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ABSTRACT

In this paper we present a method for illuminating a dynamic scene with a high dynamic range environment map
with real-time or interactive frame rates, taking into account self shadowing. Current techniques require static
geometry (pre-computed light transport), are limited to few and small area lights or are limited in the frequency of
the shadows. We facilitate importance sampling of the environment map and GPU based shadow calculation in an
efficient way. The shadows are calculated per pixel, so no highly tessellated models are necessary in opposition to
other techniques. Our method provides a novel and highly efficient way for using shadow maps as data structure
for visibility computations done entirely on the GPU. We achieve real-time frame rates for moderate sized models
on current graphics hardware. Since we evaluate the light transport of the scene per frame, complex dynamically
animated models can be rendered efficiently.
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1. INTRODUCTION

Shadows reveal information about spatial object rela-
tion within a scene. Hence, using shadows in com-
puter graphics allows a better immersion into a scene.
Enhancing the quality and dynamics of the shadows
will result in a more efficient comprehension of the
image. For that task we present a system for rendering
shadows caused by an environment map. The system
evaluates the self shadowing of the scene at interac-
tive or real time frame rates on current GPUs. The
shadows are evaluated per pixel and are not limited to
low frequencies. Furthermore, objects are allowed to
be non-manifold. All this is done for fully dynamic
scenes without prior knowledge of the animation.
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Existing systems used for rendering such scenes lit by
an environment map are limited to vertex lighting, do
not allow shadows or are not interactive.

The presented method makes use of importance sam-
pling to create a light setup, which approximates the
environment map. The light visibility is determined
with shadow buffers. Since the rendering is entirely
done on the GPU, no time expensive read backs of
data towards the CPU is needed.

In section 2 we refer to existing work related to our
approach. Then, we explain our algorithm and the
ideas behind it. Additionally some issues are pre-
sented which have to be considered when implement-
ing the algorithm on a GPU. In section 4 an implemen-
tation of the system is shown and discussed, followed
by a summary and a look into the future.

2. RELATED WORK
There exists a lot of literature addressing the prob-
lems of shadowing 3D scenes in real time. In [Has03]
several methods for generating soft shadows are com-
pared. Unfortunately, they are either limited to small
area sources or too slow to be useful for our approach.
Rendering real time shadows of dynamic geometry
on today’s graphics hardware is mainly done by only
two approaches: shadow volumes [Cro77] and shadow



maps [Wil78]. Both methods are capable of rendering
shadows of directional- and point lights, creating hard
shadow boundaries. Shadow maps are fast to compute
and need less fill rate than shadow volumes. On the
other hand, care has to be taken of sampling artefacts.
An approach for minimizing shadow buffer artifacts
can be found in [Ree87].

Direct illumination of a scene with an environment
map is given by a group of environment mapping
methods (like [Gre86, Ram01, Hei99]). They do not
support shadows, which is a big disadvantage.

In [Deb98] Paul Debevec presents image based light-
ing done with high dynamic range (HDR) environment
maps, to bring together synthetic and real scenes under
natural lighting conditions.

Ray tracing [Wal03b, Wal03a, Pur02] is another ap-
proach for visibility determination. It has reached
interactive and real time frame rates by using a PC-
cluster, the GPU or dedicated ray tracing hardware.
Unfortunately, there is still development needed until
this hardware is out of prototype state. The software
solution needs the power of an efficient cluster sys-
tem. Ray tracing on the GPU at last needs fast read
back towards the CPU, which is a bottleneck.

Global illumination at interactive frame rates can be
done, utilising a real time raytracer. A direct approach
towards global illumination on the GPU is presented
in [Coo04], achieving interactive frame rates for small
scenes. Another method to achieve fast global illumi-
nation computations was presented by Keller et. al in
[Kel97]. The method accumulates images of the scene
illuminated by single shadowcasting lights.

Other methods make use of occlusion or precomputed
lighting information to allow the use of an environ-
ment map as light source. The information is mostly
stored per vertex. Nevertheless a lot of additional in-
formation has to be stored. Since directions have to
be mapped to data, structures like spherical harmon-
ics are used. Since these methods are based on pre
computations they normally can not be used for an-
imated geometry. This flaw is faced by Kautz et al.
in [Kau04]. They presented a method for speeding
up the pre-calculation to interactive frame rates on
small models. In opposition to our method they need
a model hierarchy which can have high preprocess-
ing cost - if animated. Due to its Spherical Harmon-
ics/vertex based character, the method processes only
low frequency shadows.

Many methods use directional- or point-lights as
an approximation of the environment map. Our
algorithm belongs to this kind of methods. For
the pre-calculation of ambient occlusion NVIDIA
[Pha04]presented an algorithm, which uses accumu-

lation of shadow maps in a preprocessing step to light
the scene. As a disadvantage their method needs sev-
eral seconds of preprocessing time for calculating the
occlusion, with a reasonable visual quality.

Another approach for calculating ambient occlusion is
presented in [Sat04]. It takes into account the colour
of the environment map. Their method is mainly dif-
ferent in three points to our approach: Occlusion is
evaluated per vertex, lights are generated with spheri-
cal distribution and at last occlusion data is read back
from GPU.

Since the approximation of an environment map with
directional lights is a difficult task, several methods
addressing this problem exist. The easiest way is to
sample the environment map homogeneously. But
since most environment maps have varying areas of
interest, it is advantageous to take the importance
of these areas into account [Aga03, Kol03, Ost04,
Sze04]. This is done by analysing the image to figure
out more important areas of the image to place lights
in.

3. OUR METHOD

Importance sampling

If we directly used the environment map for lighting
a surface point, we would have to solve the problem
of integrating over a hemisphere to get the amount of
incoming radiance. Since the used environment maps
are discrete, we could use a sum overn texels of the
environment map for that task, but this would be still
too much work to do.

Hence, we reduce the visibility problem tok direc-
tional lights, which are computed from the environ-
ment map. This is done by using structured impor-
tance sampling [Aga03]. This algorithm creates a dis-
tribution of the lights on the environment map accord-
ing to the importance of the respective region. The im-
portance of a region is determined by its extend and its
light intensity. Roughly speaking, the method creates
many lights in bright areas and only a few in darker
ones, as can be seen in Figure 1. For more details on
the importance metric and a derivation of it we refer
the interested reader to the original paper [Aga03].

The computed point lights accumulate the radiance of
their surrounding region. This method works consid-
erably well, so a teapot scene inside Galileo’s Tomb
using only 300 lights rendered by Agarwal et al.
shows no significant difference to a reference image
computed with 100,000 samples using standard Monte
Carlo sampling.

In difference to [Sat04] we use importance sampling
in our system, since the rotation of lights is decou-



Figure 1: Environment map with 128 importance sam-
pled lights shown as white dots.

pled from the rotation of the geometry. Rotation of
the environment is followed by equal rotation of the
lights. Although importance sampling of an environ-
ment map as described in [Aga03] takes some time, it
either can be pre-computed and stored or done once at
start up.

Scene Rendering
Conventional real-time algorithms render a shadowed
scene light after light in several passes. So, a shadow
map is calculated for each light and used directly.
Since all triangles have to be rasterized in each pass,
this approach generates a lot of redundant calcula-
tions, which slows down the rendering. Our idea is
to get rid of most of these redundant calculations, by
doing something similar to ray tracing: Take a pixel
and calculate all lighting for it, then take the next one.
Calculations for a given pixel which are independent
of the light position need to be done only once. The
algorithm looks like this:

Calculatek lights from environment map.
for all Framesdo

Calculatek shadow maps.
for all pixel do

Compute visibility of k lights using the
shadow maps.

end for
end for

Algorithm 1: The shadowing algorithm.

Since rendering the scene taking all lights into account
at once, a lot of redundant calculations are prevented.
The rendering of the scene into the frame buffer be-
comes a single pass operation. But the storing and
handling of thek shadow maps raises problems ad-
dressed in the next section.

Shadow Map Management
Normally, a shadow map is used for one light at a time
only. Since shadow maps are usually represented by

textures, this causes a lot of state changes. To min-
imize these state changes we render several shadow
maps into one texture to fulfill the requirements set by
our algorithm (See Figure 2).

Figure 2: Texture containing several shadow maps,
packed side by side.

This approach concentrates first completely on
shadow map generation for all light sources and then
on rendering the actual scene. Shadow map generation
and scene rendering are completely separated.

Further Reduction of the Number of
Lights
The structured importance sampling reduces the num-
ber of lights necessary to approximate the lighting of
an environment map. But, there are still too many
lights needed to emulate soft shadows caused by lights
on the environment map. Reducing the number of
lights further will result in clearly distinguishable
shadows with hard boundaries, due to under sampling
(See Figure 3).

Figure 3: An example for under sampling the environ-
ment map: On the left 32 lights are used and the single
shadows are clearly distinguishable. On the right fig-
ure 2048 light sources have been used.

These hard boundaries arise from sharp shadow edges
of the individual light sources. More reduction needs a
method to avoid these artefacts. The shadow maps are
stored as plain depth information within a texture. So
we can use simple 2D image manipulation functions to
solve the problem by using a softening filter function.



This allows a blending of shadow boundaries. By this,
a quality similar to images rendered with much more
lights is achieved (See Figure 4).

Figure 4: Using smoothing to avoid shadow artifacts:
The left image is illuminated by 64 lights. Single
shadows are well visible. The center image is illu-
minated by the same number of light sources, but with
smoothed shadows. As reference, the right image is
illuminated with 192 lights.

In [Aga03] jittering is used to reduce these artefacts.
This is done by randomly choosing a light direction
pointing inside the stratum of the light. This takes
into account the distance of the occluder to the sur-
face point: With increasing distance of the occluder
the shadow gets more and more blurry.

In our approach a shadow map contains the visibility
for a constant light direction. As a consequence we
can only jitter the position within the shadow map. A
shadow boundary will be equally thick regardless of
the distance to the occluder. So our method cannot be
interpreted as a quick alternative to soft shadow algo-
rithms. Taken alone it just blurs a shadow boundary.
The soft shadow effect is caused mainly by the large
number of lights used.

GPU-based visibility
Current GPUs behave like a dataflow machine. This
has severe consequence when designing algorithms
for GPUs. Changing the GPU state for example will
stall the pipeline and if this happens often the over-
all performance decreases considerably. In our system
we take care of this by clearly dividing shadow map
calculation and scene rendering.

Unfortunately, it is necessary to split Algorithm 1 into
several parts, since the GPU has a limited program
length and not all lights can be computed in one pass.
In order to be able to map our shadowing algorithm
onto a programmable GPU, we modified Algorithm 1
into a multi-pass algorithm. The lights are packed into

clusters of sizec. The size depends on the maximum
number of lights supported by the fragment program
of the GPU. The modified algorithm is shown in Al-
gorithm 2 and can be implemented on current GPUs.

Calculatek lights from environment map.
for all Framesdo

for all Light clustersdo
Calculatec shadow maps.
for all pixel do

Compute visibility of c lights using the
shadow maps.

end for
end for

end for

Algorithm 2: The modified shadowing algorithm.

Also, all data and intermediate data used should be
stored within the GPU memory to prevent wait states.
So, intermediate data should simply reside on the
GPU. By using a GPU which is able to render into
a texture the shadow maps fulfill this criteria. The ge-
ometry data can be stored inside the GPU memory for
one frame of animation, since we are using a multi-
pass operation this speeds up the algorithm.

4. IMPLEMENTATION AND DISCUS-
SION
We implemented our algorithm on a Radeon 9700 us-
ing OpenGL. The workload was divided between CPU
and GPU. The CPU handles constants and the control
flow of the algorithm. The vertex processor computes
parameters which then can be interpolated over a tri-
angle. The fragment shader does the per pixel work.

In order to map the algorithm efficiently to graphics
hardware we used several extensions:

• GL ARB vertexprogram for vertex program
support.

• GL ARB fragmentprogram for fragment pro-
gram support.

• GL ARB vertexbuffer object for geometry stor-
age inside GPU memory.

• WGL ARB pbuffer to be able to render to tex-
ture.

We have implemented shadow maps via the PBuffer
extension of OpenGL. So using shadow map informa-
tion is simply a texture lookup. As described above,
we are trying to put as many shadow maps in the
PBuffer as possible. Unfortunately, the PBuffer has a



maximum resolution which limits the number of con-
tainable shadow maps. But since textures are usu-
ally coloured there is another way to put more shadow
maps inside one PBuffer. Every colour channel is used
separately. This multiplies the capacity by four with-
out decreasing the shadow map resolution (See figure
5). The shadow buffer information is interpreted in-

Figure 5: RGBA-texture as shadow buffer (alpha
channel not shown): Additionally several buffers were
packed side by side.

side the fragment program. Additional filtering (sim-
ple smoothing or percentage closer filtering ([Ree87]))
is done here, too.

Storing the geometry data inside the GPU is manda-
tory, since we have a multi-pass algorithm. So the bus
between CPU and GPU is free for control operations
and is not a bottleneck.

Vertex/Fragment Load Balancing
Load balancing is done by changing the number of
lights calculated simultaneously. By calculating one
light per pass, most work of the vertex program is
done by transforming vertex coordinates. The frag-
ment program has less work to do by handling one
light. Nevertheless, it is more often called due to more
passes are needed. Calculating several lights per pass
increases the load inside the fragment program. Since
fewer passes are needed the vertex program has to do
less work.

Results
In order to analyse the behaviour of the load balanc-
ing we implemented shaders for calculating shadows
of one, four and eight lights simultaneously inside the
fragment program. The shaders have shown a boost
of frame rates as more lights were rendered per frame,
since the number of passes decreases. All methods
for reducing fill rate and vertex count have shown di-
rect consequences towards higher frame rates. The im-
plementation also has shown that careful detection of

bottlenecks and several exploitations of redundancies
created a system, able to reach real time frame rates
for moderate polygon count models. In practical use,
bottlenecks tend to wander between fragment program
and vertex program, dependent on the amount of ob-
jects covering the screen.

The evaluation of the shadows within the fragment
program allows user defined filtering functions. Ob-
serving the visual results of our system, shadow
smoothing is not always necessary to be convincing.
It depends on the environment map and the number of
lights used.

5. CONCLUSIONS

We presented a method for self-shadowing of dynamic
scenes with environment maps using the GPU. Our
algorithm allows the creation of interactive systems,
which are capable of rendering scenes taking into ac-
count self shadowing caused by an environment map.
We evaluate the lighting condition of the geometry on
the fly by using current graphics hardware and their
shadow mapping features. Our algorithm achieves in-
teractive frame rates for large dynamic models, with-
out prior knowledge of the animation. The implemen-
tation is flexible enough to allow an easy load balanc-
ing between vertex and fragment program, by control-
ling the number of lights rendered per pass. In order to
raise the visual quality of the shadows we use smooth-
ing and percentage closer filtering.

The implementation of the algorithm has shown it’s
ability to achieve real-time frame rates for models with
moderate polygon count with plausible looking self
shadowing of the scene, realistically illuminated by
the HDR environment map.

6. FUTURE WORK

One direction for future research would be to consider
more information about the light source. The direc-
tional lights created by importance sampling describe
actually areas of the environment map and not just a
singular point. If we took the shape and size of the
light source into account during the visibility compu-
tations, it would be possible to reduce the number of
light sources needed for realistic images even further.

The rendered images would reach a next grade to-
wards photo realism if inter-reflections are taken into
account. Since this requires visibility calculation be-
tween faces of the geometry, inter-reflections are not
handled by our scheme yet. It will take several gener-
ations of GPUs and further algorithmic improvements
until this vision will be reality.



7. ACKNOWLEDGEMENTS
The high dynamic range environment maps used in
this paper were made by Paul Debevec [Deb98].
Textiles shown were created with the prepositioning
and cloth simulation methods described in [Fuh03b,
Fuh03a, Gro03].

8. REFERENCES

[Aga03] Agarwal, S., Ramamoorthi, R., Belongie, S., and
Jensen, H. W. (2003). Structured importance sampling of
environment maps.ACM Trans. Graph., 22(3):605–612.

[Coo04] Coombe, G., Harris, M. J., and Lastra, A. (2004).
Radiosity on graphics hardware. InGI ’04: Proceed-
ings of the 2004 conference on Graphics interface, pages
161–168. Canadian Human-Computer Communications
Society.

[Cro77] Crow, F. (1977). Shadow algorithms for computer
graphics.j-COMPGRAPHICS, 11(2):242–248.

[Deb98] Debevec, P. (1998). Rendering synthetic ob-
jects into real scenes: bridging traditional and image-
based graphics with global illumination and high dy-
namic range photography. InSIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics
and interactive techniques, pages 189–198. ACM Press.

[Fuh03a] Fuhrmann, A., Gross, C., and Luckas, V. (2003a).
Interactive animation of cloth including self collision de-
tection.Journal of WSCG, 11(1):141–148.

[Fuh03b] Fuhrmann, A., Gross, C., Luckas, V., and Weber,
A. (2003b). Interaction-free dressing of virtual humans.
Computers & Graphics, 27(1):71–82.

[Gre86] Greene, N. (1986). Environment mapping and
other applications of world projections.IEEE Comput.
Graph. Appl., 6(11):21–29.

[Gro03] Gross, C., Fuhrmann, A., and Luckas, V. (2003).
Automatic pre-positioning of virtual clothing. InPro-
ceedings of the Spring Conference on Computer Graph-
ics, pages 113–122.

[Has03] Hasenfratz, J.-M., Lapierre, M., Holzschuch, N.,
and Sillion, F. (2003). A survey of real-time soft shadows
algorithms. InEurographics. Eurographics, Eurograph-
ics. State-of-the-Art Report.

[Hei99] Heidrich, W. and Seidel, H.-P. (1999). Realis-
tic, hardware-accelerated shading and lighting. InSIG-
GRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages
171–178. ACM Press/Addison-Wesley Publishing Co.

[Kau04] Kautz, J., Lehtinen, J., and Aila, T. (2004). Hemi-
spherical rasterization for self-shadowing of dynamic ob-
jects. InProceedings Eurographics Symposium on Ren-
dering 2004.

[Kel97] Keller, A. (1997). Instant radiosity. InSIGGRAPH
’97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, pages 49–56.
ACM Press/Addison-Wesley Publishing Co.

[Kol03] Kollig, T. and Keller, A. (2003). Efficient illumi-
nation by high dynamic range images. InEGRW ’03:
Proceedings of the 14th Eurographics workshop on Ren-
dering, pages 45–50. Eurographics Association.

[Ost04] Ostromoukhov, V., Donohue, C., and Jodoin, P.-
M. (2004). Fast hierarchical importance sampling with
blue noise properties.ACM Transactions on Graphics,
23(3):488–495. Proc. SIGGRAPH 2004.

[Pha04] Pharr, M. (2004). Ambient occlusion.Game De-
velopers Conference (GDC) 2004.

[Pur02] Purcell, T. J., Buck, I., Mark, W. R., and Hanra-
han, P. (2002). Ray tracing on programmable graphics
hardware.ACM Trans. Graph., 21(3):703–712.

[Ram01] Ramamoorthi, R. and Hanrahan, P. (2001). An ef-
ficient representation for irradiance environment maps. In
SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques,
pages 497–500. ACM Press.

[Ree87] Reeves, W. T., Salesin, D. H., and Cook, R. L.
(1987). Rendering antialiased shadows with depth maps.
SIGGRAPH Comput. Graph., 21(4):283–291.

[Sat04] Sattler, M., Sarlette, R., Zachmann, G., and Klein,
R. (2004). Hardware-accelerated ambient occlusion com-
putation. In Girod, B., Magnor, M., and Seidel, H.-P.,
editors,Vision, Modeling, and Visualization 2004, pages
331–338. Akademische Verlagsgesellschaft Aka GmbH,
Berlin.

[Sze04] Szecsi, L., Sbert, M., and Szirmay-Kalos, L.
(2004). Combined correlated and importance sampling
in direct light source computation and environment map-
ping. Computer Graphics Forum (Eurographics 04),
23(3).

[Wal03a] Wald, I., Benthin, C., and Slusallek, P. (2003a).
Interactive global illumination in complex and highly oc-
cluded environments. InEGRW ’03: Proceedings of the
14th Eurographics workshop on Rendering, pages 74–81.
Eurographics Association.

[Wal03b] Wald, I., Purcell, T. J., Schmittler, J., Benthin, C.,
and Slusallek, P. (2003b). Realtime ray tracing and its
use for interactive global illumination. InEurographics
State of the Art Reports.

[Wil78] Williams, L. (1978). Casting curved shadows on
curved surfaces. InSIGGRAPH ’78: Proceedings of the
5th annual conference on Computer graphics and inter-
active techniques, pages 270–274. ACM Press.



Figure 6: The left image was rendered with standard OpenGL. The center image was illuminated by an irradiance
map. The right image was rendered with our algorithm taking self-shadowing into account. The resolution was
421x711 pixel and 128 smoothed shadows were used. We achieved four frames per second. The model consists of
107K triangles.

Figure 7: The left image was rendered with 64 light sources and 8 lights per pass at 21 FPS. The middle image was
rendered with 64 light sources, shadow smoothing and 4 lights per pass at 8 FPS. The right image was rendered
with 192 light sources and 8 lights per pass at 6 FPS.

Figure 8: Some sample frames taken from a real-time animation and rendering of cloth.


