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Abstract
This paper present a generalization of a data analysis technique called a singular spectrum analysis (SSA). The
original SSA is a tool for analyzing one-dimensional data such as time series, whereas our generalization is suitable
for multi-dimensional data such as 3D polygonal meshes. One of applications of the proposed generalization are
also shown. The application of the generalized SSA is a new robust watermarking method that adds a watermark
to a 3D polygonal mesh. Watermarks embedded by our method are resistant to similarity transformations and
random noises. Our method has the advantage in that it requires smaller calculation cost than other methods
with nearly equal performance.
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1 Introduction
Techniques of the spectrum decomposition have
been developed in various fields, such as signal pro-
cessing and financial data analysis. The Fourier
analysis and the wavelet analysis are the most fre-
quently used techniques of the spectrum decom-
position. However, since they are the decomposi-
tions by a certain basis functions, the data should
be represented in a parameterized form. They
are applied to one-dimensional series or the tensor
product of one-dimensional series naturally, while
they cannot be applied to non-parameterized data.
For example, we cannot represent an unbounded
two-manifold having the same topology as a sphere
by two parameters. In this case, for example, we
can perform the spectrum decomposition using the
spherical harmonics. But, if this spectrum decom-
position is performed for a piecewise linear func-
tion, such as a 3D polygonal mesh, the numerous
terms are required. Since spectrum decomposi-
tions by hitherto known functions have limitations
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like this, there is a real need for new spectrum de-
composition methods.

We generalize the singular spectrum analysis
(SSA) in such a way that it is applicable to the 3D
polygonal mesh, and apply it to engineering prob-
lems [6, 8, 9, 10]. In this paper, the generalized
SSA is applied to a robust watermarking method
that adds a watermark to a mesh.

2 Generalization of singular

spectrum analysis
2.1 From basic SSA to generalized

SSA
Since the basic singular spectrum analysis (SSA)
[2, 3, 17] is designed for the analysis one dimen-
sional sequences such as time series, it is not appro-
priate for the 3D polygonal mesh. In this section,
we generalize the basic SSA in such a way that it
can be applied to the analysis of multi-dimensional
data such as polygonal meshes [9].

2.2 Generalized SSA
Let the elements of the series F be the values given
to the vertices of the mesh. In the case of the
3D polygonal mesh, each element of the series F
consists of the coordinates of a vertex in the mesh,
i.e. the position vector. For simplicity, we consider
the mesh specified by the heights of vertices of a
graph on the plane as shown in Figure 1. Let the
elements of the series F be the heights given to the
vertices of the graph.



Let N be a positive (usually large) integer. Con-
sider a real-value series F = (f0, f1, . . . ,fN−1) of
length N . Assume that F is a nonzero series, that
is, there exist at least one i such that fi > 0. The
generalized SSA consists of two stages, the decom-
position stage and the reconstruction stage, which
are show in the following two subsection.

Figure 1. The mesh where height values are given
to vertices of a graph on the plane.

2.2.1 Decomposition stage
The decomposition stage consists of the next two
steps.
1st step: Embedding In the first step, let us
define the linear operator A which maps F to ma-
trix X = A(F ) as

A(F ) =

0
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where

Al,k = (al,k,0, al,k,1, · · · , al,k,N−1)T (2)

and the elements of A(F ) are

FAl,k =
N−1∑
n=0

al,k,nfn. (3)

We call the matrix (1) the trajectory matrix or the
generalized trajectory matrix.
2nd step: Singular value decomposition In
the second step, the singular value decomposition
is applied to the trajectory matrix X. Let S
= XXT. Denote by λ1, . . . ,λL the eigenvalues
of S taken in the decreasing order of magnitude
(λ1 ≥ . . .≥ λL ≥ 0), and by U1, . . . ,UL the or-
thonormal system of the eigenvectors of the ma-
trix S corresponding to these eigenvalues. Let
d = max{i | λi > 0}. We defines Vi = XTUi/

√
λi

and X(i)T =
√

λiUiV
T
i (i = 1, . . . , d). Then

the singular value decomposition of the trajectory
matrix X can be written as

X = X(1) + X(2) + . . . + X(d). (4)

The matrix X(i) has rank 1. Therefore they are
elementary matrices. The collection (λi, Ui, Vi) is
called i-th eigentriple of singular value decomposi-
tion (4).

2.2.2 Reconstruction stage
3rd step: Reconstruction of the original se-
ries In the last step, each matrix in the decompo-
sition (4) is transformed into a new series of length
N . This step is called the reconstruction of the se-
ries.

The series F (i) = (f (i)
0 , f

(i)
1 , · · · , f (i)

N−1) is defined
as the solution of the next optimization problem:

min
d∑

i=1

∥∥ X(i) − A(F (i))
∥∥2

= min
d∑

i=1

∑
l,k

(
x

(i)
l,k − F (i)Al,k

)2 (5)

s.t. F =
d∑

i=1

F (i), (6)

where the norm of the matrix is the Frobenius
norm. If Al,k(0 ≤ l ≤ L−1, 0 ≤ k ≤ K−1) span N
dimensional spaces, then the matrix

∑
l,k Al,kAT

l,k

is regular, and consequently the solution of the ex-
pression (5) is given by

F (i) =
(∑

l,k

x
(i)
l,kAT

l,k

)(∑
l,k

Al,kAT
l,k

)−1

. (7)

Since this F (i) satisfies

d∑
i=1

F (i)
∑
l,k

Al,kAT
l,k =

d∑
i=1

∑
l,k

x
(i)
l,kAT

l,k

=
∑
l,k

( d∑
i=1

x
(i)
l,k

)
AT

l,k

=
∑
l,k

(
FAl,k

)
AT

l,k

= F
∑
l,k

Al,kAT
l,k,

the constraint (6) is satisfied automatically. The
solution F (i) of the optimization problem (5) and
(6) is obtained by the expression (7).

Finally, from the expression (7), the original se-
ries F is reconstructed as F =

∑d
i=1 F (i). These

are the basic ideas of the generalized SSA.

2.3 Linear operator A
In this subsection, we give a particular example of
the linear operator A in the expression (1) that
reflects the connectivity structure of the mesh.

Let P be a 3D polygonal mesh, and let vk, k =
0, 1, · · · , N−1 be the vertices of the mesh. Suppose
that some scalar value fk is assigned to each vertex



vk, and let F be the series F = (f0, f1, · · · , fN−1).
We define the distances Dvk

(vj) from vk to vj as
the number of edges in the shortest path in the
graph where the length 1 is given to the all edges,
so-called the Dijkstra distance. Figure 2 shows an
example of a part of the graph structure associated
with the polygonal mesh. Let vk be the vertex
represented by the black dot in Figure 2. Then,
the vertices vj ’s with Dvk

(vj) = 1 are as shown by
empty circles, and the vertices with Dvk

(vj) = 2
are as shown empty squares.

Figure 2. A vertex of the mesh and the set of
vertices with the same Dijkstra distances.

Let the number of the rows of the trajectory
matrix A(F ) be K := N . Let the elements on the
first row and the k-th column (k = 0, 1, · · · , N −
1) of the trajectory matrix A(F ) be the value fk

given to the vertex vk and let the elements on the
l-th (1 ≤ l ≤ L − 1) row and the k-th column
be the average value of the values on the vertices
whose Dijkstra distances from vk are l. Therefore
the k-th column of the matrix A(F ) corresponds
to the vertex vk of the mesh. For example; for
the vertex vk in Figure 2. (1, k) element of A(F )
is fk, (2, k) element of A(F ) is the average of the
value fj over the vertices represented by the empty
circles, (3, k) element of A(F ) is the average of the
value fj over the vertices represented by the empty
squares. Thus, let FAl,k be

FAl,k =

∑
Dvk

(vj)=k fj

#{Dvk
(vj) = k} (8)

where #{Dvk
(vj) = l} is the number of the ver-

tices whose Dijkstra distances from vk are l. The
linear operator A in the expression (8) is repre-
sented as

al,k,n =

{
1

#{Dvk
(vn)=l} (Dvk

(vn) = l),
0 (Dvk

(vn) 	= l)
(9)

Note that, since the Al,k (0 ≤ l ≤ L − 1, 0 ≤
k ≤ K − 1) constructed as stated above span an
N -dimensional space, the matrix

∑
l,k Al,kAT

l,k is
usually regular. This is because A1,k (0 ≤ k ≤
N − 1) is the vector where the k-th element is 1
and the other elements are 0.

The rows of A correspond to the vertices of the
mesh, and the columns of A correspond to the
set of vertices with the same Dijkstra distances.
Here the linear operator reflects the connectivity
structure of the mesh.

2.4 Laplacian trajectory matrix

We may not obtain sufficient amount of eigen-
triples for A(F ) by our method in subsection 2.3．
If the amount of eigentriples is small, some prob-
lems occur in engineering applications. For exam-
ple, in the case of watermarking in section 4, we
can not embed a lot of data. In order to solve this
problem, we present a new Laplacian trajectory
matrix in this subsection.

In subsection 2.3, fh is assigned to each vertex
vh. In this subsection, in order to consider a new
another trajectory matrix, let f ′

h be Laplacian for
a 3D polygonal mesh and f ′

h is assigned to each
vertex vh. f ′

h is defined as

f ′
h = C∆fh = C

( ∑
Dvh

(vj)=1 fj

#{Dvh
(vj) = 1} − fh

)
(10)

where C is a constant number. Figure 3 shows a
mesh whose vertices vh are transposed to Lapla-
cian f ′

h. Let F ′ be a series F ′ = (f ′
0, f

′
1, . . . , f

′
N−1).

Since f ′
h is a linear combination of elements of F ,

A′
i,j exists such that F ′Ai,j = FA′

i,j and A(F ′)
can be transposed to A′(F ) as the following equa-
tion:

A(F ′) =

0
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= A
′
(F ). (11)

A combined trajectory matrix B(F ) is defined as

B(F ) =
(

A(F )
A′(F )

)
. (12)

If we use B(F ), we can get the double sets of eigen-
triples for A(F ).

We can expand B(F ) likewise. Let A0(F ) =
A(F ), A1(F ) = A′(F ) and Ai(F ) be the dupli-
cated Laplacian trajectory matrices by f i

h, where
f i

h is defined as

f i
h = Ci∆ifh. (13)



Bi(F ) is defined de by A0(F ), · · · , Ai(F ) as

Bi(F ) =




A0(F )
A1(F )

...
Ai(F )


 . (14)

If we use Bi(F ), we can get the i-fold sets of eigen-
triples for A(F ).

Figure 3. A mesh whose vertices are transposed to
laplacian.

2.5 Comparisons of the decomposi-
tions

In this subsection, we compare the decomposition
given by the generalized SSA, the basic SSA [6, 7,
8] and Laplacian matrix [15]. Table 1 shows their
characteristics.

The 3D polygonal mesh represents the boundary
of the three-dimensional region, and this boundary
is a two-dimensional manifold. However, it is not
easy to globally parameterize any two-dimensional
manifold. Note that the three methods compared
in this subsection do not require any parameteriza-
tion of the boundary. On the other hand, the tra-
ditional multidimensional spectral decompositions
such as the multidimensional Fourier transforma-
tion and the multidimensional wavelet transforma-
tion require the parameterization of the boundary,
and hence cannot be used for general 3D polygo-
nal meshes unless the mesh is partitioned into sub-
meshes homeomorphic to disk. In this sense, these
three methods are typical tools for the analysis of
polygonal meshes.

Since the spectral decomposition of a mesh us-
ing the Laplacian matrix requires the eigenvalue
decomposition of a matrix whose rank is the num-
ber of the vertices, the calculation cost is large and
the method cannot be applied to huge meshes. On
the other hand, our generalized SSA and the basic
SSA require the eigenvalue decomposition of the
matrix whose rank is determined by the linear op-
erator e.g., the size of lag L. Moreover, we can
choose a relative small value of L. Therefore, the
calculation cost can be small, and consequently our
generalized SSA and the basic SSA method can be
applied to huge meshes.

The spectrum decomposition for 3D polygonal
meshes is desired to be independent for the change
of the vertex number. In other words, the basis of
the spectrum decomposition is desired to be invari-
ant from the change of the vertex number, because
the shape of the mesh is invariant for the change of
the vertex number. In the three methods, our gen-
eralized SSA and the method using the Laplacian
matrix satisfy this requirement.

As stated above, our generalized SSA overcomes
the respective demerits of the basic SSA and the
method using the Laplacian matrix and can be a
powerful new tool for the analysis of 3D polygonal
meshes.

3 Spectral decomposition of

3D polygonal meshes using
the generalized SSA

3.1 Spectral decomposition using
the generalized SSA

In this subsection, we perform spectral decompo-
sition of the 3D polygonal meshes using the gen-
eralized SSA.

Though we have been considering a scalar-value
series F = (f0, f1, . . . , fN−1), we hereafter con-
sider tri-value series F = (F0, . . . , FN−1) where
Fn = (fn,x, fn,y, fn,z) are the coordinates of the
vertex vn. Consequently, the trajectory matrix
(1)is an L × 3K matrix

X = A(F ) =




FA1,1 · · · FA1,K

FA2,1 · · · FA2,K

...
. . .

...
FAL,1 · · · FAL,K


 , (15)

where

FAl,k =

 
N−1X
n=0

al,k,nfn,x,

N−1X
n=0

al,k,nfn,y,

N−1X
n=0

al,k,nfn,z

!
.

(16)

We perform singular value decomposition (SVD)
for this trajectory matrices.

In our experiments, we used two popular mesh
models, the bunny model (1494 vertices, 2915
faces) shown in Figure 4 (a). Figure 4 shows that
the original bunny model mesh is decomposed us-
ing trajectory matrix with L = 21 and high fre-
quency components are added gradually. Figure 4
(a) shows the original meshes. (b) shows the mesh
constructed using the sum of the lowest frequency
components. Figure 4 (c) or (d) shows the sum of
6 or 15 lower frequency components, respectively.
Figure 5 is the decomposed mesh with L = 10 and
Figure 6 is the decomposed mesh with L = 5 . Fig-
ure 7 is the decomposed mesh of L = 5 using the



Table 1. Comparisons of three spectrum decomposition methods.

decomposition using Laplacian
matrix

decomposition using the basic
SSA

decomposition using the general-
ized SSA

decomposition algorithm eigenvalue decomposition of
Laplacian matrix the basic SSA the generalized SSA

meaning of singular value or
eigenvalue frequency power spectrum power spectrum

parameterizations on 3D polygo-
nal meshes no parameterizations (merit) no parameterizations (merit) no parameterizations (merit)

spectrum decomposition and
changes of the vertex number independence (merit) dependence (demerit) independence (merit)

rank of the decomposed matrix
(calculation cost)

order of the vertices of the mesh
(large calculation cost: demerit)

order of the lag L, (L < N
2 )

(small calculation cost: merit)
order of the number of the rings
(small calculation cost: merit)

mesh whose vertices are transposed to laplacian in
subsection 2.4.

From Figures 4, 5, 6 and 7, we can confirm the
following empirical fact. “Approximately, large
singular values correspond to lower spatial fre-
quencies, and small singular values correspond to
higher spatial frequencies. Elementary matrices
associated with higher singular values represent
global shape features, while elementary matrices
associated with lower singular values represent lo-
cal or detail shape features. We made computa-
tional experiments in order to evaluate the perfor-
mance of the proposed algorithms”.

The computer used in this experiment is Pre-
cision 330 of Dell with Intel Pentium 4 2.8G Hz
processor and 1GB memory. Programming lan-
guage is Mathematica 4.0. Calculation times were
11 minite in case of bunny mode with L = 10.

4 Appliction — Watermark-
ing 3D polygonal meshes

In this section, we propose a new method of wa-
termarking for the 3D polygonal meshes.

4.1 What is watermarking ?
Digital watermarking is a technique for adding
secret information called a watermark to various
target objects data. A lot of papers on water-
marking have been published [5]. However most
of the previous researches have been concentrat-
ing on watermarking “classical” object data types,
such as texts, 2D still images, 2D movies, and au-
dio data. Recently, on the other hand, 3D objects
data, such as 3D polygonal meshes and various 3D
geometric CAD data, become more and more pop-
ular and important, and hence techniques to wa-
termark 3D models also become more important
[1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20].

In the field of image watermarking, a majority
of the watermarking algorithms published depends
on some form of transformations, e.g., wavelet or
Fourier transformations. This is because trans-
formed domain techniques offer various advan-
tages. For example, by modifying the spatial fre-

quency band which human are not very sensitive
to, we can make a watermark embedded in an im-
age less visible. Moreover, the transformed domain
is a suitable place to hide the secret data (water-
marks). Therefore, in those techniques of water-
marking, some kind of spectrum decomposition is
required.

This section presents experiments and results
of an algorithm that embeds watermarks into 3D
polygonal meshes. The proposed method is based
on a new kind of spectrum decomposition, and can
be used for any mesh structures, for details refer
to [6, 8, 9, 10]. We propose a new algorithm for
embedding watermarks into 3D polygonal meshes
based on the generalized SSA. The spectra of the
3D polygonal mesh are computed by the singular
decomposition of the trajectory matrix, and the
watermarks are embedded into the singular val-
ues. The watermark embedded by the algorithm
is robust against similarity transformation (i.e., ro-
tation, translation, and uniform scaling). It is also
resistant against random noises added to vertex
coordinates. Figure 8 is the outline of embedding
a watermark.

Figure 8. Outline of embedding watermark.

4.2 Experiments and results

4.2.1 Method
In our experiments, we used a popular mesh
model, the bunny model (1494 vertices, 2915 faces)
shown in Figure 4 (a).

We compare five watermarking methods. The
first two watermarking methods are based on the



basic SSA using two kinds of the vertex series in
[6, 8, 9, 10], which we call the “Euclidean norm
method” and the “random order method”. The
third watermarking method is the Laplacian ma-
trix method proposed by Ohbuchi et al. [15].
We call this watermarking method the “Ohbuchi’s
method”. The forth watermarking method is
based on our generalized SSA. We call this wa-
termarking method the “generalized SSA ring 21”
in the case of L = 21, and so on. The fifth wa-
termarking method is based on our generalized
SSA using Laplacian trajectory matrix in subsec-
tion 2.4. We call this watermarking method the
“generalized SSA ring 5 Laplacian” in the case of
L = 5. This method have 30 sets of eigentriples
(i.e., ×3 by xyz-coordinates and ×2 by Laplacian).

In the“generalized SSA” method, we embedded
15 bits data, and each bit was embedded only once
(i.e., chip rate is 1). In the other method, we em-
bedded 15 bits data 20 times (i.e., chip rate is 20).
If a mesh is fixed, a higher chip rate means a lower
data capacity and higher robustness.

The watermark embedding amplitudes α is de-
fined as α = β × l where l is the largest length of
the edges of the axis-aligned bounding box of the
target mesh and β is defined as a ratio of the am-
plitude. In this experiments, l = 156 model was
set. In Figure 9, the appearances for β = 0.1, 1
are presented. If α is larger, the watermark with-
stands against more disturbances, (for example,
adding random noises and mesh smoothing) but
the shape itself is distorted.

4.2.2 Appearances of watermarked meshes
Figure 9 show appearances of the watermarked
meshes generated by the generalized SSA ring 21,
while (a) and (b) show the watermarked meshes for
β = 0.1 and 1, respectively. The appearances of (a)
can hardly be distinguished from the appearances
of the original mesh. Thus they are watermarked
successfully. On the other hand, the appearances
of the original meshes are not preserved in (b).
Thus the watermarks are too large in those cases.

Table 2 shows RMS of the differences between
the original meshes and the watermarked meshes
devided by l. RMS (root mean square) is the
mean of 2-norm between the vertices of the orig-
inal mesh and the corresponding vertices of the
watermarked mesh. In the appearances of the wa-
termarked meshes, we cannot see much difference
among the basic SSA methods and the general-
ized SSA method. In these experiments, we set
β = 0.1 in the basic SSA and the generalized SSA,
and β = 0.0035 in the Ohbuchi’s method.
4.2.3 Robustness
We experimentally evaluated the robustness of our
watermarks against the uniform random noises.

(a) β = 0.1 (b) β = 1
Figure 9. Watermarked bunny meshes.

Table 2. RMS
l of original meshes and watermarked

meshes.
Euclidean norm (β = 0.1) 0.0239

random order (β = 0.1) 0.0211

Ohbuchi’s method (β = 0.0035) 0.0211

generalized SSA ring 21 (β = 0.1) 0.0228

generalized SSA ring 10 (β = 0.1) 0.0201

generalized SSA ring 5 Laplacian (β = 0.1) 0.0134

Uniform random noises Figure 10 shows the
appearances of the watermarked mesh whose ver-
tex coordinates were disturbed with uniform ran-
dom noises with amplitude α×γ (β = 0.1). Figure
10 (a) are the meshes with uniform random noises
with γ = 0.01 and (b) are the meshes with uni-
form random noises with γ = 0.1. From Figure
10, we can see that the noises of γ = 0.1 deformed
the appearances of the original meshes to a certain
extent.

We counted the number of the bits recon-
structed correctly; we repeated the experiment 100
times. The result is shown in Table 3. From this
experiment, we can see that the watermark can
withstand against uniform noises for γ ≤ 0.01.
Moreover, we cannot see much difference among
the five methods.

In the Euclidean norm method，the random or-
der method and Ohbuchi’s method, the same bit
was embedded many times (20 times, for example)
because each bit is very fragile. On the other hand,
in the proposed method, each bit is embedded only
once, but still the watermark can be reconstructed
almost in the same accuracy as the other methods,
as shown in Table 3. In this sense, the proposed
watermark method is very robust against random
noises.

This robustness is due to the characteristic of
the linear operator A. Since the elements of the
generalized trajectory matrix are represented as
the linear combinations of the vertices of the mesh,
these linear combinations counteract the uniform
random noises in this step. Therefore, since the
generalized SSA counteracts the uniform random
noises before spectrum decomposition, while the
other methods counteract the uniform random



noises after spectrum decomposition; we can see
almost the same robustness against random noises
among these methods.

Table 3. Ratios of the correctly recovered water-
marks under random noises.

γ = 0.1 γ = 0.01

Euclidean norm 92% 100%

random order 98% 100%

Ohbuchi’s method 98% 100%

generalized SSA ring 21 96% 100%

generalized SSA ring 10 99% 100%

generalized SSA ring 5 Laplacian 98% 100%

(a) γ = 0.01 (b) γ = 0.1

Figure 10. Bunny models to which uniform ran-
dom noises with amplitude α × γ ( β = 0.1 ) are
added.

5 Future Work
We have two future works. First future work is to
develop new application area of generalized SSA.
For that purpose, since there are large freedoms
in the choice of the linear operator proposed in
this paper, we need create new linear operator by
considering the physical phenomenon of the target
models. Second future work is to complete the
theoretical framework of the generalized SSA.
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(a) Original mesh (b) d̂ = 1 (c) d̂ = 6 (d) d̂ = 15

Figure 4. The decomposed bunny model of L = 21. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 3 (c) d̂ = 5 (d) d̂ = 8

Figure 5. The decomposed bunny model of L = 10. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 2 (c) d̂ = 3 (d) d̂ = 4

Figure 6. The decomposed bunny model of L = 5. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 2 (c) d̂ = 3 (d) d̂ = 9

Figure 7. The decomposed bunny model of L = 5 using the mesh whose vertices are transposed to
laplacian. The sum of d̂ lower frequency components.


