when the volumes do not
intersect. Parallelization has been performed on
cellular automata based models before [Telford1999]
and our method can benefit from that as well. We
will like to also consider non-homogenized mixture
of bone, tissue etc) in future as well. In addition, we
also plan to develop methods to handle color (rgb)
volume data sets.

9. REFERENCES

[Abraham2004] Abraham AW. Image View-Shift:

Three dimensional representation from a photo.
MS Thesis, University of Colorado, Colorado
Springs, pp. 1-274, 2004.

[Beier1992] Thaddeus Beier and Shawn Neely.
Feature-based image metamorphosis,
International Conference on Computer Graphics
and Interactive Techniques, pp. 35 – 42,1992

[Bezzi2000] Bezzi M. Modeling Evolution and
Immune System by Cellular Automata.
http://citeseer.nj.nec.com/429312.html

 [Breen2001] D. E. Breen and R. T. Whitaker. A
level-set approach for the metamorphosis of solid
models. IEEE Transactions on Visualization and
Computer Graphics Volume 7, Number 2, pp.
173, 2001

[Bourke2001] Paul Bourke. Terrain morphing.
http://astronomy.swin.edu.au/~pbourke/terrain/tm
orp

[Calionna2001] Claudia R Calionna ,Claudia Di
Napoli, Maurizio Giordano,Mario Mango Furnari
and Salvatore Di Gregorio. A network of cellular
automata for a landslide simulation. International
Conference on Supercomputing Proceedings of
the 15th international conference on
Supercomputing, pp. 419 – 426, 2001

[Chitttarao2001] Chitttaro L. Information
Visualization and its Application to Medicine.
Artificial Intelligence in Medicine, vol. 22, no. 2,
pp. 81-88, 2001.

 [Chen1995] M. Chen and M. Jones and P.
Townsend. Methods for Volume Metamorphosis.
In Image Processing for Broadcast and Video
Production, Y. Paker and S.Wilbur (Eds.),
Springer-Verlag, London, 1995.

 [Cohen-Or1998] Daniel Cohen-Or, Amira
Solomovic, David Levin. Three-Dimensional
Distance Field Metamorphosis. ACM
Transactions on Graphics (TOG), Volume 17, 2,
pp. 116 – 141, 1998.

[Droun2003] Druon S, Crosnier A, Brigandat L.
Efficient Cellular Automata for 2D / 3D Free-
Form Modeling. Journal of WSCG (Winter
School of Computer Graphics), 11, 1, pp. 102-
108 : 2003

 [Fang96] S. Fang and R. Raghavan and J.
Richtsmeier. Volume Morphing Methods for
Landmark Based 3D Image Deformation. SPIE
International Symposium on Medical Imaging,
1996

[Forsyth2002] Cellular Automata for Physical
Modeling. Game Programming Gems 3, 2002.

[Gagvani2001] Nikhil Gagvani and Deborah Silver.
Animating volumetric models. Volume modeling
Volume 63, Issue 6, November 2001, pp. 443–
458, 2001.

 [Hamagami2003] Tomoki Hamagami and Hironori
Hirata. Method of crowd simulation by using
multiagent on cellular automata. EEE/WIC
International Conference on Intelligent Agent
Technology, pp. 46 – 53, 2003

 [He1994] T. He and S. Wang and A. Kaufman
“Wavelet-Based Volume Morphing” Proceedings
of Visualization 94, Pages: 85-92,: 1994

[Java3D2003] Java 3D API ® Sun Microsystems
http://java.sun.com/products/java-media/3D/

 [Kanai2000] Takashi Kanai Hiromasa Suzuki
Fumihiko Kimura. Metamorphosis of Arbitrary
Triangular Meshes with User-Specified
Correspondence. IEEE Computer Graphics &
Applications, 20, 2, pp. 62-75, 2000.

[Kent1992] James R Kent ,Wayne E Carlson and
Richard E Parent. Shape transformation for
polyhedral objects. International Conference on
Computer Graphics and Interactive Techniques,
pp. 47 – 54, 1992

 [Kazakov2003] Maxim Kazakov,Alexander Pasko
and Valery Adzhiev. Interactive metamorphosis
and carving in a multi-volume scene. Proceedings
of the 1st international conference on Computer
graphics and interactive techniques in Austalasia
and South East Asia, pp. 103, 2003.

 [K-DLab2004] Perimeterv Developer: KD-LAB /
1C Company www.codemasters.com/perimeter

 [Lerios1995] Apostolos Lerios, Chase D. Garfinkle,
Marc Levoy. Feature-Based Volume
Metamorphosis. International Conference on
Computer Graphics and Interactive Techniques
Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques,
pp. 449 – 456, 1995

[Lee1999] Aaron Lee and David Dobkin and Wim
Sweldens and Peter Schroder. Multiresolution
Mesh Morphing. Siggraph 1999, Computer
Graphics, pp. 343-350, 1999.

[Lee1988] F. Sweldns, W. Schorder, P. Cowsar, and
L., Dobkin. Multiresolution Adaptive
Parameterization of Surfaces. Computer
Graphics, pp. 95–104, 1998.

[Maya2004] Aliaswavefront Maya ®
http://www.alias.com/eng/products-
services/maya/index.shtml

[Outrage2003] Alter Echo Developer: Outrage
Games Publisher :THQ www.outrage.com

[Sarkar2000] Palash Sarkar. A brief history of
cellular automata. ACM Computing Surveys
(CSUR) Volume 32 , 1, pp. 80 – 107, 2000.

 [Sederberg1992] Thomas W Sederberg and Eugene
Greenwood. A physically based approach to 2–D
shape blending. International Conference on
Computer Graphics and Interactive Techniques
pp. 25 – 34, 1992

 [Sloot2002] Peter Sloot, Fan Chen, and Charles
Boucher. Cellular Automata Model of Drug
Therapy for HIV Infection. Lecture Notes In
Computer Science Proceedings of the 5th
International Conference on Cellular Automata
for Research and Industry, pp. 282 – 293, 2002.

 [Sosič1995] R. Sosic and Robert R. Johnson.
Computational properties of self-reproducing
growing automata. BioSystems, Volume: 36, pp.
7-17, 1995.

[Sussman2004] Alan Sussman, Michael
Beynon,Mary Wheeler, Steven Bryant,
Malgorzata Peszynska, Ryan Martino,Joel Saltz,
Umit Catalyurek, Tahsin Kurc,Don Stredney,
Dennis Sessanna. Exploration and Visualization
of Oil Reservoir Simulation Data, 2004.

 [Treece2001] Graham Treece and Richard Prager
and Andrew Gev. Volume-based three-
dimensional metamorphosis using sphere-guided
region correspondence. The Visual
Computer,volume 17, 7, pp. 397-414, 2001.

 [Ulgen1997] F Ulgen. A step towards universal
facial animation via volume morphing. Robot and
Human Communication, 1997. RO-MAN '97 6th
IEEE International Workshop, pp. 358 – 363,
1997

[Wolfram201984] Wolfram ,Stephen. Universality
and Complexity in Cellular Automata. Physica D
10, pp. 1-35, 1984.

 [vtk2004] The Visualization ToolKit (VTK)
http://www.vtk.org/

Figure 2: using bacterial growth model (Cube to

Aneurism)

Figure 3: using bacterial growth model (Head to

Bonsai)

Figure 4: Using core increment model (Cube to

Anuerism)

Figure 5: Using core increment model (Head to

Bonsai)

Table 1: Core element results

Table 2: Core element results

 Volume size Source
non-empty
Voxel
Count

Target
non-empty
Voxel
Count

No of
iterations

Avg
Morphing
Time per
iteration
(secs)

Total
Time
taken for
morphing
(secs)

Avg
Renderin
g Time
(secs)

a 64 X 64 X 64 4096 13731 32 0.02 0.64 0.76

b 256X256X256 1000000 168948 387 1.16 448.92 3.16

c 256X256X256 1000000 6198649 132 3.38 446.16 2.14

d 256X256X256 6176412 1298598 195 1.33 259.35 2.71

 Volume size Source
non-empty
Voxel
Count

Target
non-
empty
Voxel
Count

No of
iterations

Avg
Morphing
Time per
iteration
(secs)

Total Time
taken for
morphing
(secs)

Avg
Rendering
Time
(secs)

a. 64X 64 X 64 4096 13731 32 .0334 1.07 1.27

b. 256X256X256 1000000 168948 248 2.5027 620.67 4.46

c. 256X256X256 1000000 6198649 120 8.7642 1051.71 3.32

d. 256X256X256 6176412 1298598 175 11.24 1966.24 3.33

